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ABSTRACT

Repetitive aquaculture-related protocols may act as cyclic stressors that induce chronic stress in 

cultured fish. The sea bass is particularly sensitive to stressful conditions and the mere presence of  

humans will disturb feeding behavior. In this paper, we study whether chronic stress induced by 

repetition of acute stress protocols affects long-term feeding behavior and growth performance in 

sea bass and whether exogenous cortisol may induce stress-like changes in these parameters. We 

demonstrate that both chronic stress and dietary cortisol decrease food intake and have a negative 

effect on feed conversion efficiency, severely impairing sea bass performance. Both experimental 

approaches induced changes in the daily feeding activity by lengthening the active feeding periods. 

Fish  subjected  to  a  cyclic  stressor  modify  their  daily  feeding  pattern  in  an  attempt  to  avoid 

interference with the time of the stressor. The delay in feeding when fish are acutely and repeatedly 

stressed could be of substantial adaptive importance. 

Keywords: Stress, Cortisol, Feeding Behavior, Food Intake, Growth Performance, Food Conversion 

Efficiency,  Daily Rhythms
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INTRODUCTION

The primary stress endocrine response in fish is mainly mediated by the hypothalamic-sympathetic 

chromaffin  cell  (HSC)  and  the  hypothalamic-pituitary-interrenal  axes (HPI).  Both  systems 

contribute in a key manner to restoring homeostasis after stress mainly by mobilizing fuel stores to 

make energy available  for the increased metabolic  demand. Sustained reallocation of metabolic 

energy away from growth processes (both somatic and reproductive) compromises the performance 

capacity of  the fish during chronic stress.  Therefore,  reduced or  negative  growth is  commonly 

observed during stressful periods, while growth rates or derived parameters are often considered as 

reliable indicators of stress and welfare (Wenderlaar-Bonga, 1997; Mommsen et al., 1999; Ashley 

2006; Aluru and Vijayan, 2009).  

Causes  for  stress-induced growth retardation  are  diverse.  A reduction in  the food intake  levels 

and/or disruption of the feeding behavior is a common feature of the behavioral response to stress in 

fish (Bernier and Peter, 2001; Bernier 2006). Under stressful conditions fish eat less and grow more 

slowly  than  unstressed  fish.  Stressful  conditions  are  known  also  to  induce  reductions  in  feed 

conversion efficiency (FCE) that can lead to decreased growth rates even when food intake levels 

are maintained  (Barton et al., 1987; Gregory and Wood 1999; Paspatis et al., 2003; d`Orbcastel et 

al., 2010). These negative effects of stressors on FCE may be mediated by a disruption of metabolic 

regulation or increased activity, leading to increased energy expenditure or reducing the absorption 

of food through the intestine (Barton et al., 1987; Mommsem et al., 1999). In addition, stressors can 

modify  the  regulation  of  the  endocrine  growth  axis  including  pituitary  growth  hormone  (GH) 

secretion and hepatic insulin-like growth factors (IGFs) synthesis (Rotllant et al., 2001; Dean and 

Woo; 2009; Saera-Vila et al., 2009).    

Cortisol  is  the  main  glucocorticoid  in  fish  and  the  end-product  of  the  HPI  axis  activation 

(Wenderlaar-Bonga,  1997).  Elevation  of  corticosteroid  plasma  levels  is  one  of  the  most 
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evolutionary conserved stress responses and it is commonly used as an indicator of the degree of 

stress  experienced.  Cortisol  is  thought  to  mediate  many  effects  of  stressors on  physiological, 

metabolic  and  behavioral  processes  (Wenderlaar-Bonga,  1997;  Mommsen  et  al.,  1999;  Barton, 

2002; Aluru and Vijayan, 2009). Evidence  suggests that cortisol is the main mediator of stress-

induced  growth  suppression  since  chronically  elevated  plasma  levels  following  its  exogenous 

administration reduce fish growth by simulating stress effects, i.e. reduction in food intake levels 

and  FCE, increased energy expenditure and compromised food absorption (Barton et  al.,  1987; 

Gregory and Wood, 1999; De Boeck et al., 2001).          

The  sea  bass  (Dicentrarchus  labrax),  is  an  important  species  in  Mediterranean  and  Atlantic 

aquaculture and a number of studies have focused on its feeding behavior (Sánchez-Vázquez et al., 

1995a,b; Boujard et al., 1996; Sánchez-Vázquez et al., 1998; Azzaydi et al., 2007; Leal et al., 2009). 

