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Introduction
Three decades have passed since seminal discoveries 
demonstrated a causal link between the ras genes  
harbored in murine sarcoma retroviruses and cancer 
pathogenesis [1]. In this time, the RAS gene products,  
the GTPases, H-Ras, N-Ras and K-Ras 4B/4A, have been 
recognized as key signal transducers. The mechanisms 
whereby Ras is regulated by guanine‐nucleotide exchange 
factors (GEFs) and GTPase-activating proteins (GAPs)  
have been elucidated. In addition, the constituents of  
the main effector pathways through which Ras relays 
its signals to the interior of the cell have been identified 
and the distinct actions of Ras signals in different  
cellular microenvironments are being investigated [2,3].  
The unraveling of these biochemical milestones has 
progressed in parallel to the acquisition of a broad  
knowledge of the role of Ras in cancer. Since the early 
1980s, during which HRAS was identified as the first  
human oncogene and its activating mutations were  
defined, mutant alleles of the three RAS genes have  
been detected in many human cancers. Analysis of 
more than 40,000 tumor samples indicates an activating  
mutation rate of 22, 8.2 and 3.7% for KRAS, NRAS and  
HRAS, respectively [4]. If cases in which mutational  
activation is detected (in most cases in a non-overlapping 
occurrence) in components of Ras effector pathways 
are considered, namely BRAF (22%) and p110α PI3K 
(12%), the proportion of human neoplasia exhibiting a  

hyperactive Ras-related pathway is greater than 50% 
[5,6]. In addition, a vast body of data has been gathered 
substantiating the importance of Ras signals in cancer 
initiation and progression. Activated mutants of Ras or  
of its downstream effectors have been demonstrated to 
induce malignant transformation in many cell types, as 
a result of unregulated proliferation, differentiation or  
survival [1]. Pharmacological and genetic inhibition of  
Ras signals have demonstrated the role of this protein  
in the activation and maintenance of the transformed 
phenotype [2,4]. In addition, sophisticated animal 
models have supported the importance of Ras and its  
downstream routes for tumorigenesis in vivo [7]. 

As a result, it is not surprising that Ras has attracted 
enormous attention, both in academia and industry, for 
its potential as a target in cancer therapy. Large amounts 
of research have been dedicated to strategies directed 
at curtailing Ras aberrant signals as a means of halting  
tumor progression. Most of these initiatives have been 
aimed at either inactivating Ras or inhibiting the activity 
of some of its downstream kinases. The results have  
been mixed. The attempts to inactivate oncogenic  
Ras have been mostly unsuccessful [8-10]. In the case  
of the approaches toward inhibiting downstream  
kinases, mostly directed against Raf and MEK family 
kinases, several generations of inhibitors have been  
under investigation. Some inhibitors have advanced  
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through clinical trials, but most have been hampered  
by poor clinical efficacy and/or undesired toxic effects [11].

Research to identify alternative approaches to target  
Ras signals to enable the generation of more efficient  
and less toxic inhibitors is ongoing. New data have  
unveiled a plethora of proteins and processes that have  
critical regulatory roles in Ras signaling. Moreover, novel 
functional interactions have been identified, introducing 
new players into Ras-regulated pathways that could  
provide potential new targets for therapeutic intervention. 
This review presents an overview of these novel findings 
that could provide new approaches for interfering with  
Ras signals.

