

1	
2	
3	Use of <i>recA</i> gene sequence analysis for the identification of
4	Staphylococcus equorum strains predominant on dry-cured
5	hams
6	
7	
8	Gerardo Landeta ¹ , Inés Reverón ¹ , Alfonso V. Carrascosa ² , Blanca de las
9	Rivas ¹ , Rosario Muñoz ¹ *
10	
11	
12	
13	¹ Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de
14	Alimentos y Nutrición, ICTAN–CSIC, Madrid,
15	² Grupo de Microbiología y Biocatálisis de Alimentos, Instituto de Investigación en
16	Ciencias de la Alimentación, CIAL–CSIC, Madrid
17	
18	
19	
20	*Corresponding author. Tel.: +34-91-5622900; fax: +34-91-5644853
21	E-mail address: <u>rmunoz@ictan.csic.es</u> (R. Muñoz)
22	
23	

24 Abstract

25

26 Spanish dry-cured ham is an uncooked meat product highly appreciated due to its 27 characteristics flavour. In this study, we examined the accuracy of biochemical tests and 28 16S rDNA sequencing in the identification of 56 staphylococcal strains isolated during 29 industrial Spanish dry-cured ham processes. Important differences were observed 30 comparing genotypic and phenotypic data. *S. xylosus* was the prevalent species 31 identified by biochemical methods (87.5%), however, sequencing of the 16S rDNA 32 resulted in an unambiguous identification of *S. equorum* (73.2%) and *S. vitulinus* (8.9%) 33 strains. Reliable identification of meat staphylococci, mainly among *S. xylosus* and *S.* 34 equorum strains could be also achieved by means of recA gene sequence comparison. 35 Two degenerate primers previously described for lactic acid bacteria were used to 36 amplify an internal fragment of the *recA* gene. This fragment was amplified from twelve 37 staphylococcal type strains representing frequent meat species. The results indicated 38 that *recA* sequencing is an adequate method to discriminate among meat staphylococci. 39 In addition, S. xylosus and S. equorum strains could be more accurately discriminated 40 by *recA* sequencing than 16S rDNA or *sodA* sequencing. The *S. equorum* sequence 41 diversity showed at the intra-species level by *recA* gene sequencing confirmed the high 42 heterogeneity described among *S. equorum* strains.

43

44

45 *Keyworks*: *Staphylococcus equorum*, Dry-cured ham, *Staphylococcus xylosus*, *recA*46 gene, identification method

47

48 1. Introduction

49

Spanish dry-cured ham, a valuable meat product in Spain, is a traditional 50 51 intermediate-moisture meat product which is obtained from white and Iberian (black) 52 breeds (Losantos et al., 2000). The method of preparation consists basically on four 53 stages: obtention and preparation of pieces, salting, postsalting and drying-maturation. 54 During the salting stage a microbial reservoir is created from microorganisms present in 55 the salt, on the surface more than on deep tissues of hams and in the environment 56 (Cornejo et al., 1992). Some of these microorganisms could develop several actions in 57 the brine formed (reduction of nitrates to nitrites, proteolysis and lipolysis) contributing 58 to the sensorial properties of the ham (Toldrá, 1998; Sondergaard and Stahnke, 2002). 59 Hams are dried-matured at least for 110 days in drying chambers. During this period, 60 water losses and different chemical and biochemical changes occur, resulting into the 61 typical colour, flavour and taste of the ham (Toldrá, 1998).

62 *Staphylococcaceae* are the prevalent microbiological group in the processing of 63 Spanish dry-cured hams (Carrascosa and Cornejo, 1991; Cornejo and Carrascosa, 1991; 64 Cordero and Zumalacárregui, 2000). Coagulase-negative staphylococci are important 65 microorganisms in meat products and they influence technological properties of the 66 cured meat products. *Staphylococcus* spp. play a role in the development of aroma as 67 well as flavour and colour, after muscle enzymes. Staphylococci also release lipases, 68 and show nitrate reductase activity contributing to the development of the aroma and 69 colour of the dry-cured ham. Identification methods based on biochemical tests, may 70 sometimes be uncertain, complicated and time-consuming due to an increasing number 71 of species that varied in few of the taxonomical characters. Moreover, new species of 72 staphylococci are continually being described, making further identification tools

necessary. For a better identification, in the last years there has been an increasing
interest in the use of molecular methods in order to simplify characterization
procedures, to provide rapid and reliable identification, or to validate phenotypically
determined taxa. The comparison of results obtained by molecular techniques with
those of biochemical identification sometimes showed the unreliability of the traditional
identification methods (Sondergaards and Stahnke, 2002; Blaiotta et al., 2003).

79 The majority of molecular methods are based on the DNA sequence of the 16S 80 rDNA gene, from which it is possible to obtain important information for the detection, 81 identification and classification of microorganisms. However, 16S rDNA gene 82 sometimes is too conserved to be useful for species differentiation. Some less-conserved 83 genes, especially those under positive selection, have often been used for species 84 identification, and, in some cases, for bacterial typing. The choice of appropriate genes 85 may vary according to the species. As the precise species discrimination of 86 staphylococci is important in clinical and epidemiological studies, several gene 87 sequences such as the elongation factor Tu (tuf) (Martineau et al., 2001), RNA 88 polymerase B (*rpoB*) (Drancourt and Raoult, 2002; Mellmann et al., 2006), heat shock 89 protein (*hsp60*) (Goh et al., 1996; Kwok and Chow, 2003), glyceraldehyde–3–phosphate 90 dehydrogenase (*gap*) (Yugueros et al., 2000), a protein precursor which plays a role in peptidoalycan biosynthesis (*femA*) (Vannuffel et al., 1999), superoxide dismutase A 91 92 (sodA) (Giammarinaro et al., 2005; Poyart et al., 2001) have been used in the 93 identification of staphylococcal species. However, like 16S rDNA, highly conserved 94 genes are not suitable for the discrimination of closely related species. The *recA* gene 95 has been proposed as a useful marker in inferring bacterial phylogeny and has been used 96 successfully to differentiate species of some bacterial genera. LAB species included in 97 the *L. casei* and the *L. plantarum* groups, and heterofermentative wine lactobacilli were

