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Abstract

Several members of the FGF gene family have been shown to intervene from 

various tissue sources to direct otic placode induction and otic vesicle formation. In this 

study we define the roles of FGF8, found in different expression domains during this 

process, in mice and chickens. By conditional inactivation of Fgf8 in distinct tissue 

compartments we demonstrate that Fgf8 is required in the mesoderm and endoderm 

during early inner ear development. In the chicken embryo, overexpression of Fgf8

from various tissue sources during otic specification leads to a loss of otic tissue. In 

contrast ectopic overexpression of Fgf10, a major player during murine otic induction, 

does not influence otic vesicle formation in chicken embryos but results in the 

formation of ectopic structures with a non-otic character. This study underlines the 

crucial role of a defined Fgf8 expression pattern controlling inner ear formation in 

vertebrates.
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Introduction

Early inner ear development in vertebrates is initiated by signals derived from 

the endoderm and mesoderm underneath the preplacodal ectoderm. In a second phase a 

neural signal from the developing hindbrain completes the induction process and ends 

with the specification of part of the preplacodal ectoderm to form the otic placode The 

otic placode will then invaginate to form the otic vesicle and differentiate to the mature 

inner ear (Bailey and Streit, 2006; Groves, 2005; Groves and Bronner-Fraser, 2000).

Various members of the Fibroblast growth factor (FGF) gene family have been 

shown to control different aspects of early inner ear development (Schimmang, 2007). 

During both mouse and chicken inner ear development FGF8 has been postulated as the 

first signal initiating otic induction (Ladher et al., 2005). Loss-of-function experiments 

based on the electroporation of siRNA directed against Fgf8 in the chicken embryo at 

HH4 leads to loss of placodal tissue. The source of Fgf8 expression has been localized 

to the endoderm where it is expressed from HH6 (Hamburger and Hamilton, 1992)

onwards. The function of Fgf8 apparently consists in inducing Fgf19 expression in the 

overlying mesoderm (Ladher et al., 2005). Fgf3 expression in the mesoderm is 

simultaneously observed to Fgf19 expression but the requirement of Fgf8 for Fgf3

expression has not been examined (Kil et al., 2005). A similar sequence of events also 

appears to operate during the initiation of otic induction in mouse. Fgf8 initiates its

expression at E7 in the mesoderm but is additionally detected in the endoderm and 

preplacodal ectoderm at E8 (Crossley and Martin, 1995; Ladher et al., 2005; Zelarayan 

et al., 2007). Loss-of-function experiments in mice have shown that Fgf8 is redundantly 

required together with Fgf3 for formation of the otic placode and vesicle (Ladher et al., 

2005; Zelarayan et al., 2007). Both Fgfs also are required for normal levels of Fgf10
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expression in the mesoderm during otic induction (Ladher et al., 2005). During E8 Fgf3

is initially observed in the neural tube and preplacodal ectoderm (Wright and Mansour, 

2003) and has only been later described in the pharyngeal endoderm shortly before 

placode invagination (Mahmood et al., 1996; McKay et al., 1996). Likewise in the 

chick, the initial expression of Fgf3 in the mesoderm is accompanied by additional 

expression domains in the pharyngeal endoderm and neural tube when the otic placode 

has been specified to form in the preplacodal ectoderm (Mahmood et al., 1995). The 

relevance of these expression domains has been examined by siRNA-mediated 

knockdown of Fgf3 (Freter et al., 2008; Zelarayan et al., 2007). In these experiments

Fgf3 has been shown to be required for otic placode induction (Freter et al., 2008) and 

the transition of the otic placode to the otic vesicle (Zelarayan et al., 2007). During 

placode formation and invagination Fgf8 is maintained in the pharyngeal endoderm in 

chicken and mice (Adamska et al., 2001; Hidalgo-Sanchez et al., 2000; Stolte et al., 

2002). In chicken, FGF8 beads implanted into the mesoderm next to the otic placode at 

HH10 have been shown to increase otic marker gene expression and the size of the 

normal otic vesicle (Adamska et al., 2001). Finally in both chicken and mice Fgf10 is 

expressed in the otic placode itself (Alsina et al., 2004; Alvarez et al., 2003; Karabagli 

et al., 2002; Ohuchi et al., 1997; Pirvola et al., 2000; Wright and Mansour, 2003). The 

relevance of Fgf10 expression for otic placode and vesicle formation at this stage has so 

far not been addressed.

In the present study we analyse the significance of the distinct Fgf8 expression 

domains during early inner ear development in chicken and mice. Inactivation of Fgf8

expression in the mesoderm in a homozygous Fgf3 null background during murine otic 

induction leads to a severe loss or absence of otic tissue. Similar experiments targeting 

the endodermal domain of Fgf8 expression also affects otic vesicle formation but in a 
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less severe manner. In the chicken embryo overexpression of Fgf8 during otic placode 

specification and formation, when endogenous Fgf8 is expressed in pharyngeal 

endoderm, leads to a reduced size of the otic vesicle. On the other hand Fgf10, 

endogenously present in the otic placode, does not affect otic vesicle formation upon its 

misexpression in periotic areas but leads to the formation of ectopic tissue with a non-

otic character. These data confirm the requirement for a defined expression pattern of 

members of the FGF gene family in specific tissue domains during different phases of 

early inner ear development.