Old drugs for old concepts
Since it was determined that amino acid substitutions  
at codons 12, 13 and 61 impaired Ras GTPase activity,  
making it unresponsive to GAPs, substantial efforts  
were devoted to identify approaches to restore Ras  
enzymatic activity; thus far, this research has been 
unsuccessful [12,13]. As an alternative strategy, Ras  
access to the plasma membrane (PM), which is essential 
for the biological activity of Ras [14], was inhibited using 
farnesyltransferase inhibitors. These studies yielded  
positive results in mouse models of H-Ras; however, 
these results were not replicated in clinical trials 
[4], likely because K-Ras and N-Ras, unlike  H-Ras, 
are also modified by geranylgeranylation, a process 
that increases in activity when farnesylation is 
blocked (for a review, see reference [15]). Combined  
inhibition of farnesylation and geranylgeranylation 
demonstrated high toxicity in preclinical studies, and  
was not considered to be a viable option [9]. Other  
attempts to inhibit Ras activity included the blockade  
of Ras expression using antisense oligonucleotides [16], 
but this strategy has not been successful because of  
the high level of specificity of these molecules and the 
difficulty of delivery to the target tumors [17]. Another 
approach has been the use of inhibitors of prenylated  
protein methyltransferase (PPMTase), the enzyme that 
methylates Ras proteins. PPMTases inhibit Ras-dependent 
cell growth by an unknown mechanism that is probably 
unrelated to the inhibition of Ras methylation [18].  
The most potent of these inhibitors, S-trans,trans-
farnesylthiosalicylic acid (FTS) (salirasib, Concordia 
Pharmaceuticals), has undergone phase I trials for 
solid tumors with promising results [19] (Table 1);  
however, Ras remains a difficult molecule to target 
pharmacologically.

Raf inhibitors
The difficulties experienced with developing Ras  
inhibitors have resulted in a shift in focus to several 
downstream kinases of Ras pathways, particularly those 
kinases that form the cascade leading to the activation  
of ERK MAP kinases [4] (Figure 1). The Raf kinase family  
(ie, ARaf, BRaf and cRaf) has emerged as an appealing 
target, after the discovery of activating mutations in  
BRAF in 60% of melanomas, 40% of thyroid tumors, and  

20% of colorectal and ovarian tumors [20,21]. In addition  
to sorafenib (Nexavar) [22,23], which is approved for  
the treatment of hepatocellular and renal cell carcinoma, 
three Raf inhibitors are being evaluated in clinical  
trials: RAF-265 (Novartis; ClinicalTrials.gov identifier: 
NCT00304525); vemurafenib (Plexxikon/F Hoffman-La 
Roche) [24] and XL-281 (Bristol-Myers Squibb;  
NCT00451880 and NCT01086267; for reviews, see 
references [11,25]) (Table 1). These inhibitors function  
as ATP-competitive analogs that, by definition, exhibit  
some degree of unspecificity. Thus, doubts remain as to 
whether the antitumoral effects of these agents are a  
result of off-target effects or their anti-Raf activity. Such  
is the case for sorafenib, which also inhibits VEGF-2,  
VEGF-3 and PDGFβ; the anti-oncogenic properties of this 
agent are independent of its inhibitory effect on BRaf  
[26]. Another caveat is that tumors tend to acquire 
resistance to these inhibitors, probably as a result 
of 'gatekeeper' mutations. For example, resistance 
to vemurafenib is developed in a median time of 8 to  
9 months of treatment [27]. Of major concern are  
recent discoveries demonstrating that Raf inhibitors 
can have opposite effects to those intended, depending 
on the cellular context. In tumors harboring oncogenic  
K-Ras mutations, Raf inhibitors promote ERK activation  
in a Ras-dependent manner, with subsequent stimulation  
of tumor growth [28,29]. Similarly, a dead-kinase mutant  
of BRaf and oncogenic K-Ras cooperate to induce  
melanoma in mice [30]. These results highlight the need  
for screening patients for BRaf and Ras mutations in  
order to distinguish those patients likely to respond 
from those in which anti-Raf therapies could be  
harmful. Importantly, these adverse interactions also  
reduce the therapeutic options available to treat the  
large number of tumors harboring Ras mutations.