98	differentiated based	on their recA sec	uences (Felis et al.	., 2001; Torriani et al., 2	.001,
			· ·	, , , ,	

99 Rodríguez et al., 2007).

100	In a previous work, staphylococcal strains were isolated during industrial Spanish
101	dry–cured ham processes and they were selected as possible starter cultures after several
102	in vitro tests. As these staphylococcal strains were only biochemically classified
103	(Cornejo and Carrascosa, 1991; Carrascosa and Cornejo, 1991), the aim of this study
104	was to classify these strains by genotypic methods and evaluate <i>recA</i> sequencing for the
105	discrimination of closely related meat staphylococcal species.
106	
107	
108	2. Materials and methods
109	
110	2.1. Strains and growth conditions
111	
112	In this work, a total of fifty–six coagulase–negative staphylococci were molecularly
113	identified by 16S rDNA sequencing. These strains were previously isolated during
114	industrial Spanish dry-cured ham processes. Thirty-five of them were isolated during an

- 115 industrial process using 100 days of ripening. Most of them, 31 strains, were previously
- 116 classified, using the API–STAPH system and other tests, as *Staphylococcus xylosus*, one
- 117 strain was classified as *S. capitis*, and three strains shared taxonomic characteristics
- 118 with *S. xylosus, S. capitis* and *S. sciuri* (Cornejo and Carrascosa, 1991). The additional
- 119 twenty-one staphylococcal strains were isolated during a process using 160 days of
- 120 ripening. Using the API–STAPH system and additional tests, 18 of them were
- 121 characterized as *S. xylosus* and the other three strains participated in taxonomic
- 122 characters with *S. xylosus* and *S. capitis* (Carrascosa and Cornejo, 1991). Type strains

123	from the staphylococcal species often isolated from meat products were purchased from
124	the American Type Culture Colecction (ATCC) or from the German Collection of
125	Microorganisms and Cell Cultures (DSMZ) (Table 1).
126	Staphylococcal strains were routinely grown in brain heart infusion (BHI, Difco,
127	France) and incubated at 37 °C under aerobic conditions for 24 hours.
128	
129	2.2. Bacterial DNA extraction
130	
131	Bacterial chromosomal DNA was isolated from overnight cultures using a protocol
132	previously described (Vaquero et al., 2004). DNA precipitates were resuspended in an
133	appropriate volume of TE solution (10 mM Tris–HCl, pH 8.0; 1 mM EDTA; Sambrook
134	et al., 1989).
135	
136	2.3. PCR amplification and DNA sequencing of the 16S rDNA
137	
138	16S rDNAs were PCR amplified using the eubacterial universal pair of primers 63f
139	(5´-CAGGCCTAACACATGCAAGTC) and 1387r (5´-
140	GGGCGGWGTGTACAAGGC) as previously described (Marchesi et al., 1998). The
141	63f and 1387r primer combination generates an amplified product of 1.3 kb. PCR
142	reaction was performed in 0.2 ml microcentrifuge tubes in a total volume of 25 μ l
143	containing aprox. 10 ng of template DNA (Landeta et al., 2007). The amplifications
144	products were purified on QIAquick spin Columns (Quiagen, Germany, Hilden) for
145	direct sequencing. DNA sequencing was carried out by using an Abi Prism 377 $^{ extsf{TM}}$ DNA
146	sequencer (Applied Biosystems, USA). Sequence similarity searches were carried out

- by comparing to sequences from type strains included on the Ribosomal Database(http://rdp.cme.msu.edu).
- 149

150 2.4. PCR amplification of a <u>sodA</u> gene fragment in <u>S. equorum</u>

- 151
- 152 For the specific amplification of a *sodA* fragment in *S. equorum* strains, primers
- 153 SdAEqF (5'-GTGGAGGACACTTAAACCATT) and SdAEqR (5'-
- 154 CAATTTACCATCGTTTACAACTAG) were used (Blaiotta et al., 2004). These
- primers target positions 173–194 and 363–340 of the *S. equorum sodA* gene, and,
- 156 therefore, they amplified a 193 bp gene fragment. The PCR amplification was
- 157 performed as described by Blaiotta et al. (2004). Briefly, a **total volume of 20 μl**
- 158 contained 25 ng of template DNA, 20 mM Tris-HCl, pH 8.0, 50 mM KCl, 2.5 mM
- 159 MgCl₂, 250 μ M of each dNTP, each primer at a concentration of 0.5 μ M, and 1 U of
- 160 Ampli*Taq* Gold DNA polymerase. The reaction was performed in a Gradient Eppendorf
- 161 thermocycler (Eppendorf, Germany, Hamburg) using the following cycling parameters:
- 162 initial 10 min for enzyme activation at 95 °C followed by 30 cycles of 5 sec at 95 °C and
- 163 25 sec at 61 °C. Amplified products were resolved on a 2% agarose gel.
- 164

165 2.5. PCR amplification and DNA sequencing of a <u>recA</u> gene fragment

166

For the amplification of *recA* regions, 10 ng of chromosomal DNA was added to
 the 25 μl PCR mixture containing RecA-up (5´-GARCAYGCNCTNGAYCC) and

- 169 RecA-down (5⁻-CCWCCWGKWGTHGTYTCNGG) oligonucleotides (Duwat et al.,
- 170 1992). These degenerate primers are based on well–conserved domains, approximately
- 171 120 amino acids apart, of the RecA proteins. The expected size of the amplicon was 360

pb. Fragments of the expected sizes were purified from 2% agarose gel and sequenced(Rodríguez et al., 2007).