Results

Global loss of Fgf3 and specific inactivation of Fgf8 in the mesoderm during otic 

induction results in a severe reduction of otic tissue

Fgf3 and Fgf8 have been shown to be redundantly required during otic induction 

in mice (Ladher et al., 2005; Zelarayan et al., 2007). However, the exact tissue source of 

Fgf8 expression required during this process has not been defined. During otic induction 

between E7 to E8.5, Fgf8 expression is initially observed in the mesoderm underneath 

the preplacodal ectoderm (Fig. 1A, Ladher et al. 2005). To determine the tissue-specific 

requirements for Fgf8 during otic induction a conditional approach using Cre-LoxP-

mediated disruption of Fgf8 was used. We examined the relevance of Fgf8 expression 

within the mesoderm by using a transgenic mouse line where Cre recombinase 

expression is controlled by the MesP1 promoter, that has previously been shown to

activate floxed reporter alleles, including Fgf8GFP, specifically in the mesoderm during

E8 (Park et al., 2006; Saga et al., 1999). We confirmed Cre activity in the mesoderm 
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and its absence in the endoderm using ROSA26 reporter mice at E7.75 (Supplementary 

Fig. 1A) To study the requirement for Fgf8 expression in this domain during otic 

placode induction, we analysed the effects of conditional inactivation of Fgf8 induced 

by Cre driven by the MesP1 locus in a Fgf3 null mutant background at the otic vesicle 

stage. We therefore crossed Fgf3+/-/Fgf8d2,3/+;MesP1Cre/+ animals with Fgf3-/-/Fgf8flox/flox

mice. Upon external examination of Fgf3-/-/Fgf8flox/d2,3; MesP1Cre/+ mutant embryos at 

E9 we failed to detect an otic vesicle. Histological analysis of these mutants (n=4) 

confirmed that otic vesicle formation was severely affected (Fig. 2). Fgf3-/-/Fgf8flox/d2,3;

MesP1Cre/+ mutants revealed only the presence of microvesicles (n=4) or complete 

absence of otic tissue (n=4) whereas Fgf3-/-, Fgf3-/-/Fgf8flox/d2,3 and Fgf8flox/d2,3;

MesP1Cre/+ mutant embryos showed formation of otic vesicles (Fig. 2A-C and data not 

shown). Furthermore the microvesicles failed to express the otic marker Pax2 

(Supplementary Fig. 2) and lacked NeuroD that labels the neurogenic region of the otic 

vesicle (Supplementary Fig. 3). Examination of proliferation and cell death revealed no 

apparent changes in the microvesicles of  Fgf3-/-/Fgf8flox/d2,3; MesP1Cre/+ embryos 

compared to wild-type controls at E8 and E9 (Fig. 3A,B, D,E and data not shown) . 

To examine the developmental capacity of the microvesicles present in Fgf3-/-

/Fgf8flox/d2,3; MesP1Cre/+ embryos to undergo further development and differentiation, we 

examined these mutants at E13 (n=2). At this developmental stage microvesicles had 

increased in size but lacked the normal morphogenesis observed in controls (Fig. 2D,E).  

In 50% of cases we were unable to detect any otic tissue upon examination of serial 

sections at E13 through the cranial region. Therefore, the combined global loss of Fgf3

and Fgf8 within the mesoderm during inner ear induction results in the absence or 

severe reduction of otic tissue that is only able to form microvesicles that fail to undergo 

proper morphogenesis.
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Fgf8 expression in the pharyngeal endoderm is required for the formation of a normally 

sized otic vesicle

The initial Fgf8 expression in the mesoderm during otic induction is

accompanied by Fgf8 transcripts in the pharyngeal endoderm and the preplacodal 

surface ectoderm at E8- E9 (Fig. 1B; Ladher et al., 2005). At this stage also Fgf3

expression is observed weakly in the pharyngeal endoderm, next to a prominent 

expression in the surface ectoderm and the neural tube (Fig. 1C). The Foxa3Cre mouse 

line expresses Cre recombinase from the Foxa3 locus and has been shown to inactivate 

floxed alleles specifically in the pharyngeal endoderm before E8.5 (Lee et al., 2005a; 

Lee et al., 2005b). We confirmed Cre activity in the pharyngeal endoderm at E8.5 and 

in the pharyngeal pouch endoderm at E9 where Fgf8 is expressed (Crossley et al., 1995) 

using ROSA26 reporter mice (Supplementary Fig. 1B,C). To obtain Fgf3-/-/Fgf8flox/d2,3;

Foxa3Cre/+ mutants we crossed Fgf3+/-/Fgf8d2,3/+;Foxa3Cre/+ animals with Fgf3-/-

/Fgf8flox/flox mice. Upon inspection of mutant embryos at E9 we observed a reduced size 

of the otic vesicle compared to wild-type littermates (Fig. 4A,B). Histological sections 

confirmed that the size of the otic vesicle in these mutants (n=4) was also significantly 

reduced compared to Fgf3-/-, Fgf8flox/d2,3; Foxa3Cre/+ and Fgf3-/-/Fgf8flox/d2,3 mutants (Fig. 