Under  ambient  conditions,  feeding patterns  display a  marked seasonality.  Grouped animals  are 

diurnal  during  the  summer-autumn  but  exhibit  nocturnal  feeding  during  the  winter  (Sánchez-

Vázquez et al.,  1998). However, individually reared fish exhibit a dual pattern of daily feeding, 

some fish displaying diurnal behavior while others are strictly nocturnal under identical culture 

conditions. Animals spontaneously invert the phasing of their daily feeding pattern (diurnal fish 

become nocturnal and vice versa) but the mechanisms involved are unknown (Sánchez-Vázquez et 

al., 1995a,b). Sea bass is very sensitive to stressful conditions and the mere presence of humans can 

significantly reduce feeding activity (Rubio et al., 2010). Rearing density severely affects sea bass 

performance (Paspatis et al., 2003; Roque d'Orbcastel et al., 2010) as well as the response to acute 

stress challenges (Di Marco et al., 2008). Cortisol has been suggested to mediate density-induced 

effects on sea bass growth but the extent and manner of its involvement remain unexplored. This 

investigation follows our previous work in the sea bass, in which we observed that acute stress 

challenges can modify short-term food intake (Rubio et al., 2010). In this study, we investigate: 1)  

whether chronic stress,  different from rearing density, can affect long-term feeding behavior and 
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growth performance and 2) whether exogenous cortisol may  induce stress-like changes in these 

parameters.  To this  end, we first   investigated the effects  of the stress induced by routine tank 

cleaning practices on daily food intake and  feeding pattern, specific growth rate (SGR) and FCE. In 

a second experiment, we evaluated the effect of a 30 day feeding trial with cortisol-containing diets 

on the same feeding and biometric parameters. The results demonstrate that both chronic stress and 

dietary cortisol can depress feeding, growth and FCE, and modify daily feeding rhythms in the sea 

bass. 

      

MATERIAL AND METHODS

Animals

One year old immature sea bass [body weight (BW)= 120.9 ± 0.87 g and length (L)= 20.79 ± 0.06  

cm  were maintained in  2000 L tanks supplied with continuously aerated running sea water and 

equipped with automatic feeder activated by a string sensor placed 3 cm below the water surface. 

The feeders were connected to a computer system that recorded the date, the time and the tank from 

which each food demand originated.  The number of  demands  was integrated  every 5 minutes. 

Animals were maintained under natural conditions for six months and self-fed with a commercial 

diet (Mistral 21, Proaqua Nutrición, S.A.; 43% protein, 23% fat, 20% carbohydrates, 6% ash, gross 

energy 22.5  kJ/g,  in  3  mm standard  pellets).  Before  the  experiments,  fish  were  placed  in  the 

experimental 500 L tanks, continuously supplied with running seawater and provided with identical 

self-feeding systems, and acclimated for at least one week. The full water volume of the tank was 

renovated  every 40 minutes.  The experimental  tanks were visually isolated from the remaining 

tanks in the culture facilities so that routine activities did not disturb the fish. No access to the  

experimental  area  was  allowed,  except  for  sampling  and cleaning procedures.  Prior  to  netting, 

animals were preanaesthetized in 2-phenoxy-ethanol (0.02%) for 3-5 minutes in their home tanks. 
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Subsequently, animals were removed from their home tanks and anaesthetized for 2 min in the same 

anesthetic (0.1%) in the sampling tank. The day before samplings, sensors were removed from the 

water at 10.00 am, the time at which sampling always started . When required the experimental 

animals were sacrificed by rapid decapitation. All experiments were carried out in accordance with 

the  principles  published  in  the  European  animal  directive  (86/609/EEC)  for  the  protection  of 

experimental animals.

Hormone administration

The amount of cortisol (hydrocortisone; Sigma St. Louis, MO) to reach the experimental doses (0, 

50, 200 and 500 µg/g food) were dissolved in 50 ml ethanol (100%). The solution was sprayed onto 

500 g food and dried overnight (O/N) at room temperature (RT) and stored at  4º C until needed. 

Cortisol-containing food was then administered by hand (experiment 2) or loaded into the feeder 

containers, and changed every week during the experimental period (experiment 3).   

Experimental procedure

Experiment 1.  The first trial was a pilot experiment designed to evaluate the short-term effects of 

physical stress on cortisol plasma levels in the sea bass. Sixty animals (BW= 106.98 ± 1.53 g and 

L= 20.87 ± 0.102 cm) were distributed into 6 experimental tanks and hand-fed at 2 % BW for two 

weeks at 9.00 am. After the accommodation period, three tanks were cleaned whereas the animals 

in control tanks remain undisturbed. The cleaning protocol was always performed at 10.00 am and 

involved draining and brushing the tanks with the animals inside. The tanks were emptied until the 

dorsal fins of the fish were exposed and then brushed for 2 minutes and immediately refilled. Blood 

samples were obtained at 2 and 8 h post-stressor. Animals were not fed during the experimental day. 
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Experiment 2. The second trial was designed to evaluate the effects of repetitive physical stress on 

sea bass growth performance and feeding behavior. One hundred animals (BW= 221.82 ± 1.32 g L= 