174

175 2.6. Data analysis

176

177 Sequence similarity searches were carried out using Basic local alignment search 178 tool (BLAST) (Altschul et al., 1997) on the EMBL/GenBank databases. Sequence 179 alignments and comparison were done with the program BioEdit and converted into 180 MEGA files with MEGA version 2.1 sotfware. Phylogenetic trees were constructed by the neighbour-joining method. The percentage of bootstrap confidence levels for 181 182 internal branches, as defined by the MEGA program, was calculated from 10000 183 random resamplings. 184 185 3. Results and discussion 186 187 3.1. Molecular classification of Staphylococcus sp. strains isolated from dry-cured 188 hams 189 190 The dry-cured ham is an uncooked meat product highly appreciated for its 191 characteristics flavour. The positive role of some staphylococci in dry-cured meat 192 products, due to their nitrate reductase, catalase, lipolytic and proteolytic activities also 193 contributes to the flavour characteristics of dry-cured hams. Although the number of 194 different species is relatively small, a remarkable variety of staphylococcal strains are 195 present on dry-cured hams. In a previous work, a total of 56 staphylococcal strains were 196 isolated during industrial Spanish dry-cured ham processes (Carrascosa and Cornejo,

197 1991; Cornejo and Carrascosa, 1991). These strains were taxonomically classified by

198 morphological and biochemical tests, including the API STAPH system, as 49 S.

199 *xylosus* strains, one *S. capitis* strain, and 6 strains which shared taxonomic

200 characteristics with *S. xylosus, S. capitis* and *S. sciuri* species.

201 Previously, in a screening for biogenic amine production by these strains, we 202 have found that a cadaverine and putrescine-producer strain, initially identified as S. 203 xylosus IFIJ47 by biochemical methods, was reclassified as S. lugdunensis IFIJ47 by the 204 sequencing of its 16S rDNA (Landeta et al., 2007). Therefore we decided to identify by 205 molecular methods all the 56 strains isolated from dry-cured hams. Only one strain was 206 correctly identified; S. capitis IFIJ12 was confirmed by the molecular method used. 207 From the strains possessing an uncertain taxonomic identification, most of them were 208 classified as *S. vitulinus* (IFIJ4, IFIJ31, IFIJ36, IFIJ38, and IFIJ41), and one strain was 209 identified as S. equorum IFIJ5. From the 49 strains previously identified as S. xylosus, 210 40 were classified as *S. equorum*, two as *S. warneri* (IFIJ15 and IFIJ18), two *S. aureus* 211 (IFIJ13 and IFIJ32), and one S. caprae (IFIJ10), S. epidermidis (IFIJ24), and S. hominis 212 strain (IFIJ26) by the 16S rDNA sequencing. Two of the studied strains were not 213 staphylococci (Rothia dentocaria IFIJ17 and Lactobacillus sakei IFIJ40). The 214 unreliability of the traditional identification methods has been previously described in 215 studies that compare the results obtained by molecular techniques with those of 216 biochemical identification of staphylococci. Similarly to this work, Sondergaards and 217 Stahnke (2002) reported, for strains isolated from fermented meat products, a high 218 identification probability for *S. xylosus* according to API STAPH results and 219 identification as *S. equorum* by molecular analysis. Blaiotta et al. (2003) reported that 220 for strains of *S. xylosus* isolated from dry fermented sausages identification by both 221 biochemical and molecular methods agreed for only 52% of the isolates. In some cases,

strains of *S. equorum, S. lentus, S. vitulinus* and *S. saprophyticus* could be misidentified
as *S. xylosus* by using traditional identification methods only; whereas strains of *S. xylosus* can be misidentified as *S. saprophyticus, S. sciuri, S. epidermidis* or *S.*

225 *intermedius*.

226 In addition to the unreliability of the traditional identification methods, the 227 results obtained in this work indicated a high incidence of S. equorum strains in dry-228 cured hams. Cordero and Zumalacárregui (2000) found *S. equorum* strains from the salt 229 used in the Spanish dry-cured ham elaboration. Recent studies have shown that the 230 species *S. equorum* represented 49% of staphylococcal isolates from French naturally 231 fermented sausages (Corbière Morot–Bizot et al., 2006), 10 to 40% from southern 232 Italian sausages (Blaiotta et al., 2004; Mauriello et al., 2004), 23.5% from fresh 233 sausages (Rantsiou et al., 2005) and in 28.5% from food-related samples (Coton et al., 234 2010). It is probable that the presence of S. equorum in fermented food has been under-235 estimated for a long time because of its confusion with *S. xylosus* by phenotypical methods (Meugnier et al., 1996; Blaiotta et al., 2004; Mauriello et al., 2004). The 236 237 development of molecular methods for the identification of staphylococci underlines the 238 significance of this species, initially isolated from healthy horses (Scheleifer et al., 239 1984).

240

3.2. Use of <u>recA</u> gene sequence for the identification and discrimination of <u>S. equorum</u>
strains

243

As reported above, 40 *S. equorum* strains were misidentified as *S. xylosus* by using biochemical methods, indicating that there are difficulties in the differentiation of both staphylococcal species. Only a small number of key tests can help to discriminate