MEK kinase inhibitors
Inhibitors of MEK kinases (MEK1 and MEK2) are also 
available as a therapeutic option. Unlike Raf inhibitors,  
MEK kinase inhibitors are not ATP mimetics and, 
consequently, exhibit high specificity. The mode of  
action of MEK kinase inhibitors results from binding to a 
unique inhibitor-binding pocket, locking the kinase in a 
closed, inactive form [31]. PD-184352 (Pfizer) [32,33],  
PD-0325901 (Pfizer) [25,34], AZD-6244 (AstraZeneca) 
[35] and XL-518 (Genentech/Exelixis; NCT00467779)  
have undergone clinical trials (Table 1). PD-184352 
demonstrated insufficient clinical activity, but its positive 
safety profile has encouraged the development of  
derivatives [32]. The development of PD-0325901 was 
discontinued because of toxicity concerns [25,36].  
AZD-6244 has completed phase I trials in patients  
with advanced cancer [37] and is in phase II trials 
in combination with other chemotherapeutic agents,  
including sorafenib and PI3K inhibitors, following  
promising results in mouse models [38,39]. XL-518 
has been reported to inhibit ERK1/2 activation in a  
preclinical xenograft model and to be well tolerated in 
a phase I trial [40]. The development of resistance is 
also a concern for MEK inhibitors. Screening of tumors 
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Table 1. Drugs targeting Ras-regulated pathways.

Compound
(developing company)

Target Tumor type Highest 
development status

Reference

Salirasib
(Concordia Pharmaceuticals)

Ras Solid tumor
NSCLC

Phase II [19]

Sorafenib Raf, PDGFRβ, VEGFR-2/3, 
c-KIT and FLT-3

Advanced renal cell carcinoma
Advanced hepatocellular carcinoma

Launched [22,23]

vemurafenib (Plexxikon/ 
F Hoffman-La Roche)

Mutant BRaf Melanoma
Colorectal tumor
Solid tumor

Phase III [98]

XL-281
(Bristol-Myers Squibb)

All Raf isoforms and 
mutant BRaf

Advanced solid tumor Phase I NCT00451880 and 
NCT01086267

RAF-265 (Novartis) Raf and VEGFR Advanced melanoma Phase I NCT00304525

PD-184352 MEK1/2 Colon cancer
Pancreatic cancer
Breast cancer
NSCLC

Discontinued [32,33]

PD-0325901 MEK1/2 Advanced solid tumor
Breast cancer
Colon cancer
Melanoma

Discontinued [11,34]

AZD-6244
(AstraZeneca)

MEK1/2 Advanced melanoma
Biliary cancer
Pancreatic cancer
NSCLC
Advanced colon cancer 
Hepatocellular carcinoma
Thyroid tumor
Solid tumor

Phase II [35]

XL-518
(Genentech/Exelixis)

MEK1/2 Solid tumor Phase I NCT00467779

GDC-0941
(Genentech)

Class I PI3K Advanced solid tumors
Breast tumors
Non-Hodgkin's lymphoma

Phase I NCT00876122, 
NCT00960960 

and NCT00996892 

MK-2206
(Merck & Co)

AKT Advanced solid tumors Phase II NCT01071018 and 
NCT01186705

Perifosine
(Keryx Biopharmaceuticals/
AEterna Zentaris/Handok 
Pharmaceuticals)

AKT Advanced solid tumors
Melanoma
Multiple myeloma
Renal cell carcinoma
Leukemia
Sarcoma

Phase III [52]
NCT01002248

Everolimus mTORC1 Soft-tissue and bone sarcoma
Advanced solid tumors
Brain tumor
Head and neck cancer
Breast cancer
Prostate cancer

Launched [56,99]

Temsirolimus mTORC1 Advanced renal cell carcinoma
Advanced solid tumors
Myeloma
NSCLC
Endometrial cancer

Launched [53,54,100]

from relapsed patients following AZD-6244 treatment 
detected mutations in MEK that conferred resistance to  
the inhibitor [41]. Resistance also can develop in the  
absence of mutations in MEK itself, probably as a result  
of alterations in other key regulatory molecules. For  
example, K-Ras activation has been demonstrated to  
confer resistance to PD-184352 [42]. Notably, mutations 

activating the PI3K pathway are a major resistance 
mechanism for MEK inhibitors in tumors harboring wild-type 
MEK [43].