25.95 ± 0.047 cm) were distributed into 10 experimental tanks (n=10) provided with automatic self-

feeders. Three tanks were cleaned once a week (Monday, 1W) and three tanks were cleaned three 

times a week (Monday, Wednesday and Friday, 3W), whereas the four control tanks were never 

cleaned (CTRL).  The cleaning protocol was as before.  At the beginning of the experiment, one 

animal from each tank was sacrificed to obtain biometric parameters and blood samples. At the end 

of the experiment, nine animals/treatment were sampled to obtain the same biometric parameters 

and blood samples. Food demands were registered during thirty two consecutive days and 10.00 am 

was considered the beginning of a new 24-h period.  The feed reward per sensor activation was set 

at 0.9 g/demand, which approximately corresponds to 9 food pellets/activation and, by extension, 1 

pellet/fish/demand.  The  total  amount  of  food  distributed  was  calculated  by weighing  the  food 

remaining in  the  food hoppers.  This  quantity  was  used  to  calculate  the  delivery rate  for  each 

electronic  feeder.  The  daily  food  intake  was  calculated  using  the  feeder  delivery  rate  and  the 

number of daily demands.

Experiment 3. The third trial was a pilot experiment to evaluate the effect of cortisol administration 

in the fish diet. Twenty one animals of approximately 150 g were fed at 2 % BW for two weeks 

with control food at 10.00 am. Subsequently, seven animals were fed with the control diet, while 14 

fish were given the hormone-containing food at 50 µg/g (n=7) or 500 µg/g food (n=7) at the same 

time of day for 10 days. On the sampling day, animals were fed at 10.00 am and two hours later 

blood samples were obtained by caudal puncture. The plasma was stored at -20 ºC until assayed. 

Experiment 4. The fourth trial was designed to evaluate the effects of cortisol administration on sea 

bass growth performance and feeding behavior. Ninety animals (BW= 136 ± 0.96 g L= 22.63 ± 0.05 
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cm) were distributed into 9 experimental tanks (n=10) provided with automatic self-feeders. Three 

tanks were fed the control diet (CTRL), three tanks the cortisol-contaning food at 200  µg/g food 

(C200) and the remaining three tanks with cortisol-enriched diet at 500 µg/g food (C500). At the 

beginning  of  the  experiment,  one  animal  from  each  tank  was  sacrificed  to  obtain  biometric 

parameters and blood samples. At the end of the experiment, 9 animals/treatment were sampled for 

the same purpose. All the fish were weighed and measured. The daily food intake was calculated as 

above (see experiment 1). 

Hormone analysis 

Plasma  cortisol  levels were  measured  by  ELISA  (Neogen  Corporation)  according  to  the 

manufacturer’s  instructions.  Dilution  curves  showed  that  cortisol  rabbit  antisera  identified  the 

cortisol present in both standard solutions and intact plasma in a similar manner (data not shown). 

Result expression and statistical analysis  

Data concerning food intake, biometric parameters and plasma hormone levels are expressed as 

means ± standard error. Specific growth rates were calculated as g(X) = 100* [(ln XF-ln X0)/t]. XF 

and X0 indicate  the value of  the variable  [body weight  (BW),  length (L),  hepatosomatic  index 

(HSI), mesenteric fat index (MFI) or condition factor (CF)] at the end (F) and beginning (0) of the 

experiment, respectively. Condition factor was calculated as BW (g) / L3 (cm). HSI were calculated 

as 100 X [liver weight (g) / BW (g)].  MFI was calculated as 100 X [weight of the fat around the 

viscera (g)] / BW (g). FCE was calculated as total food intake / (BWF-BW0). B indicates biomass. 

Differences  were  analyzed  by  one-way  analysis  of   variance  (ANOVA)  followed  by  Tukey´s 

multiple range test (P<0.05). For feeding rhythm studies, food intake level values were integrated 

per hour and represented as percentage of the total  food intake. Daily variations were fitted by 

means of the cosine function with circadian periodicity: Y = M + A [(Cos (Ω*t + Φ)], where M = 
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mesor (mean level of the variable calculated throughout a whole cycle, A = amplitude, Ω=angular 

frequency, t=time and Φ= acrophase; fits were considered significant when p<0.01.

RESULTS

Experiment 1. Acute physical stress imposed by cleaning induced a significant increase of cortisol 

plasma levels 2 h after the stressor ceased. Significant differences were not detected at 8 hours post-

treatment (Fig.1). 