247 between both species: pigment production, anaerobic growth and growth at 30 °C. 248 However, phenotypic discrimination between these two species remains difficult since 249 the presence or absence of these characteristics is not shared by more than 90% of the 250 strains belonging to each taxon (Kloos and Schleifer, 1984; Kloos, 1990). As the 251 incidence of *S. equorum* probably occurs with a major incidence to that already 252 reported, Blaiotta et al. (2004) described a rapid identification method for the 253 identification of *S. equorum* strains by a species-specific PCR assay targeting the gene 254 encoding the manganese-dependent superoxide dismutase (*sodA*). The primer set, SdAEqF and SdAeqR, amplified a 193 bp internal *sodA* fragment only when DNA from 255 256 S. equorum was used as template. In order to validate the method in our laboratory, we 257 used the method on type strains representing the twelve species more often isolated 258 from meat products (Table 1) and also in eight of the *S. equorum* strains identified in 259 this study. As showed in Figure 1, there are several staphylococcal type strains that gave 260 a faint positive PCR amplification (*S. capitis* ATCC 27840^T, *S. carnosus* ATCC 51365^T, and *S. cohnii* ATCC 29974^T). It should be mention that an obvious and apparent 261 262 positive amplicon was only obtained in the *S. equorum* strains assayed (Figure 1). In 263 spite that this method was previously evaluated by using a total of 112 strains 264 representing 26 different species, and including 27 reference strains, and that we used 265 the same PCR conditions described by Blaiotta et al. (2004), in our laboratory the 266 method are not as specific as expected, and PCR optimization will be needed. 267 Moreover, the verification of the specificity of the PCR product by restriction 268 endonuclease analysis was suggested (Blaiotta et al., 2004). This unspecific result led us 269 to look for an alternative method for the detection of *S. equorum* strains. 270 It is well establish that DNA sequence could be used for differentiation and 271 phylogenetic analysis of bacterial strains. The main advantage of DNA sequencing-

272 based methods over DNA banding pattern methods is its high reproducibility because it 273 relies on unambiguous DNA sequences that can easily be stored in online databases and 274 compared among laboratories. The 16S rDNA gene is highly conserved among bacteria 275 and consequently, amplification and sequencing of the 16S rDNA gene is widely used 276 for identification and phylogenetic classification of prokaryotic species. However, the 277 interpretation of the 16S ribosomal DNA data may be complicated by the fact that 278 closely related species may have identical 16S rDNA sequences or, alternatively, that 279 divergent 16S rDNA sequences may exist within a single organism. Takahashi et al. 280 (1999) pointed out that closely related species of staphylococci could have nearly 281 identical 16S rDNA sequences, decreasing the discriminatory potential of this gene for 282 staphylococci. In this regard, the 16S rDNA sequence similarity has been shown to be 283 very high, 90 to 99%, in 29 Staphylococcus species (Kwok et al. 1999). S. caprae and S. 284 *capitis* cannot be distinguished by their 16S rDNA gene sequences (Taponen et al. 285 2006). Similarly some *Staphylococcus* taxa have the same 16S rDNA gene sequences in 286 variable regions $\vee 1$, $\vee 3$, $\vee 7$, and $\vee 9$, with identical sequences occurring in, e. g., S. 287 vitulinus, S. saccharolyticus, S. capitis, S. aureus and S. caprae (Taponen et al. 2006). 288 To solve this problem, it is possible to use alternative monocopy target 289 sequences which exhibit a higher divergence than those of the 16S rDNA. The choice of 290 appropriate genes may vary according to the species. Recently, partial sequencing of the 291 highly conserved and ubiquitous *hsp60* (Goh et al., 1996; Kwok and Chow, 2003), *tuf* 292 (Martineau et al., 2001) and *sodA* (Giammarinaro et al., 2005; Poyart et al., 2001) genes 293 had been found to be useful for identification and taxonomic classification of species of 294 the genus *Staphylococcus*.

The *recA* gene sequence analysis has been proposed as a method for inferring relationships among very closely related species (Thompson et al. 2004; Payne et al.

297 2005; Rossi et al. 2006; Sepe et al. 2008). Previously, we have used this method to 298 identify closely related heterofermentative wine lactobacilli species (Rodríguez et al. 299 2007). In order to know if the partial sequence of the *recA* gene could be also an 300 adequate method for the identification of meat staphylococci, we used the previously 301 described degenerate primer RecA-up and RecA-down (Duwat et al., 1992). Simple 302 PCR and sequencing assays that utilize this single pair of primers were used to 303 characterize a 280 bp–long DNA internal fragment of the *recA* gene in 12 304 staphylococcal type strains. These primers amplified all the strains assayed, and, the 305 amplified fragments were subsequently sequenced. In addition, we compare the 16S 306 rDNA and *sodA* sequences from the same strains (Table 1 and Figure 2). Figure 2 307 shows the sequence identity matrix based on comparisons of the 16S rDNA, sodA and 308 recA gene sequences. Similarity values for 16S rDNA gene sequences among the 309 staphylococcal type strains analyzed ranged from 95 to 99% (Figure 2A). These values 310 are consistently higher than those from the *sodA* gene sequence (range 65–93%; Figure 311 2B). However, the similarity for the *recA* sequences ranged from 77 to 89% (Figure 2C) 312 indicating that *recA* sequencing is more discriminatory among the staphylococcal 313 species found in meat products as compared to the 16S rDNA or *sodA* sequences. 314 Results previously described have been shown that the identity of the 16S rDNA 315 sequence is very high (90–99%) in 29 staphylococcal species analyzed (Kwok et al. 316 1999); by contrast, the sequence similarity of the *hsp60* gene was 74 to 93% in 23 Staphylococcus species (Kwok et al. 1999), and for the partial *rpoB* gene sequence the 317 318 similarity was 72 to 94% in 29 staphylococcal species analyzed (Drancourt and Raoult, 319 2002). Therefore, *recA* sequencing showed higher discrimination than *hsp60* and the 320 *rpoB* genes among staphylococcal species commonly isolated from meat products.

321 We also showed the phylogenetic relationships of the staphylococcal species 322 based on the *recA* gene sequence (Figure 3). All the staphylococcal species were 323 unambiguously differentiated by the comparative analysis of the short fragment of the 324 *recA* gene. The phylogenetic relationships inferred from the partial *recA* sequence were 325 in agreement with those previously derived from 16S ribosomal DNA sequence. Based 326 on the neighbour joining tree created from the *recA* partial sequences, the most closely 327 related staphylococcal species to *S. equorum* species is *S. xylosus*. Figure 2 also shows 328 that *S. equorum* strains showed the higher similarity to *S. xylosus* strains: 98% identity 329 by the 16S rDNA, 92% by the *sodA* gene, and only 86% by the *recA* gene. Therefore, an additional advantage of the partial *recA* sequencing is that these two closely-related 330 331 species are more discriminated by the *recA* gene than by the *sodA* gene or 16S rDNA. 332 These results demonstrate the usefulness of this method for rapid and accurate species 333 identification of staphylococcal meat isolates and confirm that the *recA* gene constitutes 334 an efficient alternative target sequence for differentiating closely related meat 335 staphylococcal species.