4C-F and data not shown). Compared to wild-type embryos, the diameter and cell 

number of the mutant vesicles was on average reduced by 21% and 27%, respectively.

Examination of proliferation (Fig. 3C) and cell death (Fig. 3F) revealed no statistically 

significant changes in the otic vesicles of  Fgf3-/-/Fgf8flox/d2,3; Foxa3Cre/+ mutants 

compared to wild-type controls (Fig. 3A,D).
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To explore the developmental potential of the reduced size otic vesicles of Fgf3-

/-/Fgf8flox/d2,3; Foxa3Cre/+ embryos we examined mutant embryos at E15 (n=2). At this 

stage mutants had developed a normally formed inner ear as revealed by sections 

through the cochlea and vestibular apparatus (Fig. 4G,H and data not shown). In the 

cochlea at E16 we observed normal formation of supporting cells expressing Prox1 and 

hair cells characterized by myosin VII expression and innervation by TuJ1-positive 

nerve fibers (Supplementary Fig. 4). Therefore, Fgf8 expression in the pharyngeal 

endoderm is required for the formation of a normally sized otic vesicle. However, the 

reduced size vesicle appears to maintain the capacity to undergo proper otic 

differentiation.

Ectopic misexpression of Fgf8 in chicken embryos affects formation of the otic vesicle

Recent studies in the chicken embryo have shown that endoderm-derived Fgf8

initiates otic induction around HH4 (Ladher et al., 2005). Fgf8 expression is maintained 

in the endoderm and is observed in the pharyngeal endoderm at HH8-10 when otic 

specification takes place and the placode is formed (Fig. 5A-C; Mahmood et al., 1995).

Since our results in mouse embryos suggested a requirement for Fgf8 expression in the 

pharyngeal endoderm we were interested if this expression domain may also be

involved during otic vesicle formation in chicken embryos. We performed gain-of–

function experiments by applying FGF8-soaked beads or electroporating a vector 

containing the Fgf8 coding region into the surface ectoderm or neural tube of chicken 

embryos at HH8-HH9 (for details see Methods). Ectopic expression of Fgf8 in the 

neural tube or the surface ectoderm was confirmed by RNA whole-mount in situ

hybridization (Fig. 6A and data not shown). After incubation of embryos until the otic 
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vesicle stage we observed that misexpression of Fgf8 resulted in a reduction of the size 

of the otic vesicle under all three experimental setups (Fig. 5D-I and 6B-E). Chicken 

embryos carrying beads soaked with FGF8 and implanted into the mesoderm underlying 

the future otic placode showed a reduced size of the otic vesicle (n=9/11) and reduced 

expression of Pax2 (n=8/9) that is expressed in the medial part of the otic vesicle (Fig. 

5F-I). In contrast expression of Lmx1, a dorsal otic marker was unaffected (Fig. 5D,E; 

n=2/2). Likewise, electroporation of Fgf8 into the neural tube (n=52) or surface 

ectoderm (n=33) resulted in the formation of smaller sized vesicles on the 

electroporated side in 62,5% and 67% of the embryos, respectively, and reduced 

expression of otic markers (Fig. 6 and data not shown). On average the size of the otic 

vesicle was reduced by 28% compared to normal otic vesicles. When vectors carrying 

Fgf8 were electroporated into the surface ectoderm we also often (86%) noted an 

increase in the size of the lens on the electroporated side (Fig. 8A and see below).

Together, these data demonstrate that misexpression of Fgf8 during otic specificiation 

and placode formation interferes with the development of the otic vesicle.

Misexpression of Fgf10 does not interfere with chicken otic development

During murine inner ear development Fgf10 is expressed in the mesoderm and 

the developing hindbrain and has been shown to be required for otic induction (Alvarez 

et al., 2003; Wright and Mansour, 2003). In the chicken embryo, Fgf10 expression has 

not been observed during otic induction but is present in the otic placode itself

(Karabagli et al., 2002; Ohuchi et al., 1997). To examine the potential involvement of 

Fgf10 during the formation of the chicken otic vesicle in we performed gain-of-function 

experiments identical to those described above for Fgf8. Beads incubated with FGF10 
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protein and implanted into the mesoderm underneath the future otic placode at HH8-