Experiment  2.  Effect  of  repetitive  physical  stress  on  sea  bass  feeding  behavior  and  growth 

performance 

Acute physical stress imposed by cleaning once or three times a week significantly reduced daily 

and cumulative food intake levels (Figure  2A;  3A) as well as  FCE (Table 1). Control fish were 

heavier but not longer and, accordingly, exhibited a higher CF than that shown by fish stressed once 

a week (Table 1). All three growth rates; i.e. g(BW), g(L), g(CF) were higher in control fish but 

only g(BW) and g(L) reached significant differences (Table 1). Similarly HSI and MFI values were 

higher in control fish than treated fish but differences did not reach statistical relevance. At the end 

of the experiment, no differences in plasma cortisol levels were observed (Table 1).     

The temporal  ingestive  pattern of  fish was similar  in  all  treatments  and demands were mainly 

recorded  during  the  light  phase  of  the  photoperiod  (Fig.  4A).  All  three  treatments  showed 

significant variations in food intake levels during the 24-h cycle which fitted significantly circadian 

cosine curves (t=24 h, data not shown). Control fish exhibited a significant increase in food intake 

between 8 and 10h, when they consumed approximately 28% of the their daily feed intake. During 

this time interval, stressed fish, on the other hand, ate approximately 10% of the total daily feed. 

Fish stressed three times a week ate significantly more than control and 1W fish between 17 and 
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19h.  No significant differences in the amplitude or acrophase of the rhythms were detected (data 

not shown). Control and 1W fish demanded more than mesor levels (4.16 %) from 9 to 15h, 3W 

fish demanded more from 10 to 15h. 

Experiment 3. Exogenous cortisol administration 

The administration of dietary cortisol at highest dose significantly increased plasma cortisol levels 

two hours after feeding (Fig.  5). On the contrary, the lowest dose tested resulted in no significant 

increase. Overall plasma cortisol in fish fed the highest doses were 5.8 times higher than  cortisol 

levels  in control fish (167 ± 15.3 ng/ml). Therefore, we decided to feed the animals with dietary 

cortisol at doses of 0 (CTRL), 200 (C200) and 500 (C500)  µg/g food.   

Experiment 4. Effects of exogenous cortisol on sea bass feeding behavior and growth performance 

The administration of the dietary cortisol induced a significant decrease in the daily food intake 

levels, which led to a dose-response reduction in the cumulative food intake (Figs  2B;  3B). FCE 

was also significantly reduced in fish fed the hormone-containing diet (Table 2). Differences in food 

intake and FCE resulted in heavier and longer fish in the control group than in those treated with 

cortisol (Table 2). Accordingly, fish treated with the steroid exhibited lower specific growth rates 

expressed as weight [(g(BW)], length [(g(L)] or CF [(g(CF)] than the control fish (Table 2). In fact, 

CF increased in the control fish, whereas treated fish lost condition (Table 2). Accordingly, control 

fish preserved their  mesenteric fat percentage, whereas this parameter significantly decreased in 

treated fish. A similar tendency was observed in the HSI but differences did not reach statistical 

significance (Table 2).     

All three treatments showed led to significant variations in food intake levels during 24-h cycles 

which displayed significant fits to circadian cosine curves (t=24 h). Fish ate mainly during the light 

10



phase of the photoperiod  and acrohases were fitted around midday. However cortisol-treated fish 

showed a significant food intake peak at 20.00-21.00h, when they consumed approximately 12% of 

the total daily feed (Fig.4B). Five out of six cortisol-treated groups displayed the same pattern while 

only one fish group of the C500 treatment follow a similar pattern to that exhibited by all the three 

control groups, which never ate more than 2% of the total daily food intake during this period. This 

discrepancy was responsible for the absence of significant differences during this period in the food 

intake level of the C500 fish compared with the control group (Fig.4B). This peak did not give rise 

to significant differences in the amplitude or acrophase (data not shown) but extended the period of 

active feeding in cortisol-treated fish (Fig.4B). Therefore, control fish showed a higher number of 

demand s than the mesor levels (4.16 %) from 9 to 18h, whereas treated fish demanded more than 

mesor levels from 8 to 21h. 

DISCUSSION

Our previous results  demonstrated that  acute stress arising from human activity close to  tanks, 

cleaning or sampling protocols have a profound effect on sea bass food intake although fish exhibit 

a compensatory response once the stressor has ceased (Rubio et al., 2010). Our present results add 

to  these  findings  by  showing  that  if  such  stressful  conditions  become  chronic,  fish  cannot 

compensate, and daily and accumulated food intake, FCE and growth rates are severely depressed. 