336 The usefulness and accuracy of any bacterial species identification system 337 depends on the distinction between intraspecific variation and interspecific divergence 338 in the selected gene. Some less conserved genes have often been used for bacterial 339 typing. Poyart et al. (2001) demonstrated that the *sodA* sequences of strains from the 340 same species isolated from food or clinical samples displayed less than 1.5% divergence 341 from the sequence of the corresponding type strain. Due to the sequence diversity 342 showed at the intra-species level by *recA* gene sequencing, the observed degree of 343 heterogeneity (0–2%) was used to know the intraspecies genetic diversity in 344 Lactobacillus hilgardii species (Rodriguez et al., 2007). In order to known the diversity 345 among *S. equorum* strains, we sequenced a 280 bp *recA* DNA fragment, excluding

346 regions of primer annealing, from ten *S. equrom* strains isolated from dry-cured ham 347 (IFIJ2, IFIJ14, IFIJ19, IFIJ21, IFIJ22, IFIJ28, IFIJ30, IFIJ42, IFIJ55, and IFIJ56). S 348 equorum strains presented eleven polymorphic sites, showing a 96–100% identity 349 among them. These polymorphic sites defined five different alleles of the *recA* gene 350 (Figure 4). Most of these alleles were represented just by one or two strains (alleles 1, 2, 351 4, and 5). However, allele 3 was present in six out ten strains (S. equorum IFIJ2, IFIJ19, 352 IFIJ28, IFIJ30, IFIJ55, and IFIJ56). Five alleles on only ten strains indicated a high 353 heterogeneity among the *S. equorum* strains isolated from dry-cured hams. This high 354 diversity among S. equorum strains has been previously described. Corbière Morot-355 Bizot et al. (2006) detected only 8 PFGE profiles among 208 S. equorum isolates, and 356 Leroy et al. (2009) found 52 distinct PFGE profiles among 118 *S. equorum* strains or 28 PFGE profiles among 71 S. equorum strains (Leroy et al., 2010) collected from a small-357 358 scale processing units manufacturing naturally dry fermented sausages.

359

360 In this work, we have demonstrated the usefulness of the partial sequence of the 361 *recA* gene as a confirmation method for the identification of meat staphylococcal 362 isolates. The use of *recA* analysis should not replace 16S analysis but should rather be 363 seen as a second confirmatory test for species differentiation. From a practical point of 364 view, as this method used the same primer set which has been successfully employed 365 for the identification of lactic acid bacteria, a food microbiology laboratory, could used 366 the same method for the reliable identification of lactic acid bacteria as well as 367 staphylococcal meat strains.

368

369 Acknowledgements

371	This work was supported by grants RM2008–00002 (Instituto Nacional de Investigación
372	Agraria y Alimentaría), AGL2008–01052, Consolider INGENIO 2010 CSD2007–00063
373	FUN–C–FOOD (Comisión Interministerial de Ciencia y Tecnología), and S–
374	0505/AGR/000153 and S2009/AGR–1469 (ALIBIRD) (Comunidad de Madrid). We are
375	grateful to M. V. Santamaría and J. M. Barcenilla. G. Landeta is a recipient of a
376	predoctoral fellowship from the CONACyT.
377	
378	
379	References
380	
381	Altschul, S. F., Madden, T. L., Schaffer, A., A., Zhang, J., Zhang, Z., Miller, W.,
382	Lipman, D. J., 1997. Gapped BLAST and PSI–BLAST: a new generation of
383	protein database search programs. Nucl. Acids Res. 25, 3389–3402.
384	BioEdit (<u>http://jwbrown.mbio.ncsu.edu/BioEdit/bioedit.html</u>)
385	Blaiotta, G., Pennacchia, C., Ercolini, D., Moschetti, G., Villan I, F., 2003. Combining
386	denaturing gradient gel electrophoresis of 16S rDNA V3 region and 16S–23S
387	rDNA spacer region polymorphism analyses for the identification of
388	staphylococci from Italian fermented sausages. Syst. Appl. Microbiol. 26, 423–
389	433.
390	Blaiotta, G., Pennacchia, C., Villani, F., Ricciardi, A., Tofalo, R., Parente, E., 2004.
391	Diversity and dynamics of communities of coagulase-negative staphylococci in
392	traditional fermented sausages. J. Appl. Microbiol. 97, 271–284.

393	Carrascosa, A. V., Cornejo, I., 1991. Characterization of <i>Micrococcaceae</i> strains
394	selected as potential starter cultures in Spanish dry–cured ham processes. 2. Slow
395	process. Fleischwirtsch 71, 1187–1188.
396	Corbière Morot–Bizot, S., Leroy, S., Talon, R., 2006. Staphylococcal community of a
397	small unit manufacturing tradicional dry fermented sausages. Int. J. Food
398	Microbiol. 108, 210–217.
399	Cordero, M. R., Zumalacárregui, J. M., 2000. Characterization of Micrococcaceae
400	isolated from salt used for Spanish dry–cured ham. L. Appl. Microbiol. 31, 303–
401	306.
402	Cornejo, I., Carrascosa, A. V., 1991. Characterization of <i>Micrococcaceae</i> strains
403	selected as potential starter cultures in Spanish dry-cured ham processes. 1. Fast
404	process. Fleischwirtsch 71, 66–68.
405	Cornejo, I., Carrascosa, A. V., Marín, M. E., Martín, P. J., 1992. Considerations about
406	the origin of microorganisms that grow on the deep muscular tissues of dry–
407	cured Spanish hams during processing. Fleichwirtschaft 72, 1405–1407.
408	Coton, E., Desmonts, M. H., Leroy, S., Coton, M., Jamet, E., Christieans, S., Donnio, P.
409	Y., Lebert, I., Talon, R., 2010. Biodiversity of coagulase–negative staphylococci
410	in French cheeses, dry fermented sausages, processing environments and clinical
411	samples. Int. J. Food Microbiol. 137, 221–229.
412	Drancourt, M., Raoult, D., 2002. rpoB gene sequence-based identification of
413	Staphylococcus species. J. Clin. Microbiol. 40, 1333–1338,
414	Duwat, P., Ehrlich S. D., Gruss, A., 1992. Use of degenerate primers for polymerase
415	chain reaction cloning and sequencing of the Lactococcus lactis subsp. lactis
416	recA gene. Appl. Environ. Microbiol. 58, 2674–2678.