HH9 showed no effects on formation of the otic vesicle (n=6). Likewise electroporation 

of vectors encoding Fgf10 into the neural tube (n=91; Supplementary Fig. 5A) or the 

surface ectoderm (n=44) at this stage did not affect formation of the otic vesicle. As 

previously shown in murine embryos misexpression of Fgf10 lead to the ectopic 

expression of Fgf8 (Supplementary Fig. 5B, Zelarayan et al., 2007). Upon expression of 

Fgf10 in the surface ectoderm we observed the formation of ectopic placodal-like 

structures close to the developing eye in 75% of the embryos (Fig.7). RNA in situ 

hybridization revealed that these structures stained for Pax6 and Six3, genes 

characteristic for the lens and olfactory placode (Fig. 7A,B and 8B), but not for the otic 

marker Pax2 (Fig. 7C). Next to these ectopic structures we also observed that the lens 

vesicle failed to close and expanded outside the optic cup (Fig. 8C,D), a phenotype 

comparable with the one observed in embryos electroporated with Fgf8 (Fig. 8A). 

Therefore, ectopic Fgf10 expression does not interfere with otic vesicle formation and 

although it induces placode-like structures, the ectopic tissue expresses Pax6 and Six3

that are not found in otic placodes.

Discussion

Unlike in chicken, Fgf8 is not absolutely required for otic induction in mice

(Ladher et al., 2005). Previous results have shown that otic induction is only affected 

when Fgf8 expression is reduced on a Fgf3 homozygous null background (Ladher et al., 

2005; Zelarayan et al., 2007). Global reduction of Fgf8 expression during otic induction 

was obtained by the use of a hypomorphic Fgf8 allele (Fgf8H) allele or mosaic 

inactivation of a floxed Fgf8 allele using the Mox2Cre line (Ladher et al., 2005; 
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Zelarayan et al., 2007). However, these experiments did not provide information on the 

tissue-specific requirements of Fgf8 during early inner ear development when it is 

expressed in several sites potentially controlling this process. By using the MesP1Cre

line we now show that expression of Fgf8 in the mesoderm is specifically required 

during otic induction. The phenotype observed in Fgf3-/-/Fgf8flox/d2,3; MesP1Cre/+, 

consisting in the presence of microvesicles or absence of otic tissue, is similar to the 

phenotype found in Fgf3-/-/Fgf8flox/d2,3;Mox2Cre/+ or Fgf3-/-/Fgf8H/- mutant embryos. 

Therefore, reduced Fgf8 expression in its mesodermal domain during otic induction

appears to be a likely cause for the phenotype found in Fgf3-/-/Fgf8flox/d2,3;Mox2Cre/+ or 

Fgf3-/-/Fgf8H/- animals. Similar to Fgf3/Fgf10 mouse mutants (Wright and Mansour, 

2003) and Fgf3/Fgf8 zebrafish mutants (Maroon et al., 2002) we found no evidence for 

a change in cell proliferation or cell death in Fgf3-/-/Fgf8flox/d2,3; MesP1Cre/+ mutant 

embryos during otic development. However, these mutants fail to express otic markers

in the otic region. Therefore, loss of FGF signalling in FGF double mutants leads to a 

failure to establish appropriate patterns of otic gene expression in dorsal ectoderm that

consequently fails to undergo otic fate (Alvarez et al., 2003; Ladher et al., 2005; 

Maroon et al., 2002; Wright and Mansour, 2003; Zelarayan et al., 2007).

Next to this mesodermal domain of expression, Fgf8 is also present during otic 

induction in the endoderm, where it is detected from E8 onwards. Using the Foxa3Cre 

line to specifically inactivate Fgf8 in the endoderm on a Fgf3 homozygous null

background we observe the formation of reduced sized otic vesicles. Although Cre 

activity was confirmed in the endoderm it was weaker than expected based on the 

results obtained by Lee et al. (2005a). Nevertheless, presence of Fgf8 is also required in 

the endoderm to promote the formation of a normally sized otic vesicle. A recently 

published FoxA2Cre line shows strong and specific expression in the endoderm during 
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early inner ear development and should help to define the role of Fgf8 expression in the 

endoderm during otic induction (Frank et al., 2007). 

Interestingly, we also observe Fgf3 expression in the endoderm at E8 (6ss) prior

to the so far described pattern at E.8.5 (10ss; Mahmood et al., 1996; McKay et al., 

1996). Therefore next to the prominent expression in the hindbrain, Fgf3 maybe also 

redundantly required together with Fgf8 in this early endodermal domain for the 

formation of a normally sized otic vesicle. 