This explains why the specific growth rates were 10.2 % and 17.2 % for g_BW and 23.0 and 38.4 

%  for g_L lower in animals stressed once or three times a week than in control fish, respectively. 

Similarly,  MFI and  CF were reduced by 17.5 and 14.1% and 4.4% and 2.2%, respectively. This 

reduction  in  the  percentage  of  body fat  and condition  suggest  increased  energy expenditure  in 

stressed animals although it might also result from a combined reduction in food intake and FCE 

levels. The 1W and 3W stressed fish did not exhibit significant differences in daily or accumulated 
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food intake levels and growth performance,  indicating the absence of a  graded response to the 

frequency of the stressor and suggesting the susceptibility of the sea bass performance to chronic 

stressors. This finding differs from those previously reported for sea bass in which repetitive acute 

stressors did not induce behavioral or performance changes (Millot et al.,  2010). Results on the 

effects of chronic stress induced by rearing density on sea bass performance are controversial. Stock 

density up to 45 kg/m3 did not affect the energy status of sea bass and their sensitivity to subsequent 

acute crowding stressor (Di Marco et al., 2008). Reduced daily food intake and specific growth rate 

were observed at densities of 100 kg/m3 but FCE was unalterated (Roque d'Orbcastel et al., 2010; 

Sammouth et al., 2009). However, experiments with similar sized animals demonstrated negative 

effects on FCE at 50 kg/m3, whereas the growth performance was reduced at 75 kg/m3   (Santos et 

al.,  2010).  Overall,  the  data  indicate  that  chronic  stress  induced  by high  stock  densities  have 

negative effects on sea bass performance, supporting our results obtained  using chronic physical 

stressors.      

Significant differences in the accumulated food intake levels of stressed fish were observed at 11 

days and were maintained until the end of the experiment. The differences in accumulated food 

intake in the stressed fish increased form day 11 to the end of the experiment, suggesting that fish 

did not exhibit any compensatory response driven by a stress adaptation mechanism. As expected 

during the summer period, all fish groups exhibited a diurnal feeding pattern with acrophases at 

around midday (Azzaydi et al., 2007; Rubio et al., 2010). The feeding pattern of control animals 

slightly differed from those observed in stressed fish.  Control fish  exhibited higher food demand 

activity  during  the  first  hours  of  the  light  phase  of  the  photoperiod,  while  fish  stressed  3W 

demanded significantly more during the last hours of the light phase. Experiments in sea bass have 

reported that the use of combined physical stressors repeated randomly does not modify the daily 

feeding patterns (Millot et al.,  2010).  However, differences in feeding rhythms of the sea bass 

mediated by chronic stress induced by stocking density have been reported. With crowding, sea bass 
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tend to  lengthen the feeding activity period surpassing the nocturnal restriction (Paspatis et  al., 

2003). Repeated acute stressors are thought to alter behavior mainly by reducing feeding activity 

during the  stress period  which is  associated to  decreased growth rates (Millot  et  al.,  2010 and 

references therein). In our experiment, the stress protocol always was applied at 10.00 am so fish 

might have postponed their maximal demands until after the stressor had terminated. In some way, 

fish seemed to learn the time when the stressor would take place. The delay in feeding behavior 

when fish are acutely and repeatedly stressed could be of substantial adaptive importance. 

Most stress-induced effects on growth performance and behavior are mediated by increased plasma 

cortisol  levels (Wendeerlar-Bonga,  1997;  Mommsen  et  al.,  1999;  Aluru  and  Vijayan,  2009). 

Consequently, we evaluated the cortisol levels in the experimental fish but no significant differences 

were observed at the end of the experiment.  In a previous pilot experiment, we demonstrated that 

the cleaning protocol induce a significant increase in plasma cortisol levels after two hours but 

differences were  resumed into the following 6 hours.  Similar results were obtained in sea bass 

subjected to an acute crowding stressor (Di Marco et al., 2008) although when crowding stressor 

persist for  24h,  plasma  cortisol  levels  remained significantly  upraised  (Rotllant  et  al.  2003). 

Animals of the experiment 2 were sampled at 48 h post-stressor. Therefore, it is conceivable that no 

differences in plasma cortisol levels were found.   

In  the  following experiment  we tested  whether  the  administration  of  exogenous  cortisol  could 

simulate the results obtained in the previous experiment. A second pilot experiment was designed to 

corroborate that the dietary cortisol is able to increase plasma levels as previously reported in the 

goldfish  (Bernier  et  al.  2004).  Animals  fed  with  the  highest  dose of  dietary  cortisol  (C500) 

displayed a significant increases in  plasma cortisol levels which were similar to those previously 

reported in crowded or acute stressed sea bass (Simontacchi et al., 2008; Lupatsch et al., 2010). 