417	Felis, G. E., Dellaglio, F., Mizzi, L., Torriani, S., 2001. Comparative sequence analysis
418	of a <i>recA</i> gene fragment brings new evidence for a change in the taxonomy of
419	the Lactobacillus casei group. Int. J. Syst. Evol. Microbiol. 51, 2113–2117.
420	Giammarinaro, P., Leroy, S., Chacornac, J.P., Delmas, J., Talon, R., 2005. Development
421	of a new oligonucleotide array to identify staphylococcal strains at species level.
422	J. Clin. Microbiol. 43, 3673–3680.
423	Goh, S. H., Potter, S., Wood, J. O., Hemmingsen, S. M., Reynolds, R. P., Chow, A. W.,
424	1996. HSP60 gene sequences as universal targets for microbial species
425	identification: studies with coagulase-negative staphylococci. J. Clin. Microbiol.
426	34, 818–823.
427	Kloos, W. E., 1990. Systematics and the natural history of staphylococci. J. Appl.
428	Bacteriol. 19, 25S–37S.
429	Kloos, W. E., Scheleifer, K. H., 1984. Genus IV. <i>Staphylococcus</i> . In Bergey´s manual
430	of systematic bacteriology, vol. 1 (N. R. Krieg, J. G. Holt, eds) 1st ed.,
431	Baltimore, Williams & Wilkins.
432	Kwok, A. Y. C., Chow, A. W., 2003. Phylogenetic study of <i>Staphylococcus</i> and
433	Macrococcus species based on partial hsp60 gene sequence. Int. J. Syst. Evol.
434	Microbiol. 53, 87–92.
435	Kwok, A. Y. C., Su, S. C., Reynolds, R. P., Bay, S. J., Av–Gay, Y., Dovichi, N. J.,
436	Chow, A. W., 1999. Species identification and phylogenetic relationships based
437	on partial HSP60 gene sequences within the genus Staphylococcus. Int. J. Syst.
438	Bacteriol. 49:1181–1192.
439	Landeta, G., de las Rivas, B., Carrascosa, A. V., Muñoz, R., 2007. Screening of
440	biogenic amines production by coagulase-negative staphylococci isolated during
441	industrial Spanish dry-cured ham processes. Meat Sci. 77:556–561.

442	Leroy, S., Lebert, I., Chacornac, J. P., Chavant, P., Bernardi, T., Talon, R., 2009.
443	Genetic diversity and biofilm formation of Staphylococcus equorum isolated
444	from naturally fermented sausages and their manufacturing environment. Int. J.
445	Food Microbiol. 134, 46–51.
446	Leroy, S., Giammarinaro, P., Chacornac, J. P., Lebert, R., Talon, R., 2010. Biodiversity
447	of indigenous staphylococci of naturally fermented dry sausages and
448	manufacturing environments of small–scale processing units. Food Microbiol.
449	27, 294–301.
450	Losantos, A., Sanabria, C., Cornejo, I., & Carrascosa, A. V., 2000. Characterization of
451	Enterobacteriaceae strains isolated from spoiled dry-cured hams. Food
452	Microbiol. 17, 505–512.
453	Marchesi, J. R., Sato, T., Weghtman, A. J., Martin, T. A., Fry, J. C., Hion, S. J., Wade,
454	W. G., 1998. Design and evaluation of useful bacterium–specific DNA primers
455	that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 84,
456	117–123.
457	Martineau, F., Picard, F. J., Ke, D., Paradis, S., Roy, P. H., Ouellette, M., Bergeron, M.
458	G., 2001. Development of a PCR assay for identification of staphylococci at
459	genus and species level. J. Clin. Microbiol. 39, 2541–2547.
460	Mauriello, G., Casaburi, A., Blaiotta, G., Villani, F., 2004. Isolation and technological
461	properties of coagulase negative staphylococci from fermented sausages of
462	Southern Italy. Meat Sci. 67, 149–158.
463	MEGA version 2.1 software (<u>http://www.megasoftware.net</u>)
464	Mellmann, A., Becker, K., von Eiff, C., Keckevoet, U., Schumann, P., Harmsen, D.,
465	2006. Sequencing and staphylococci identification. Emerg. Infect. Dis., 12, 333–
466	336.

