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Abstract 

In this work, we apply the systematic approach to plant-wide control design presented 

in [1], based on the fundamentals of process networks, thermodynamics and systems 

theory, to the Tennessee Eastman (TE) Challenge Process, deriving robust decentralized 

controllers that will ensure the stability of the complete plant. We take one step further 

in the control design procedure by completing it with the realization of the controllers. 

The inventory control laws proposed are derived from a set of control loops over the 

available degrees of freedom in the process.  
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1. Introduction 

The TE process defined in [2] produces two products (G and H) from four reactants (A, 

C, D and E). A further inert trace component (B) and one byproduct (F) are present. The 

process consists of a continuous stirred tank reactor, a condenser, a flash drum and a 

stripper. In Figure 1, the flowsheet of the TEP is reproduced. The gaseous reactants are 

fed to the reactor where they are transformed into liquid products. The following 

reactions take place in gas phase:  

A(g) + C(g) + D(g)  G(l) (1) 

A(g) + C(g) + E(g)  H(l) (2) 

          A(g) + E(g)  H(l) (3) 

                  3D(g)  2F(l) (4) 

These reactions are irreversible and exothermic with rates that depend on temperature 

through Arrhenius expressions and on the reactor gas phase concentration of the 

reactants. The reaction heat is removed from the reactor by a cooling bundle. The 

products and the unreacted feeds pass through a cooler and, once condensed, they enter 

a vapor-liquid separator. The noncondensed components recycle back to the reactor feed 

and the condensed ones go to a product stripper in order to remove remaining reactants 

by stripping with feed stream. Products G and H are obtained in bottoms. The inert (B) 

and the byproduct (F) are mainly purged from the system as a vapor from the vapor-

liquid separator.  

Since the publication of the TE process example, it has been widely used in the 

literature as a case study due to its challenging properties from a control engineering 
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point of view: it is highly nonlinear, open-loop unstable and it presents a large number 

of measured and manipulated 

variables what offer a widely set  

of  candidates  of  possible 

control strategies. A review of 

the most relevant plant-wide 

control strategies applied to the 

TE process is given in [3] and 

references there in. Many of the 

previous proposed approaches 

have weaknesses as described in 

[3]. Our contribution try to 

overcome these drawbacks by 

systematizing the development of 

   Figure 1: The Tennessee Eastman Process         robust decentralized controllers 

that will ensure the TEP stability. In this framework, the TEP is represented as a process 

network and mass and energy inventory control loops for each node are designed first to 

guarantee that the states of the plant will remain on a convex invariant region. In these 

sets, the second law of thermodynamics provides us with a function -the entropy of the 

system- which has a definite curvature (is concave). In addition, it can be proved that in 

these compact regions, the system will be passive and, therefore, stable. At this point, 

the next step will be the controller realization using the physical inputs-outputs of the 

process. In the real TE process, inventory fluxes can be the result of combining multiple 

convective mass or energy flows and the inventory control law has to be obtained as a 

composition of control loops implemented over the real manipulated variables available 

in the process.  

The paper is structured as follows: In Section 2, network fundamentals and the TEP 

network representation are described. The thermodynamic formalism used in the design 

of decentralized controllers is presented in Section 3. Finally, in Section 4 we show the 

realization of the inventory controllers and we validate the proposed methodology with 

simulation results. 

2. The Tennessee Eastman Process Network 

As presented in a previous work [1], a process network is defined by a number j=1,…, 

n of well mixed homogeneous material regions connected by material and energy fluxes 

we will refer to as nodes, plus an extra region  j = 0 which represents the environment. 

To each node j in the network we associate a state vector zj
1c of the form 

zj=(n1
j,…,nc

j,uj)T, where ni
j denotes the mole numbers of component i, the internal 

energy is represented by uj and c stands for the total number of chemical species. With 

this, the inventory network dynamics can be represented by: 

; , , ,m u p with m u pI I I I I I I IN N  (5) 
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where
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are the mass and energy inventory flows, 

respectively and N is, by definition, a 

column conservation matrix. In addition,  

represents the number of dissipative 

subnetworks (defined as those only 

interconnected by dissipative fluxes) in which 

the original system can be simplified 

andD is the number of nodes forming each 

dissipative subnetwork. For further 

information about this network formalism, 

see [1] and [4]. The network description of 

the model is depicted in Figure 2 and derives 

Figure 2:  The Tennesse Eastman Network     from the TEP flowsheet presented in Figure 1 

by assigning one node to each phase. There, the mass and energy flows are represented 

by solid and dashed arrows, respectively, and the solid circles  symbolize the 

environment. By applying the inventory network concepts presented, the inventory 

dynamics can be written as: 
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where αi,j represents the fraction of the inventory flow going from node i to node j. The 

resulting inventory network is as depicted in Figure 3. In a similar way, we can 

represent the energy inventory network (Figure 4), where the main difference with the 

mass network is that there exist more connections with node 0 (inputs from the 

environment corresponding to coolant and steam flows in the condenser before the LV 

separator and the stripper). The underlying structures presented in Figures 3 and 4 for 

mass and energy inventory layers are the basis of the hierarchical control process design 

presented next. 