At the molecular level one of the redundant functions shared between Fgf3 and 

Fgf8 is to induce or maintain normal levels of Fgf10 in the mesoderm at E8 (Ladher et

al., 2005). A similar but non-redundant requirement for endodermally expressed Fgf8 to 

induce the mesodermal expression of a different Fgf, Fgf19, has been observed in the 

chick during the initiation of otic induction (Ladher et al., 2005). The parallel 

expression of Fgf8 in the endoderm and Fgf19 in the mesoderm is also maintained until 

otic specification (Kil et al., 2005; Ladher et al., 2005). To address the potential 

function of Fgf8 at this stage we misexpressed it in the periotic mesoderm, neural tube 

and surface ectoderm. Surprisingly we observed a reduced size of the otic vesicle 

compared to controls under these conditions (Figs. 5 and 6). This inhibitory effect

differs from the so far known functions of Fgf8 during early chicken inner ear 

development when it promotes otic induction at HH6 (Ladher et al., 2005). Moreover, 

FGF8 beads implanted in the mesoderm next to the otic placode at later stages (HH10-

11) leads to the formation of ectopic otic tissue (Adamska et al., 2001; see also Supp. 

Fig. 6). An explanation for these differential effects upon misexpression of Fgf8 at 

different timepoints may be derived from experiments in zebrafish (Hans et al., 2007).

In this species Fgf8 misexpression until midgastrula stages was shown to reduce otic 

tissue, probably due to a downregulation of competence factors required for otic 
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induction. On the other hand, misexpression during early segmentation lead to an 

increased size of the otic vesicle, presumably due to the induction of a larger area of 

competent ectoderm acquiring otic fate (Hans et al., 2007), an effect also observed upon

misexpression of Fgf3 in chick embryos (Hans et al., 2007; Vendrell et al., 2000). 

Interestingly, in Xenopus FGF8 beads have been shown to interfere with the 

endogenous pattern of Fgf3 and Fgf8 expression during midbrain development (Riou et 

al., 1998). Similarly in the chicken embryo, FGF8 may interfere with the function of 

FGFs relevant for otic development including FGF3 and FGF19 (Supplementary Fig. 

6). On the other hand, sustained expression of Fgf3 and Fgf19 has also been shown to 

block otic specification in chick embryos (Freter et al., 2008). In the present context of 

otic development the stage-dependent differential effects of Fgf8 thus indicate that its 

correct spatiotemporal expression pattern and dose is crucially required for proper otic 

specification and vesicle formation. 

Finally, we also examined the potential function of Fgf10 expression during 

early otic development by misexpressing Fgf10 in periotic areas. Fgf10 is the only FGF 

member known so far to be prominently expressed in the mouse and chicken otic 

placode, whereas Fgf8 is only weakly expressed (Adamska et al., 2001; Alsina et al., 

2004; Alvarez et al., 2003; Karabagli et al., 2002; Ohuchi et al., 1997; Pirvola et al., 

2000). We found no effects on otic vesicle development upon misexpression of Fgf10

from different tissue sources in chicken embryos. In contrast, misexpression of Fgf10 in 

the neural tube of mouse embryos during otic induction leads to the formation of 

ectopic vesicles (Alvarez et al., 2003). This result demonstrated that Fgf10 acting form 

the neural tube may induce otic fate, possibly reflecting a endogenous function of Fgf10

during its expression in the neural tube throughout otic induction (Alvarez et al., 2003).
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Upon electroporation of Fgf8 and Fgf10 into the surface ectoderm we also 

observed defects during lens development. The size of the lens tissue was increased and 

the forming lens vesicle frequently failed to close. A similar phenotype has been 

reported upon the implantation of FGF8 beads next to the optic vesicle in chicken 

embryos (Kurose et al., 2005; Vogel-Hopker et al., 2000). Additionally, upon 

misexpression of Fgf10 we observed the formation of ectopic placodal-like tissue 

characterized by the expression of markers present in the lens placode, whereas the otic 

marker Pax2 failed to stain the ectopic structures. The ectopic tissue formed may thus 

correspond to ectopic lens tissue. Alternatively, the structures may possibly be also 

related to the initiation of ectopic lacrimal buds that are also characterized by Pax6

expression and have been shown to be induced upon implantation of FGF10-soaked 

beads into the periocular mesenchyme in mice and are absent in Fgf10 mutants 

(Entesarian et al., 2005; Makarenkova et al., 2000).
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Experimental Procedures

Transgenic mice

The following mouse lines used in this study have been described previously: 

Fgf3-/- knockout mutants and mutants carrying a conditional (Fgf8flox) or a null allele 

(Fgf8d2,3) for Fgf8 (Meyers et al., 1998), the ROSA26 Cre reporter strain (Soriano, 

1999) and mouse lines in which cre has either been targeted to the Foxa3 (Lee et al., 

2005b) or MesP1 (Saga et al., 1999) locus.