467	Meugnier, H., Bes, M., Vernozy–Rozand, C., Mazuy, C., Brun, Y., Frenay, J., Fleurette,
468	J., 1996. Identification and ribotyping of Staphylococcus xylosus and
469	Staphylococcus equorum strains isolated from goat milk and cheese. Int. J. Food
470	Microbiol. 31, 325–331.
471	Payne, G. W., Vandamme, P., Morgan, S. H., LiPuma, J. J., Coenye, T., Weightman, A.
472	J., Jones T. H., Mahenthiralingam, E., 2005. Development of a <i>recA</i> gene-based
473	identification approach for the entire <i>Burkholderia</i> genus. Appl. Environ.
474	Microbiol. 71, 3917–3927.
475	Poyart, C., Quesne, G., Boumaila, C., Trieu–Cuot, P. 2001. Rapid and accurate species–
476	level identification of coagulase-negative staphylococci by using the <i>sodA</i> gene
477	as a target. J. Clin. Microbiol. 39, 4296–4301.
478	Rantsiou, K., Iacumin, L., Cantoni, C., Comi, G., Cocolin, L. (2005). Ecology and
479	characterization by molecular methods of Staphylococcus species from fresh
480	sausages. Int. J. Food Microbiol. 97, 277–284.
481	Rodríguez, H., de las Rivas, B., Muñoz, R., 2007. Efficacy of <i>recA</i> gene sequence
482	analysis in the identification and discrimination of Lactobacillus hilgardii strains
483	isolated from stuck wine fermentations. Int. J. Food Microbiol. 115, 70–78.
484	Rossi, F., Dellaglio, F., Torriani, S., 2006. Evaluation of <i>recA</i> gene as a phylogenetic
485	marker in the classification of dairy propionibacteria. Syst. Appl. Microbiol. 29,
486	463-469.
487	Sambrook, J., Fritsch, E. F., Maniatis, T., 1989. Molecular cloning: a laboratory
488	manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor,
489	NY.

490	Scheleifer, K. H., Kilpper–Bälz, R., Devriese, L. A., 1984. <i>Staphylococcus arlettae</i> sp.
491	nov., <i>S. equorum</i> sp. nov. and <i>S. kloosii</i> sp. nov. Three new coagulase-negative,
492	novobiocin-resistant species from animal. Syst. Appl. Microbiol. 5, 501–509.
493	Sepe, A., Barbieri, P., Peduzzi, R., Demarta, A., 2008. Evaluation of <i>recA</i> sequencing
494	for the classification of Aeromonas strains at the genotype level. Lett. Appl.
495	Microbiol. 46, 439-444.
496	Sondergaard, A. K., Stahnke, L. H., 2002. Growth and aroma production by
497	Staphylococcus xylosus, S. carnsous and S. equorum–a comparative study in
498	model systems. Int. J. Food Microbiol. 75, 99–100.
499	Takahashi, T., Satoh, I., Kikuchi, N., 1999. Phylogenetic relationships of 38 taxa of the
500	genus Staphylococcus based on 16S rRNA gene sequence analysis. Int. J. Syst.
501	Bacteriol. 49, 725–728.
502	Taponen, S., Simojoki, H., Haveri, M., Larsen, H. D., Pyorala, S., 2006. Clinical
503	characteristics and persistence of bovine mastitis caused by different species of
504	coagulase–negative staphylococci identified with API or AFLP. Vet. Microbiol.
505	115, 199–207.
506	Thompson, C. C., Thompson, F. L., Vandemeulebroecked, K., Hoste, B., Dawyndt, P.,
507	Swings, J., 2004. Use of <i>recA</i> as an alternative phylogenetic marker in the family
508	Vibrionaceae. Int. J. Syst. Evol. Microbiol. 54, 919–924.
509	Toldrá, F., 1998. Proteolysis and lipolysis in flavour development of dry–cured meat
510	products. Meat Sci. 49, 101–110.
511	Torriani, S., Felis, G. E., Dellaglio, F., 2001. Differentiation of Lactobacillus
512	plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis
513	and multiplex PCR assay with <i>recA</i> gene–derived primers. Appl. Environ.
514	Microbiol. 67, 3450–3454.

- 515 Vannuffel, P., Heusterspreute, M., Bouyer, M., Vandercam, B., Philippe, M., Gala, J.
- 516 L., 1999. Molecular characterization of *femA* from *Staphylococcus hominis* and
- 517 *Staphylococcus saprophyticus*, and *femA*-based discrimination of staphylococcal 518 species. Res. Microbiol. 150, 129–141.
- 519 Vaquero, I., Marcobal, A., Muñoz, R., 2004. Tannase activity by lactic acid bacteria
 520 isolated from grape must and wine. Int. J. Food Microbiol. 96, 199–204.
- 521 Yugueros, J., Temprano, A., Berzal, B., Sánchez, M., Hernanz, C., Luengo, J. M.,
- 522 Naharro, G., 2000. Glyraldehyde–3–phosphate dehydrogenase–encoding gene as
- 523 a useful taxonomic tool for *Staphylococcus* spp. J. Clin. Microbiol. 38, 4351–
- 524 4355,
- 525
- 526

527 Figure captions

528

529	Fig. 1. S. equarum specific PCR amplification of a sodA gene fragment in several
527	
530	staphylococcal strains. (A) Amplification on type strains from the staphylococcal
531	species isolated frequently on meat products: <i>S. aureus</i> ATCC 12600 ^{T} (1), <i>S.</i>
532	epidermidis ATCC 14990 ^T (2), <i>S. capitis</i> ATCC 27840 ^T (3), <i>S. hominis</i> ATCC 27844 ^T
533	(4), S. xylosus ATCC 29971 ^{T} (5), S. simulans ATCC 27848 ^{T} (6), S. carnosus DSM
534	4600 ^T (7), S. vitulinus ATCC 51615 ^T (8), S. cohnii ATCC 29974 ^T (9), S. sciuri ATCC
535	29062 ^T (10), <i>S. equorum</i> ATCC 43958 ^T (11), and <i>S. hyicus</i> ATCC 11249 ^T (12). (B)
536	Amplification of several S. equorum strains isolated from dry–cured ham: S. equorum
537	ATCC 43958 ^T (1) (positive control), <i>S. xylosus</i> ATCC 29971 ^T (2) (negative control),
538	and <i>S. equorum</i> IFIJ2 (3), IFIJ14 (4), IFIJ21 (5), IFIJ28 (6), IFIJ30 (7), IFIJ42 (8),
539	IFIJ55 (9), and IFIJ56 (10). A 100 bp ladder marker was included on the middle of each
540	gel.
541	
542	Fig. 2. Pairwise comparison of the 16S rDNA (A), <i>sodA</i> (B) and <i>recA</i> (C) gene
543	sequences from the Staphylococcus type strains analyzed in this study. The percentage
544	of identical nucleotides between genes is shown. The accession numbers of the analysed

545 sequences are indicated on Table 1.