PI3K inhibitors
The available pharmacological agents that target  
Ras-mediated signals are not restricted to the Raf-ERK 
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pathway. The PI3K pathway has also been the subject of 
significant research. Ras-GTP interacts with the p110α  
and p110β catalytic subunits of PI3K, activating a  
pathway that generates a strong anti-apoptotic and 
pro-proliferative signal (Figure 1). The PI3K pathway 
is negatively regulated by the phosphatase PTEN [44]. 
Different components of the PI3K signaling pathway 
are deregulated in cancer. The loss of PTEN functions  
occurs in 30 to 40% of tumors [5], resulting in the 
maintenance of the downstream kinase AKT in a  
hyperactive state. Gain-of-function mutations have also 
been detected in p110α, and amplifications are frequent in 
the geneencoding p110β [45]. Finally, somatic mutations 
and amplifications of the AKT family genes have also 
been reported [46]. Unlike the Raf pathway, overlapping  
mutations in different components of the PI3K pathway  
can occur depending on the tumor type [47]: in  
endometrial cancers, Ras and PI3K mutations are  
mutually exclusive, suggesting that p110α is not  
necessary for the initiation of these tumors. Conversely, 
concomitant mutations of Ras and p110α are observed  
in 7% of colorectal cancers, indicating that these  
oncogenes synergize to confer a selective advantage in  
these cells [48]. The co-existence of such mutations is  
likely to be helpful to classify patients for treatment. A  
major concern of targeting the PI3K pathway alone 
is that this approach may not be sufficient to halt 
tumor progression. However, the use of these drugs in  
combination with treatments against other pathways  
could prove beneficial for patients with cancer.

Several inhibitors against different components of 
the PI3K pathway, such as AKT and mTOR, are under  
evaluation. LY-294002 and wortmannin were the first  
PI3K inhibitors to be used in preclinical studies. These 
inhibitors were highly unspecific and very toxic in 
animals models, but derivatives are being developed, 
some of which are in early clinical trials (eg, SF-1126  
[Semafore Pharmaceuticals] and PX-866 [Oncothyreon]) 
[49,50]. The observation that the PI3K inhibitor PI-103  
also inhibited mTOR [51] has led to the development 
of dual PI3K-mTOR inhibitors. The rationale behind 
this approach is that inhibiting both components  
concomitantly could have a stronger antitumoral effect, 
though concerns for potential severe side effects also  
exist [49]. Nevertheless, derivatives of PI-103, such as  
GDC-0941 (Genentech; NCT00876109; phase I), and  
other dual inhibitors are undergoing clinical trials 
[44]. With respect to AKT family kinases, two types 
of inhibitors have been developed: ATP-competitive 
inhibitors and non-catalytic inhibitors. Most of the  
ATP-mimetic drugs can inhibit all AKT isoforms, as well  
as other members of the AGC kinase family. For this  
reason, isoform-specific inhibitors are being developed. The 
non-catalytic inhibitors function by masking the pleckstrin 
homology domain, thereby preventing AKT binding to 
the membrane. These non-catalytic inhibitors include 
perifosine (Keryx Biopharmaceuticals/AEterna Zentaris/
Handok Pharmaceuticals) [52] and MK-2206 (Merck &  
Co; NCT01071018), which are in phase III and phase II  
clinical trials, respectively. Finally, mTOR inhibitors are 
available as cancer therapy. Rapamycin is approved for  

Figure 1. 'Classical' therapeutic targets in Ras pathways. 

