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Abstract 

 

The kinetics of the isoflavones transformations (diadzin, diadzein, genistin and genistein) and 

moisture content in soaked soybeans were studied in a temperature range of 30-85ºC. The evolution 

of the moisture was described by Peleg´s model and a modified first order kinetics equation. This 

last equation was also used to predict the transformation profiles of different isoflavones in the 

soaked soybeans.  The dependency on temperature of the kinetic parameter was modelled by the 

Arrhenius equation and empirical equations. The measured β-glucosidase activity at different 

temperatures justifies the experimental profiles of isoflavones conversion. 

 

Headline: Isoflavones transformations during soybean soaking at different temperatures. 
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1. Introduction 

 

Soybeans and the foods made from them are known to have good nutritional and functional qualities 

not only for their high protein and oil content, but also because they are a source of phytochemicals. 

A group of phytochemicals that can be found in soybeans is the isoflavones. These phytochemicals 

can potentially prevent chronic diseases such as cancer, osteoporosis, some heart problems and are 

recommended to alleviate post-menopause syndrome (Snyder and Kwon, 1987; Messina et al., 

1994; Liu, 1997). The content of isoflavones in soybeans is affected by the preparation and 

processing of the beans.  

 

There are 12 isomers of isoflavones in soybeans and soybean products, which are divided into four 

chemical forms (with three isomers each form). These forms are 6”-O-malonylglucosides, 6”-O-

acethylglucosides, β-glucosides and aglycones (Liu, 1997). Aglycones are known to be more 

bioactive than their glucosides and have more functional properties.  Two of the aglycones (diadzein 

and genistein) and their corresponding glucosides (diazin and genistin) have extensively studied for 

anti-cancer activity because of their estrogen receptor antagonist and agonist activity (Birt et al., 

2001; Chien et al., 2005). 

 

Soaking is one and most important steps in the preparation of soybean foods (Toda et al., 2001) as it 

reduces the energy required for processing and cooking time (Liu, 1997). It has been reported that 

β-glucosidase is the enzyme responsible for the hydrolysis of isoflavone glucosides into aglycone 

(Matsuura et al., 1989). 

 

There are a number of recent studies in relation to isoflavones in soybeans, such as the improvement 

of HPLC methods to determine soybean isoflavones (Careri et al., 2001; Hsieh et al., 2004), the 

investigation of isoflavones transformation during soybeans processing (Kao et al., 2004; Kin & 

Chung, 2007; Matsuura et al., 1989; Lee et al., 2003; Wang & Murphy, 1994) and the study of 

isoflavones developments during soybeans fermentation (Esaki, 1997; Kim et al. 2002; Lin 2006; 

Pyo et al. 2004; Romero, 2004; Tsangalis et al., 2002).  A mathematical approach to the kinetics of 

isoflavones conversion in a well-known mixtures of pure isoflavones solutions under ideal process 

conditions was studied by Chien et al. (2005). Vaidya et al. (2007) used kinetic modelling to 

describe the transformation of malonylgenistin and malonyldaidzin under alkaline conditions at high 

temperature. However, transformations of this type in real soybean products, and in particular in 

soaked soybeans at different temperatures, remain unstudied.  
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In this work, the effect of soaking temperature on water absorption and the transformation of 

genistin and daidzin into their aglycones was investigated.  The development of β-glucosidase 

activity in the soybean was also taken into account.  A kinetic approach was used and mathematical, 

empiric and mechanistic models were proposed in order to: 1) describe appropriately, maintaining 

statistical robustness, the numerical data obtained experimentally, 2) generate a group of parameters 

of chemical and statistical significance, and 3) formulate consistent relationships of these parameters 

with temperature. 

 

 

2. Materials and methods 

 

2.1 Soybean soaking 

Ten grams of soybeans were soaked in 50 ml distilled water at 30oC, 50oC, 60oC and 85oC for 

different times. The soybeans were first screened by hand to eliminate broken beans and those with 

cracked or damaged seed coats.  After soaking, the soybeans were filtered using a vacuum pump and 

the dried beans were then dehulled and ground using pestle and mortar.  Samples were kept at -30oC 

in the freezer for later analysis. 

 

2.2 Moisture content 

The moisture content was measured using the American Association of Cereal Chemistry method 

(AACC, 1995). One and a half grams of a representative sample were placed in pre-dried and 

covered dishes. The covered dishes with the samples were weighed and placed in the oven for 72 h 

at 103oC. Dishes were then placed in a desiccator immediately and weighed once they reached room 

temperature. The moisture content was expressed as follows: 

 

 ( ) 1 2

1

W -WM % = ×100
W

 
 
 

  (1) 

 

where, 

 

M = Moisture content (%) 

W1 = Weight before drying 

W2 = Weight after drying 
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2.3 Isoflavones extraction 

The isoflavones extraction was based on the method of Griffith and Collison (2001). One gram of 

soaked soybeans was mixed in a 100 ml Duran bottle with 8 ml of acetonitrile, 11.5 ml of distilled 

water and 500 µl of internal standard (200 µg/ml of fluorescein in methanol). The bottle was shaken 

for 1h at 150 rpm and the sample centrifuged for 5 min at 16,249 g.  The supernatant was filtered 

through a 0.45 mm PVDF filter and placed into a vial for HPLC analysis. 