546

547 Fig. 3. Phylogenetic tree based on the partial *recA* sequence and showing the

548 relatedness of the twelve staphylococcal type strains analyzed in this study. The

549 phylogenetic tree was constructed by the neighbour-joining method. The *recA* partial

550 sequences were obtained from the representative type strain of each species and

551 deposited on the EMBL database (Table 1).

553 Fig. 4. Polymorphic sites in the partial *recA* sequences of some *S. equorum* strains

analyzed in this study. The accession numbers for the five different alleles obtained are:

555 allele 1 (FN554822), allele 2 (FN554823), allele 3 (FN554824), allele 4 (FN554825),

- and allele 5 (FN554826). Each of the sites where the sequence of one or more of the
- 557 genes differ is shown (only sites that differ are shown). Numbering of the polymorphic
- sites (vertical format) is according to the position on the 280 bp *recA* DNA fragment
- 559 sequenced. The number of strains possessing each allele is indicated in parenthesis.

Table 1

Table 1. Partial gene sequences from several *Staphylococcus* species

		Accession no.		
Staphylococcus	s type strain	16S rRNA	sodA	recA
S. aureus	ATCC 12600	D83357	EU652773	FN554701
S. capitis	ATCC 27840 ¹	FN554713	AJ 343896	FN554702
S. carnosus	ATCC 51365 ^{\top}	AB009934	AJ 343899	FN554703
S. cohnii	ATCC 29974 ^{\top}	D83361	AJ 343902	FN554704
S. epidermidis	ATCC 14990 [⊤]	D83363	AJ 343906	FN554705
S. equorum	ATCC 43958	AB009939	AJ 343907	FN554706
S. hominis	ATCC 27844	L37601	AJ 343911	FN554707
S. hyicus	ATCC 11249 [⊤]	D83368	AJ 343913	FN554708
S. sciuri	ATCC 29062 ^{\top}	AJ 421446	AJ 343929	FN554709
S. simulans	ATCC 27848 [⊤]	D83373	AJ 343930	FN554710
S. vitulinus	ATCC 51615	AB009946	AJ 343931	FN554711
S. xylosus	ATCC 29971	D83374	AJ 343933	FN554712

Figure 2

Figure 2

А

No.	Species	% identity with 16S rRNA gene no.											
		1	2	3	4	5	6	7	8	9	10	11	12
1	S. aureus	IDα											
2	S. capitis	98	ID										
3	S. carnosus	97	97	ID									
4	S. cohnii	97	97	97	ID								
5	S. epidermidis	98	99	97	97	ID							
6	S. equorum	97	96	96	98	97	ID						
7	S. hominis	97	97	97	97	98	97	ID					
8	S. hyicus	97	97	97	97	97	96	97	ID				
9	S. sciuri	97	96	96	97	97	96	97	96	ID			
10	S. simulans	96	96	97	97	97	96	96	96	96	ID		
11	S. vitulinus	96	96	96	96	96	96	96	96	99	95	ID	
12	S. xylosus	97	97	97	98	97	98	97	96	97	96	96	ID

В

No.	Species				% id	entity	/ with	sod/	A gene	e no.			
		1	2	3	4	5	6	7	8	9	10	11	1
1	S. aureus	١D۵											
2	S. capitis	75	ID										
3	S. carnosus	75	82	ID									
4	S. cohnii	76	84	82	ID								
5	S. epidermidis	76	90	82	86	ID							
6	S. equorum	74	86	82	89	84	ID						
7	S. hominis	75	87	82	89	88	87	ID					
8	S. hyicus	71	82	77	78	80	77	80	ID				
9	S. sciuri	66	75	71	74	75	74	75	73	ID			
10	S. simulans	74	86	90	83	83	85	84	76	73	ID		
11	S. vitulinus	65	77	74	74	75	75	75	73	93	73	ID	
12	S. xylosus	74	86	81	91	84	92	88	78	74	83	76	

С

No.	Species	% identity with <i>recA</i> gene no.											
		1	2	3	4	5	6	7	8	9	10	11	12
1	S. aureus	ΙDª											
2	S. capitis	85	ID										
3	S. carnosus	86	85	ID									
4	S. cohnii	87	85	85	ID								
5	S. epidermidis	86	87	82	85	ID							
6	S. equorum	86	86	84	86	83	ID						
7	S. hominis	85	82	85	83	83	85	ID					
8	S. hyicus	82	81	80	81	82	82	81	ID				
9	S. sciuri	87	87	85	85	87	84	85	82	ID			
10	S. simulans	86	85	88	82	83	84	85	78	88	ID		
11	S. vitulinus	82	84	81	83	85	82	82	81	89	82	ID	
12	S. xylosus	83	83	83	84	85	86	84	77	83	85	80	ID
a ID	, identical												

Figure 3

Figure 4

Figure 4

		P	Polymorphic site position
recA			00000111222
			45569046018
			10242959440
allele :	1	(type)	TGCTGGAGGTT
allele 2	2	(1)	A
allele 3	3	(6)	.ATAAATACCC
allele 4	4	(2)	CATAAATACCC
allele !	5	(1)	CATAAATTCTC

Research Highlights

- 1. Important differences were observed comparing identification of meat staphylococci by phenotypic and genotypic data.
- 2. *S. equorum* was the prevalent species identified by molecular methods.
- 3. Reliable identification of meat staphylococci could be achieved by means of *recA* gene sequence comparison.
- 4. *S. xylosus* and *S. equorum* strains could be more accurately discriminated by *recA* sequencing than 16S rDNA or *sodA* sequencing.