Histology and RNA in situ hybridization

Preparation of histological sections stained with hematoxylin and eosin, RNA 

whole-mount in situ hybridisation, -galactosidase staining and the sectioning of stained 

embryos has been described previously (Alvarez et al., 2003). The riboprobe 

corresponding to chicken Fgf8 and mouse NeuroD have been described (Crossley and 

Martin, 1995; Vazquez-Echeverria et al., 2008). All other riboprobes used in this study 

have been referred to previously (Alvarez et al., 2003; Vendrell et al., 2000; Zelarayan 

et al., 2007). Measurements of otic vesicle diameters and cell counts were performed on 

serial sections. For immunohistochemistry cryostat sections were prepared and 

processed as outlined earlier (Carnicero et al., 2004). Prox1 (Covance, diluted 1:100), 

myosin VIIA (Proteus, diluted 1:100) and TuJ1 (Covance, diluted 1:1000) antibodies 

were used. 
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Detection of proliferating cells and cell death

Detection of cell proliferation in sections was performed by 

immunohistochemistry using the anti-phosphorylated histone H3 antibody (rabbit 

polyclonal Phospho H3 from Upstate Biotechnology, USA) diluted at 1/100. TUNEL 

analysis was performed using an in situ cell death detection kit following the 

manufacturer´s recommendations (Roche).

Manipulation of chick embryos

Heparin acrylic beads (Sigma, H5263) were soaked for at least 1 hr at room 

temperature in recombinant mouse FGF8 or FGF10 (0.5 mg/ml from R&D Systems) 

and implanted at stage HH8-9 (Hamburger and Hamilton, 1992) into the mesoderm 

underlying the area where the otic placode is specified in the surface ectoderm. For in 

ovo electroporation, embryos were incubated until stage HH8-9. The solution 

containing the different plasmids encoding either murine Fgf8 or Fgf10 cDNA (cloned 

into pCS2) plus a GFP reporter plasmid pLP-EGFP-C1 (Clontech) at 0.8 g/l in PBS, 

was injected into the lumen of the neural tube or placed as an overlay on top of the 

embryo with a glass microcapillary. Two parallel platinum electrodes (0.5 mm width 

and 4 mm length) with a distance of 5 mm between them were positioned on both sides 

of the embryo. Subsequently 4 pulses of 30 V of 50 msec duration each and an interval 

of 1 msec were applied using a BTX electroporator. Embryos were incubated until the 

otic vesicle stage and then processed for histology or stained with riboprobes. Control 

experiments included electroporation of the GFP or lacZ reporter plasmid 

(Supplementary Fig. 7).
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Figure Legends

Figure 1

Expression of Fgf8 and Fgf3 in tissues relevant for otic induction. (A-C) Embryos have 

been hybridized with a Fgf8 or Fgf3 riboprobe and sectioned transversally at the level 

where inner ear induction takes place. (A) At E7.5 Fgf8 is strongly expressed in the 

mesoderm (m). (B) At E8 Fgf8 is expressed in the pharyngeal endoderm (e), mesoderm  

and surface ectoderm (se), whereas Fgf3 (C) is found in the neural tube (nt), surface 

ectoderm and weakly in the endoderm. The orientation of the sections along the dorsal 

(D)-ventral (V) axis are indicated in (A). Scale bars, in A, 50 m for A, 100 m for 

B,C.

Figure 2

Inner ear phenotype of Fgf3-/-/Fgf8flox/d2,3;MesP1Cre/+ mutants. (A-C) Histological 

sections through the otic vesicle of Fgf3-/- (A), Fgf8flox/d2,3;MesP1Cre/+ (B) and Fgf3-/-

/Fgf8flox/d2,3;MesP1Cre/+ (C) embryos at E9. Note the microvesicle distant from the neural 

tube present in Fgf3-/-/Fgf8flox/d2,3;MesP1Cre/+ mutant embryos. (D, E) Histological 

sections through the inner ear of wild-type (wt) and Fgf3-/-/Fgf8flox/d2,3;MesP1Cre/+ 

mutant embryos at E13. (D) In the wild-type embryo the developing cochlea (co), 

saccule (s), endolymphatic duct (ed) and the posterior (pc) and lateral semicircular canal 

(lc) are indicated. (E) Sections of the mutant embryo reveal only the presence of a small 

undifferentiated otic vesicle with a lateral protuberance. The orientation of the sections 
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along the dorsal (D)-lateral (L) axis are indicated in (A). Scale bars: in A, 60 m for A-

C and in D, 225 m for D and E.

Figure 3

Cell proliferation and cell death in otic vesicles of Fgf3-/-/Fgf8flox/d2,3;MesP1Cre/+ and 

Fgf3-/-/Fgf8flox/d2,3;Foxa3Cre/+ mutant embryos at E9. (A-C) Cell proliferation was 

examined by staining sections at the level of the otic vesicle with antibodies raised 

against phospho-Histone 3. Note the presence of proliferating cells in wild-type (A) and 

Fgf3/Fgf8 double mutant embryos with the indicated genotypes (B,C). (D-F) Cell death 

was analysed by TUNEL staining of the otic area. Note the presence of apoptotic cells 

in wild-type (D), Fgf3-/-/Fgf8flox/d2,3;MesP1Cre/+ (E) and Fgf3-/-/Fgf8flox/d2,3;Foxa3Cre/+ (F) 

mutant embryos. The circumference of the microvesicle in Fgf3-/-/Fgf8flox/d2,3;MesP1Cre/+ 

mutants is indicated by a stippled line. The orientation of the sections along the dorsal 

(D)-lateral (L) axis are indicated in (A). Scale bars: in A, 100 m for A-F.