A simplified representation of the Ras effector pathways harboring components with enzymatic activities that are targeted for antitumor  
therapy. Therapeutic agents in black have been discontinued. 
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the treatment of renal carcinoma [44], and several  
derivatives of this inhibitor have been developed and 
approved, such as temsirolimus [53,54] and everolimus 
[55,56]. One limitation of mTOR inhibitors is that these 
compounds can trigger the activation of PI3K through  
the inhibition of a negative feedback loop [57]. 
However, this effect may be overcome by the use of  
dual PI3K-mTOR inhibitors. 

While more of these 'classical' inhibitors of Ras pathways 
are expected to be delivered in the near future, the  
question arises whether new approaches to Ras-regulated 
pathways can be used to develop alternative types of  
drugs to inhibit aberrant signaling.

The Ras-ERK pathway: Targeting dimerization
The characteristic of ERKs to dimerize in response to 
stimulation is well known [58]; however, the biochemical 
and biological significance of ERK dimerization were 
unknown until recently, when it was demonstrated 
that ERK dimers are formed using scaffold proteins 
as dimerization platforms [59]. These scaffold-dimer  
complexes are critical for relaying the cytoplasmic 
signals of ERK, by managing the interaction of ERKs with 
their cytoplasmic substrates. In contrast, activation 
of the nuclear substrates of ERK is mostly undertaken 
by ERK monomers [59]. Importantly, the inhibition of  
the cytoplasmic component of ERK, by preventing 
ERK dimerization, is sufficient to abrogate cellular  
transformation and proliferation, as well as tumor  
formation in xenografts of lung, colorectal and bladder 
carcinoma cells in mice [59].

Dimerization seems to be a common theme in the 
ERK cascade. BRaf and cRaf heterodimerize in a  
Ras-dependent manner following stimulation [60,61], 
whereas oncogenic mutants dimerize constitutively. This 
process requires the participation of the protein 14-3-3  
and is essential for cRaf transactivation by BRaf [62]. 
Importantly, mutations that prevent dimerization of 
Drosophila Raf also impair its catalytic function [63]. 
Similarly, BRaf that cannot dimerize as a result of 
similar mutations is incapable of transactivating cRaf,  
stimulating ERK phosphorylation [28] and inducing 
transformation [64]. MEK family kinases also dimerize. 
MEK1 and MEK2 form stable heterodimers not regulated  
by growth factor stimulation. These heterodimers are  
critical for fine-tuning the amplitude and duration of  
ERK activation, by a mechanism that entails negative 
feedback regulation by ERK via phosphorylation of MEK1.  
In the absence of phosphorylated MEK1, heterodimer 
formation is prevented, and MEK2 phosphorylation and  
ERK activation are prolonged [65].

These findings highlight that the pathway leading to  
ERK activation involves much more than phosphorylation; 
critical protein-protein interactions must occur to ensure  
the propagation of the ERK signals. Some of these 
interactions offer, at least conceptually, attractive targets 
for future antitumoral drugs. The demonstration that 

inhibiting ERK dimerization by genetic means is sufficient 
for halting tumoral cell proliferation [59] and recent  
findings suggesting that inhibiting ERK dimerization 
potentiates the apoptotic effects of drugs such as  
cisplatin, paclitaxel and doxorubicin [Crespo P: unpublished 
data], has led to the screening for compounds that  
can prevent ERK dimerization. This effort has led to the 
identification of several compounds that prevent ERK 
dimerization that are undergoing further evaluation  
[Crespo P: unpublished data].

Similarly, Raf heterodimerization also demonstrates  
potential as a target for therapeutic intervention. As 
demonstrated for Drosophila Raf [63] and mammalian 
BRaf-cRaf dimers [28], preventing the formation of Raf 
dimers diminishes ERK signaling significantly. Strategies 
for impeding the association between BRaf and cRaf  
could be aimed directly at the dimerization interface,  
but also at the 14-3-3 binding sites, an essential  
interaction for dimerization to occur [62,64,66]. Unlike 
Raf and ERK dimers, MEK heterodimers appear not to  
be a suitable therapeutic target because blocking 
MEK1-MEK2 dimerization would result in enhancing ERK 
activation [65]. Importantly, dimerization interfaces and 
other protein-protein interaction motifs are probably  
unique regarding their molecular structure and  
interactions. Thus, targeting these structures could 
yield drugs with higher specificity, and subsequently less 
undesired, off-target, secondary effects, compared with 
those compounds resulting from conventional strategies 
directed at inhibiting the enzymatic activities of kinases.