However, lower tested doses (C50) did not induce significant differences compared with control 

animals. Therefore, we decided to use an  intermediate dose (C200) to observe any graded response 
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in the  plasma cortisol levels.   This study is  the first  to examine the effects  of chronic cortisol 

increase on daily food intake and growth performance using self-feeding systems.  It  cannot  be 

affirmed unequivocally that cortisol added to the surface of the feed does not affect the taste of the 

feed. However, to the best of our knowledge, cortisol does not stimulate (or otherwise) the gustatory 

system of fish.  Studies in  goldfish suggested that  dietary cortisol  does  not affect  the gustatory 

response (Bernier et al., 2004). In addition, differences in food intake levels were obtained after 18 

days of treatment and one could expect suppressant or deterrent substances  to induce a faster taste 

response in food intake levels (Kasumyan and Doving, 2003). Animals treated with the highest 

cortisol dose (C500) lost weight, displaying a negative specific growth rate. Similarly, g_BW in 

animals treated with the lowest cortisol dose (C200) was 77.6 % lower than in control fish. The 

condition factor of the control animals increased throughout the experiment but the cortisol-treated 

animals lost body condition, probably as partial result of a severe decrease in the  mesenteric fat 

content. Therefore, the decreased (C200) or suspended (C500) growth in cortisol-treated fish was 

probably a  combined  result  of  decreased  food intake  and  efficiency levels  and even increased 

energy expenditure as suggested by the severe reduction in body fat levels. Evidence in other fish 

species suggests that cortisol administration suppresses growth by increasing energy expenditure 

through  the  stimulation  of  energy-demanding  metabolic  processes  such  as  lipid  mobilization 

(Mommsen et al., 1999; De Boeck et al., 2001; Bernier et al., 2004). Cortisol also can interfere with 

the  hormonal  system  involved  in  the  regulation  of  growth  (Kajimura  et  al.,  2003)  but  more 

experiments are needed to reveal its involvement in the regulation of the sea bass GH/IGF axis. The 

results obtained for growth performance are in good agreement with those obtained previously in 

other  fish  species.  Experiments  in  rainbow  trout  demonstrated  that  cortisol  implantation 

dramatically reduced food intake levels, leading to depressed g(BW) and FCE (Gregory and Wood, 

1999). Similar results were reported in goldfish treated with high cortisol doses, while lower doses 

stimulated food intake without promoting growth (Bernier et al., 2004).  Our experimental design 
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cannot confirm that the observed effects are specifically mediated by glucocorticoid receptors, but 

the time elapsing between the treatment and the response suggests that classical  glucocorticoid 

receptors  working  through  genomic  actions  are  involved  in  the  observed  response.  Sea  bass 

glucocorticoid receptor has been cloned and hepatic expression is downregulated in crowded sea 

bass exhibiting higher cortisol levels than control animals (Terova et al. 2005).

Feeding behavior and, by extension, food intake levels are regulated in the central nervous system, 

where the neuronal hypothalamic circuits integrate incoming visceral and sensorial information to 

orchestrate an integrated feeding response. The inferior hypothalamic lobe, particularly areas close 

to the lateral recess, as well as the ventro-posterior hypothalamus, are involved in the control of  

feeding  behavior  (reviewed by Volkoff  et  al.,  2005).  There  are  no  data  concerning  the  central 

expression of glucocorticoid receptor  in  sea bass  but  studies in  rainbow trout  showed that  this 

receptor is profusely expressed within the ventral telencephalon and preoptic area, as well as in the 

tuberal  and  hypothalamic  lobes  (Teistma  et  al.,  1998).  Central  anorexigenic  effector  pathways 

downstream  of  glucocorticoid  receptors  in  fish  remain  to  be  established.  Studies  in  goldfish 

demonstrated that peripheral cortisol administration inhibits  corticotropin releasing  factor (CRF) 

but stimulates neuropeptide Y (NPY) expression within the preoptic area (Bernier et al., 2004). This 

scenario may explain the orexigenic effects of cortisol doses since NPY and CRF are known to 

stimulate and inhibit, respectively, food intake in goldfish (Volkoff et al., 2005) and mammalian 

species (Cavagnini et al., 2000). Experiments in rainbow trout have demonstrated that implanted 

cortisol inhibits preoptic expression of both CRF and NPY but does not prevent the stimulation of 

neuropeptide  expression  under  stress,  suggesting  that  the  responsiveness  to  acute  stressors  is 

maintained under chronic stress (Doyon et al., 2006). Overall, the data suggest that the fish neural 

system involved in the control of food intake is responsive to increased plasma cortisol levels but 

that factors other than NPY and CRF mediate the anorexic effects of cortisol in a more significant  