Figure 4

Inner ear phenotype of Fgf3-/-/Fgf8flox/d2,3;Foxa3Cre/+ mutants. (A,B) External appearance 

of wild-type (wt) and Fgf3-/-/Fgf8flox/d2,3;Foxa3Cre/+ mutant embryos at E9. The otic 

vesicle is indicated by an arrow. (C-F) Histological sections through the otic vesicle of 

wild-type (C), Fgf3-/- (D), Fgf8flox/d2,3;Foxa3Cre/+ (E) and Fgf3-/-/Fgf8flox/d2,3;Foxa3Cre/+

(F) embryos at E9. Note the reduced size of the otic vesicle in Fgf3-/-

/Fgf8flox/d2,3;Foxa3Cre/+ mutant embryos. Histological sections at E15 reveal the presence 

of a normal cochlea in Fgf3-/-/Fgf8flox/d2,3;Foxa3Cre/+ mutants compared to wild-type 
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animals. Abbreviations: cg, cochlear ganglion; se, sensory epithelium. The orientation 

of the sections along the dorsal (D)-lateral (L) axis are indicated in (C). Scale bars: in C, 

100 m for C-F, 400 m for G,H.

Figure 5

Phenotype of chicken embryos upon implantation of FGF8 beads. (A,B) Chicken 

embryos hybridised with a riboprobe for Fgf8 at the 7ss (A) and 10ss (B). The 

pharyngeal endoderm is indicated with an arrow. (C) Transversal section of the embryo 

shown in (B) at the level of the otic placode (op). Note expression of Fgf8 in the 

pharyngeal endoderm (e). (D-G) Chicken embryos with beads, previously soaked in 

PBS (D,F) or FGF8 protein (E,G) and then implanted in the prospective otic region at 

HH8, were incubated for 40 hours and stained with a riboprobe for Lmx1 (D,E) or Pax2

(F,G), respectively. Note the reduced size of the otic vesicles in the embryos carrying 

the FGF8 bead and loss of staining for Pax2 (G) whereas Lmx1 expression is 

maintained (E). Orientation of the embryos along the anterior (A)- dorsal (D) axis is 

indicated in (D). (H, I) Sections through the otic vesicle of embryos shown in (F) and 

(G). The circumference of the otic vesicles are indicated by stippled lines. Orientation 

of the sections along the dorsal (D)- lateral (L) axis are indicated. Scale bars: in C, 200

m and in I, 100 m for H,I.
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Figure 6

Phenotype of chicken embryos upon electroporation of Fgf8 into the neural tube. (A) 

Chicken embryo electroporated with a vector encoding murine Fgf8 at HH8 and stained

with a murine Fgf8 riboprobe at HH15. (B,C) Aspect of the electroporated (B) and 

unelectroporated side (C) of a chicken embryo 36 hours after electroporation of a vector 

encoding Fgf8 into the neural tube at HH8. Orientation of the embryo along the dorsal 

(d)- anterior (a) axis is indicated. (D) Transversal section through a Fgf8-electroporated

embryo. Note that on the electroporated right side the size of the otic vesicle is reduced. 

(E) Transversal section of a Fgf8-electroporated embryo stained with a Pax2 riboprobe. 

Note the reduced size and Pax2 staining of the otic vesicle on the electroporated right 

side of the embryo. Orientation of the embryos in (D) and (E) along the dorsal (d)-

lateral (l) axis is indicated in (D). Scale bars: in D, 40 m and in E, 100 m.

Figure 7

Phenotype of chicken embryos upon misexpression of Fgf10. (A-C) Chicken embryos 

were electroporated at HH8 into the surface ectoderm with a vector encoding Fgf10, 

incubated for 40 hours and stained with the indicated riboprobes. Note the presence of 

vesicular structures that are stained with a Pax6 (A) and Six3 (B) riboprobe but lack

Pax2 staining (C, arrow).  (D-F) Expression of the indicated genes in control embryos.
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Figure 8

Lens phenotypes of embryos electroporated with Fgf8 or Fgf10. Embryos were 

electroporated at HH8 in the surface ectoderm and incubated for 40 hours. (A) External 

appearance of a control embryo (left) and an embryo electroporated with a vector 

encoding Fgf8 (right). Note the increased size of the lens vesicle of the electroporated 

embryo indicated by an arrow. (B) Section of an embryo electroporated with Fgf10. An 

ectopic placodal-like structure (arrow) stained with a riboprobe for Six3 and the 

expanded lens vesicle (lv) are indicated. (C,D) Section through the unelectroporated (C) 

and Fgf10-electroporated side (D) side of an embryo stained with Six3. Note that on the 

electroporated side the lens vesicle has failed to close and expands outside of the optic 

cup (oc). Scale bar: in B corresponds to 25 m, and to 50 m for C,D.