Spatial regulators as therapeutic targets
Recent discoveries have established the concept that  
Ras signals are the sum of multiple, site-specified  
sub-signals [67]. Conceptually, searching for compounds 
that selectively block Ras sub-signals essential for  
tumor progression should produce drugs with reduced  
side effects, compared with compounds that block Ras 
signaling completely. It is known that within the PM,  
Ras is present at distinct microdomains [68]. In addition,  
Ras is also present in different endomembranes  
(for a review, see reference [3]). At these sites, Ras  
is subject to site-specific control mechanisms undertaken 
by various regulatory proteins (for an extensive  
review, see reference [69]). Recent studies have  
demonstrated that cellular transformation can be  
prevented/reverted by the inhibition of specific, location-
defined sub-signals. For example, transformation by 
oncogenes such as v-Src and Sis can be prevented by 
the inhibition of Ras signals generated by lipid rafts or  
disordered membrane [70]. Annexin A6, an ancillary  
protein that facilitates Ras inactivation via p120 GAP, 
suppresses Ras-induced transformation by recruiting  
p120 GAP specifically to non-raft PM microdomains [71]. 
Inhibiting Galectin-1, a protein essential to stabilize  
active H-Ras in non-raft PM 'nanoclusters', dislodges 
H-Ras from these structures and prevents fibroblast 
transformation [72]. These data illustrate that it is  
not necessary to suppress Ras signaling completely  



New druggable targets in the Ras pathway?  Matallanas & Crespo  679679

in order to obtain growth/transformation-suppressive 
responses. Thus, although conceptual, strategies directed 
at modulating the functions of some of these site-specific 
regulators could be a valid therapeutic option in the  
future.

The same concept is applicable to events downstream 
from Ras. ERKs are found in the cytoplasm in unstimulated 
cells; an important fraction of ERKs migrates to the  
nucleus upon phosphorylation, where the ERKs perform 
essential functions [73]. However, the extranuclear 
component of ERK is as important; approximately half 
of the ~180 proteins identified as ERK substrates are  
non-nuclear proteins [74]. The nuclear and cytoplasmic 
components of ERKs are potential targets for antineoplastic 
therapy. Ample data demonstrate that sequestering ERKs 
at the cytoplasm, thereby impeding ERK nuclear signals, 
is sufficient for abrogating growth or provoking apoptosis  
in tumor cells [75-77]. The nucleo-cytoplasmic shuttling  
of ERKs is finely regulated. For efficient nuclear 
translocation, ERKs require direct interaction with the  
nuclear pore complex, and the participation of nuclear 
shuttles and a nuclear translocation signal, Ser-Pro-Ser, 
within the 'insert' domain, that is phosphorylated  
upon stimulation, promoting nuclear translocation 
[78]. Conceptually, drugs aimed at masking this short  
sequence could represent an option to stop the nuclear 
translocation of ERK. As mentioned previously, inhibiting  
the cytoplasmic component of ERK by disrupting its 
dimerization is sufficient to prevent tumor progression  
[59]. Thus, the blockade of either of these subcellular 
components may be a valid strategy for future  
therapeutic intervention.