3. Thermodynamic basis for decentralized controller design 

In every node of a process network of volume j, thermodynamics provides us with a 

continuous, twice differentiable scalar function 
2

, :
c

j j jS z  named 

entropy. This function is first order homogeneous in all their arguments and strictly 

concave with respect to the vector zj  [1]. Such property indicates that S has a definite 

curvature, ensuring that over the set  
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            Figure 3: Mass TEP Fundamental Network         Figure 4: Energy TEP Inventory Network 
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has a maximum for a given (m, u, ) constant and for every  j  D. In the last expression, 
k represents the vector of molecular weights for the c components. Once the network 

states converge to Λ, we can ensure that the process system is passive and, therefore, 

stable [5]. This fact motivates a hierarchical control design decomposition in which 

mass and energy inventory controllers in every node of the network are first designed to 

drive the system to this compact set Λ. In particular, the mass and energy inventory 

control layers consist of linear proportional controllers of the form: 

* * * *;m um m p p u uI I I I I I I I
 (7) 

We select a I 
*  Null(N ), i.e. N I 

*= 0 and n , u are appropriate gain matrices 

constructed in a way such that the real part of the eigenvalues associated to N m and N u 

are negative. Finally, taking deviation variables with 

respect a given reference and substituting the expressions 

in (7) into (5), it follows that mI  mI
 * and uI  uI

 * 

exponentially fast so the convergence of the process states 

to the set Λ is ensured. For the TE inventory networks 

represented in Figures 3 and 4, there exist enough degrees 

of freedom (DOF) to implement the mass inventory 

control, using the total inventory outflow of each node as 

the manipulated variables. For the energy layer, the 

additional connections with node 0 provides extra DOF to   

Figure 5: Dissipative network   control this energy inventory. It  must pointed out that, as 

demonstrated in [1], control laws represented in Eqn. (7) do not prevent the system from 

exhibit complex behavior, such as multiplicities, due to the fact that the convergence of 

the intensive variables to a unique stable point can not be guaranteed. As presented 

before, the network entropy is strictly concave in Λ and intensive variable control can be 

designed by, for instance, methods discussed  in [5]. In order to avoid these problems  

and ensure global stability for the TE plant, we propose additional control loops for 
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mass and energy inventories in every node belonging to the dissipative subnetworks as 

depicted in Figure 5. For instance, the mass inventory of a vapor phase is related with 

the pressure and together with the energy inventory -that is related with the temperature-

, the composition of equilibrium systems can be modified through these inventories. In 

order to develop these extra control loops, we consider that the control laws in Eqns. (7) 

can be obtained as a composition of the control laws applied to each node in D. In Figure 

5, two possible manipulated variables (the outflows of each node) are proposed. Using 

control laws for the mass inventories in each node analogous to (7):  

* * * *;L L L L L V V V V Vm m m m  (8) 

It follows that the sum of equations in (8) results in 
* *m mI I I I  for 

L= V, ensuring convergence of both total and node mass inventories. The formalism 

concerning the inventory control laws must then be translated into suitable control loops 

using the available inputs-outputs of the system. This question will be discussed in the 

next section. 

4. Realization of the Hierarchical Control  Design for the TE Process  

Starting from the fundamental process network showed in Figure 2, inventory control 

loops are developed for every node, except for the condenser and for the nodes 

representing heat sources or sinks in the energy layer, where there is no mass holdup. 

The manipulated variables will be the outflows of each node and the flows from node 0 

for the mass and energy cases, respectively. Then, the resulting mass and energy 

inventory control structures (MIC and EIC, 

respectively) for the TE are presented in 

Figure 6. Note that for mass inventory in 

node 1, we do not use the outflow since in 

the TE there are not valves neither in the 

stream leaving the reactor nor in the stream 

from the condenser to the LV separator. 

Therefore, the next vapor stream (purge) is 

used. In addition, for every dissipative 

subnetwork, the equilibrium condition is 

assumed, which implies μi=μj ; Ti=Tj and 

Pi=Pj  for all  i, j D. This allows us to defi- 

           Figure 6: Inventory Control Loops        ne a unique energy inventory control loop for 

each dissipative subnetwork. For the case of node 6 representing the vapor phase in the 

LV separator, a composition control as depicted in Figure 6 is considered. Since T6, V 

and x6  are being controlled and the nodes are in equilibrium, the pressure as well as the 

mass inventory are fixed. Finally, the mass inventories for the dissipative subnetworks 

representing the equilibrium trays of  the stripper will be constant, under the assumption 

of a constant molar overflow (CMO) model. The dynamic  performance of the proposed 

control structure against changes in the A/C Feed ratio (IDV1) is presented in Figure 8, 
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showing stability and fast convergence of  the process variables to their reference 

values. Similar results were obtained against other disturbances. Note that it is possible 

to tune the controllers solving an optimization problem (minimizing the cost function 

presented in [2]). 

 

 

 

 

   
       
 
 
     
        
                                                               
   
    Figure 7: Proposed Control Structure for TEP       Figure 8: Dynamic Response against IDV(1)   

5.   Conclusions 

In this contribution, the systematic plant-wide control design methodology presented in 

[1] has been applied to the challenging benchmark of the Tennessee Eatman Process. 

We have designed decentralized control structures which simultaneously ensure 

stabilization of both plant extensive and intensive variables, paying special attention in 

the realization of the controllers by making use of the available manipulated variables of 

the process. The proposed control structure has been tested dynamically with good 

stability results. 
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