manner. However, more experiments are needed to  identify  such central factors.                
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The administration of dietary cortisol  seemed to  simulate the stress-induced effects as the treated 

fish exhibited a dose-response reduction in accumulated food intake and severe effects on growth 

performance. However, the timing and magnitude of the changes were different. The differences in 

food intake were obtained  at  11 and 18 days post-treatment in physically stressed and cortisol-

treated  fish,  respectively.  Cortisol-induced  effects  on  growth  rates  and  FCE  were  much  more 

pronounced than those induced by chronic physical stress.  In addition, cortisol treatmet,  but not 

chronic physical  disturbance,  had a severe effect on  g(CF) and g(MFI).  Such  discrepancy  in the 

magnitude of the response could be explained in terms of differential intensity of the stimulus.  In 

chronically stressed fish, the negative stimulus was only present once o three times a week but 

hormone-treated fish received exogenous cortisol during the whole experiment. Therefore, a more 

severe response cloud be expected in cortisol-treated fish. Differences in  the timing of the response 

are  more  difficult  to  explain  since  stress  effects  on  food intake  were  reached  earlier  than  the 

hormone-induced  effects.  However,  stress  effects  are not mediated entirely by  increased  plasma 

cortisol levels which represent the final outcome of the HPI axis activation. The upstream activation 

of the axis can mediate also the activation and/or inhibition of different metabolic and behavioral 

pathways.  Our results have demonstrated that ACTH induce hepatic lipolisys via activation of the 

melanocortin 2 receptor (Agulleiro MJ, Sánchez E, Fernández B, Leal E,  Guillot  R and Cerdá-

Reverter unpublished results). On the other hand, increased CRF levels during stress response could 

activate different neuronal pathways involved in the control of food intake than those regulated by 

the  circulant cortisol. In addition,  the  stress response  is not only mediated by HPI  axis  activation 

since the HSC axis plays  a key role  in the fish stress response  (Wenderlar-Bonga, 1999).  It  is 

conceivable that  the  cortisol-induced  effects on HSC system are different form those induced by 

stress.

As in the  repetitive physical stress  experiment, sea bass exhibited a diurnal feeding rhythm with 

acrophases around midday. Cortisol administration modified the food demand rhythms in the sea 
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bass,  since  treated  fish exhibited  a  significant  food-demand peak during  the  last  period  of  the 

photophase,  which  was  absent  in  the  control  fish.  This  increased  feeding  activity  caused  an 

extension of the demand period in treated fish towards the scotophase.  Feeding pattern in the sea 

bass is seasonal. Grouped animals prefer feed during photophase in summer and during scotophase 

in winter(Azzaydi  et  al.,  2007). However,  when   individually reared  some fish  exhibit   diurnal 

behavior while others are  nocturnal . Animals can  invert the phasing of the daily feeding pattern, 

but the mechanisms involved are unknown  (Sánchez-Vázquez et al., 1995a,b). Evidence obtained 

in  our  experiments  are  insufficient  to  confirm the  involvement  of  cortisol  and/or  stress  in  the 

regulation  of  temporal  feeding  patterns  in  the  sea  bass  and  more  experiments  are  required  to 

elucidate the effects of stress on the temporal organization of feeding.

In conclusion,  chronic stress induced by repetition of acute stress protocols and dietary cortisol 

administration induced a significant attenuation of food intake and FCE, severely impairing sea bass 

performance. In addition, both stress protocols and cortisol treatments induced modification of the 

feeding activity rhythms, suggesting involvement of the stress response in the temporal organization 

of  feeding behavior.  Finally,  our  study demonstrates  the  sensitivity of  sea bass  performance to 

aquaculture-related stressors since only one tank cleaning process in the week was sufficient to 

severely impair food intake, conversion and growth. 
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FIGURE LEGENDS

Figure 1

Plasma cortisol levels after physical disturbance imposed by cleaning protocols with animals inside 

the tanks. Control fish were undisturbed. The cleaning protocol was always performed at 10.00 am 

and involved draining and brushing the tanks with the animals inside. Asterisk indicates significant 

differences between control and distubed fish after ANOVA followed by Tukey´s multiple range test 

(P<0.05)

  

Figure 2

(A) Cumulative food intake level after repetitive physical disturbance imposed by routine cleaning 

protocols with animals inside the tanks once (1W) or three times a week (3W). Control fish (CTRL) 

were never disturbed. Differences were detected 11 days after the beginning of the experiment. (B) 

Cumulative food intake level after dietary cortisol administration at 0 (CTRL), 200 (C200) or 500 

(C500) µg/g food. Differences were obtained 18 days after the beginning of the experiment. Each 

point represents the mean ± SEM of food intake levels of at least 3 tanks containing nine animals. 