The amplitude and intensity of ERK signals are regulated 
by scaffold proteins that assemble the components of  
the signaling cascade into a complex whereby signal 
optimization is achieved [79]. Scaffolds also play  
important roles in the spatial selectivity of ERK, 
operating as transmitters of Ras signals, originating at 
different microenvironments, to specific ERK substrates 
[80]. Distinct scaffolds appear to operate in different  
subcellular localizations: KSR1 regulates ERKs signals at 
PM cholesterol-rich domains [81]; MP-1 at endosomes  
[82]; Sef at the Golgi complex [83]; paxillin at focal  
adhesions [84]; and β-arrestins in clathrin-coated pits  
[85]. Scaffold proteins are candidates with enormous  
potential to become site-specific therapeutic targets.  
Some of these proteins, such as KSR1, have no known 
function other than regulating ERKs, so no off-target  
effects are expected. This specificity could make KSR1  
an ideal target for intervention. Indeed, mice deficient 
in KSR1 develop normally, but are resistant to tumor 
development [86]. Unfortunately, much important  
structural information related to ERK has not yet been 
elucidated, including how MEK and ERK dock onto KSR1. 
These sites harbor the potential to become hotspots for  
the design of drugs aimed at disrupting ERK signals  
through competitive binding to scaffolds.

The Ras apoptotic route as a therapeutic 
target
It is well known that oncogenic Ras can trigger apoptosis  
in different cell types. Recent findings involve RASSF  
family proteins as critical pro-apoptotic effectors [87,88]. 
In response to Ras activation, members of this family,  
such as RASSF1, NORE1 and RASSF2, activate the  
pro-apoptotic kinases MST1 and MST2, engaging a  
pathway through which cell survival is regulated (Figure 2) 
[89-91]. Conversely, cRaf inhibits MST2 in a kinase-
independent manner [92,93]. Thus, MST2 association 
with RASSF family proteins promotes apoptosis,  
whereas the interaction of MST2 with cRaf prevents it, 
resulting in aberrant growth. Although many aspects  
of MST1/2 regulation remain unknown, targeting MST1/2 
could be of use in the treatment of tumors harboring  
Ras, and possibly BRaf, mutations. The development of 
inhibitors for the interaction between cRaf and MST2, 
thereby shifting the balance toward MST2 association  
with RASSF, should direct tumor cells to apoptosis.

Alternative strategies to treat Ras tumors
Despite significant research efforts and investments  
devoted to the development of drugs aimed at targets  
within the Ras pathways, there has been limited success  
thus far. For this reason, new approaches are necessary. 
Recently, the concept of 'non-oncogene addiction' has  
been proposed, based on the observations that certain 
normal genes are necessary for the maintenance 
of the tumoral phenotype [94]. These genes can be 
directly regulated by an oncogene, but can also act in 
parallel pathways and, therefore, not appear as obvious  
candidates for pharmacological intervention. If these  
genes are inhibited, there is a synthetic lethality effect 
resulting in the activation of senescence or apoptotic 
responses, causing tumor regression [94]. This concept  
has been used to identify genes necessary for the 
maintenance of 'Ras-addicted' tumors. Using RNAi  
screening, PLK1, STK33, SYK, RON, TBK and integrin β6  
have been identified as essential for the progression of 
tumors harboring oncogenic Ras [95-97]. In the near  
future, more of these genes will be identified, some of  
which will have the potential to be exploited for the 
development of new antineoplastic therapies. 

Conclusion
The knowledge acquired during the past three decades  
regarding Ras and its related pathways has led to  
significant advances in tumor treatment. Unfortunately,  
many of the expectations for Ras pathway-targeted 
drugs have not been fulfilled. High toxicity and resistance 
acquisition have hampered many of the drugs developed 
to date. While more of these 'classical' inhibitors are to  
be expected, recent findings in the Ras field have  
revealed new players and novel functional interactions 
that provide an alternative approach to target Ras  
signals by focusing on protein-protein interactions rather  
than enzymatic activities. These novel findings could 
introduce a new era in drug discovery and in the  
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development of new types of drugs for the treatment  
of tumors with mutations in the Ras signaling pathways. 
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