Supplementary Figure 1

Expression of Cre controlled by the MesP1 and Foxa3 locus in tissues relevant for inner 

ear formation. Embryos have been stained for lacZ and sectioned transversally at the 

level where inner formation takes place. (A) As revealed by lacZ staining of a 

R26RlacZ/+; Mesp1Cre/+ embryo at E7.75 Cre controlled by the Mesp1 locus is expressed 

in the mesoderm (m) but not in the pharyngeal endoderm (e).  As revealed by lacZ

staining of a R26RlacZ/+; Foxa3Cre/+ embryo Cre controlled by the Foxa3 locus is 

expressed in the pharyngeal endoderm (e) at E8.5 (B) and pharyngeal pouch endoderm 

(pe) at E9 (C) but not in the mesoderm (m). Abbreviations: op, otic placode; ov, otic 

vesicle. Scale bar in A, 100 m for A-C.
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Supplementary Figure 2

Expression of Pax2 in wild-type and Fgf3-/-/Fgf8flox/d2,3;MesP1Cre/+ mutants. Sections 

through the otic region of a wild-type (A) and a Fgf3-/-/Fgf8flox/d2,3;MesP1Cre/+ mutant 

(B) embryo at E9 hybridised with the otic marker Pax2. Whereas normal expression of 

Pax2 localized to the medial part of the otic vesicle (ov) is observed in the wild-type 

embryo, the microvesicle formed in the mutant embryo (indicated by a stippled line) 

lacks Pax2 expression. The orientation of the sections along the medial (M)-lateral (L) 

axis are indicated in (A). Abbreviation: nt, neural tube. Scale bars: in A, 100 m for A, 

B.

Supplementary Figure 3

Expression of NeuroD in wild-type (A) and Fgf3-/-/Fgf8flox/d2,3;MesP1Cre/+ mutants (B) at 

E10. Neuronal precursors corresponding to the trigeminal (V), facial (VII), otic (VII), 

glossopharyngeal (IX) and vagal (X) ganglia are indicated. Note the absence of NeuroD

expression in the neurogenic region of the otic vesicle (indicated by stippled lines) and 

reduced labelling of the facial ganglion in the Fgf3-/-/Fgf8flox/d2,3;MesP1Cre/+ mutant.

Supplementary Figure 4

Formation of the cochlear sensory epithelium in Fgf3-/-/Fgf8flox/d2,3;Foxa3Cre/+  mutant 

embryos. Sections through the cochlear sensory epithelium reveal the presence of 

myosin VIIA-positive hair cells (red) innervated by nerve fibers labelled with TuJ1 
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(green) and Prox1-positive supporting cells (red) in wild-type (A,C) and mutant (B,D) 

embryos at E16. Scale bars: in A, 10 m for A-D.

Supplementary Figure 5

Misexpression of Fgf10 in the neural tube of chicken embryos. (A) Embryo 

electroporated with a vector expressing murine Fgf10 into the left part of the neural tube 

at HH8 and stained with a riboprobe for mouse Fgf10 at HH14. (B) Embryo 

electroporated into the left part of the neural tube with a vector expressing murine Fgf10

in rhombomeres 3 (r3) and r5 (Zelarayan et al., 2007) at HH8 and stained with a 

riboprobe for chicken Fgf8 at HH10.

Supplementary Figure 6

Model for explaining the differential effects upon ectopic FGF8 expression during early 

inner ear development. Schematic sections of chicken embryos taken at the level where 

inner ear induction and otic placode formation takes place. Ectopic expression of FGF8 

at HH8, in this case indicated by beads placed in the mesoderm (m), interferes (red 

flashes) with the action of other FGFs, like Fgf3 or Fgf19 that are present in the neural 

tube (n) and/or mesoderm (m) and are known to stimulate otic placode formation (blue 

arrows) in the preplacodal ectoderm (pp). The interference of FGF8 with other FGFs 

may also take place indirectly caused by the downregulation of competence factors (see 

main text). At HH10 when the otic placode (op) has formed, ectopic FGF8 expression 

leads to an increased size of the otic vesicle, presumably due to a larger area of 

competent ectoderm acquiring otic fate.
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Supplementary Figure 7

Normal development of chicken embryos electroporated with control vectors. (A) 

Chicken embryo electroporated with a vector expressing gfp at HH8 in the neural tube 

(nt) and left to develop for 36 hours. Formation of the otic vesicle (ov) whose 

circumference is indicated by a stippled line is unaffected. (B) Embryo electroporated at 

HH8 in the surface ectoderm with a vector encoding -galactosidase and incubated for 

40 hours. Formation of the lens vesicle (lv) expressing lacZ is unaffected.
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