Asterisk indicates significant differences between control and treated fish after ANOVA followed by 

Tukey´s  multiple  range  test  (P<0.05),  δ denotes  significant  differences  from CTRL and  C200 

treatments.  

Figure 3

Daily mean food intake after repetitive physical disturbance (A) or cortisol treatment (B). Each bar 

represents  the  mean  +  SEM  of  132  (CTRL  and  1W)  or  99  (3W)  determinations  and  96 

determination each for CTRL, C200 and C500. Different letters indicate significant differences after 

ANOVA followed by Tukey´s multiple range test (P<0.05). See Figure 1 for more details.   
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Figure 4

Daily food intake  rhythms in sea bass  subjected  to   repetitive  physical  disturbance (A) or  fed 

cortisol-containing diets (B). Values are the average of food demanded every 60 minutes expressed 

as percentage of the total food intake for at least 3 groups of  9 fish each. Black and white areas at 

the bottom of the graphs represent the dark and light phases, respectively, of the photoperiod. See 

Figure 1 for more details.   

Figure 5

Plasma cortisol levels of sea bass fed with cortisol-containing diets at doses of 0 (CTRL), 50 (C50) 

and 500 (C500) µg/g food fed for 10 days. Animals were hand fed every day at 10.00 h and sampled 

two  hours  after  food  administration  (12.00  h).  Each  bar  represents  the  mean  +  SEM  of  7 

determinations.  Asterisk  indicates  significant  differences  between  control  and  treated  fish  after 

ANOVA followed by Tukey´s multiple range test (P<0.05). 
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Table 1. Effects of repetitive physical stress on sea bass growth performance
Treatment CTRL 1W 3W

BW (g) 269,214±,48a 250,76±2,95b 254,38±5,37b

L (cm) 27,00±0,13 26,77±0,12 26,72±0,13

CF (%) 1,36±0,01a 1,30±0,01b 1,33±0,02ab

HSI (%) 1,80±0,06 1,74±0,07 1,55±0,08

MFI (%) 5,87±0,91 4,85±0,44 5,05±0,40

g(BW) (%) 0.579±0,016a 0,397±0,055b 0,405±0,058b

g(L) (%) 0,126±0,005a 0,098±0,009b 0,081±0,001b

g(CF) (%) 0,205±0,022 0,101±0,038 0,157±0,029

gHSI (%) -0.76 -0.86 -1.22

gFVI (%) -1.86 -2.46 -2.33

FCE 2,01±0,02a 2,56±0,03b 2,53 ±0,23b

Cortisol (ng/ml) 150.3±16.38 97.5±12.01 121.4±14.91

1W  and  3W  denote  tanks  cleaned  once  (Monday)  and  three  times  a  week  (Monday,  Wednesday  and  Friday), 

respectively. Control tanks were never cleaned (CTRL). Data are expressed as means ± standard error. Specific growth 

rates were calculated as g(X) = 100* [(ln XF-ln X0)/t]. XF and X0 indicate the value of the variable [body weight (BW), 

length (L), condition factor (CF) hepatosomatic index (HSI) and  mesenteric fatty index (MFI)] ant  the end (F) and 

beginning (0) of the experiment, respectively. Feed  conversion  efficiency (FCE) was calculated as total food intake / 

(BF-B0).  B  indicates  biomass.  Different  letters  in  the  same  column  indicate  significant  differences  after  ANOVA 

followed by Tukey´s multiple range test (P<0.05).
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Table 2. Effects of cortisol administration on sea bass growth performance
Treatment CTRL C200 C500

BW (g) 179,23±2,89a 143,26±2,56b 131,78±2,56b

L (cm) 24,31±0,03a 23,23±0,14b 22,92±0,11b

CF (%) 1,24±0,02a 1,14±0,01ab 1,09±0,03b

HSI (%) 1,33±0,07 1,28±0,08 1,17±0,11b

MFI (%) 5,67±0,01a 4,20±0,07b 3,74±0,19b

g(BW) (%) 0,85±0,05a 0,19±0,03b -0,1±0,08b

g(L) (%) 0,23±0,01a 0,10±0,01b 0,04±0,01b

g(CF) (%) 0,16±0,07a -0,11±0,03ab -0,23±0,05b

gHSI (%) -0,78±0.18 -0,88±0.19 -1,19±0.28

gFVI (%) -0,07±0,05a -1,01±0,05b -1,38±0,15b

FCE 1,63±0,13a 6,39±1,55b -5,31±2,51b

C200 and C500 indicates fish fed with diets containing 200 and 500 µg/g food, respectively. CTRL denotes control fish 

See Table 1 for more details. 
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