 

2.4 HPLC isoflavones analysis 

The HPLC method for isoflavones analysis was adopted from the work of Hsieh et al. (2004). The 

chromatograph used had a dual pump Varian Pro Star connected to a Phenomenex Gemini 5 µm 

C18-110A column (250×4.6 mm) at 35oC, and a PDA detector at 277 nm. Solvent A was 0.1% 

acetic acid in distilled water, solvent B 0.1% acetic acid in acetonitrile, and the total flow rate was 

1.0 ml/min.  The gradient system was 92% of A initially, decreased to 90% in 2 min, 88% over 1 

min, 78% in 7 min, 77% in 1 min, 65% over 1 min, then to 50% during 1 min, maintained for 5 

min, and returned to 92% A in 2 min (the complete cycle lasts 20 min). 

 

For quantification, 25 µg/ml of daidzin, genistin, daidzein and genistein solutions were prepared as 

working standards.  100, 300, 500, 700, and 1000 µl of each standard were collected and mixed 

with 125 µl of internal standard (200 µg/ml of fluorescein in methanol). The isoflavones standard 

curves were prepared using Varian Software by plotting the concentration ratios between the 

isoflavone standard and internal standard concentration against the area ratio between the isoflavone 

standard and the internal standard areas. The coefficients of determination (R2) range from 0.93 to 

0.99. 

 

2.5 Crude enzyme extraction 

Three grams of ground sample were placed in a 100 ml Duran bottle and mixed with 15 ml of 

distilled water. The bottles were shaken at 150 rpm and 30oC for 1 h, and then samples were 

centrifuged at 12,500 g and 4oC for 10 minutes.  Supernatants were filtered through Whatman no. 1 

filter paper and kept at -30oC until used for the enzyme activity assay. 

 

2.6 β-Glucosidase activity assay 

β-glucosidase activity of soaked soybeans was estimated using McCue’s method (2003). 100 µl of 9 

mM p-nitrophenol-β-D-glucopyranoside were mixed with 800 µl of 200 mM sodium acetate buffer 

(pH 4.6) in a test tube. The tubes were incubated at 50oC in a water bath for 5 min before addition 
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of 100 µl of crude enzyme extract.  In the blank the extract was replaced with distilled water.  The 

tubes were then incubated for further 30 min. 1000 µl of 100 mM sodium carbonate was added to 

stop the reaction, and then the samples were centrifuged at 16,249 g for 1 min. The absorbance of p-

nitrophenol released was measured at 400 nm. The units of enzyme activity were defined (U/mg) as 

the number of p-nitrophenol µg released in one minute under controlled condition. 

 

2.7 Numerical methods 

Fitting procedures and parametric estimations calculated from the results were carried out by 

minimisation of the sum of quadratic differences between observed and model/equation predicted 

values, using the non linear least-squares (quasi-Newton) method provided by the macro solver of 

the Microsoft Excel spreadsheet. Statistica 6.0 software (StatSoft, Inc. 2001) was used to evaluate 

the significance of the estimated parameters by fitting the experimental values to the proposed 

mathematical models, and the consistency of these equations. 

 

 

3. Results and discussions 

 

3.1. Effects of soaking temperature on the evolution of moisture content 

 

The behaviour of the soybean water absorption showed a typical exponential increase with time at 

all assayed temperatures (see Figure 1).  To describe these profiles, the Peleg´s equation, an 

empirical equation commonly used for modelling water absorption in various grains and foods 

during soaking (Peleg, 1988; Sopade and Obekpa, 1992; Ghannam and Mckenna, 1997), was used. 

 

Peleg´s model describes the change of moisture content in a solid matrix by the following equation 

 

 0
1 2

= +
+ ⋅

tM M
k k t

 (2) 

 

All notation used in this work with units is detailed in Table 1.  As the limit of the equation 

approaches zero and infinite we obtain 

 

 00t
lim M M

→
=     and       0

2

1
ft

lim M M M
k→∞

= = +  (3) 
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It must be noted that the kinetic parameter k1 is related to the inverse of the initial rate of water 

absorption, while k2 is a constant that defines the equilibrium moisture content (Ghannam and 

Mckenna, 1997). 

 

Figure 1 (bottom) shows the experimental data and the fitted values according to this model at 

different temperatures. The statistical analyses of the relevant kinetic parameters are summarised in 

Table 2.  In general, the proposed models are statistically robust (Fisher´s F-test and p-values < 

0.05), and the parametric estimations were significant (Student´s t-test α = 0.05). The coefficients of 

linear correlation (r) between predicted and observed values were in all cases > 0.99. 

 

The relationship between the specific rate of absorption (1/k1) and temperature was investigated 

using the Arrhenius equation  

 

 
1

1 a
r

Eln ln A
k R T

 
= −  ⋅ 

 , and  a
w r

Eln k ln A
R T

= −
⋅

 (4) 

 

Table 3 shows the activation energy values and the correlation coefficient between observed and 

predicted data for the model.  The Arrhenius equation represents well the variation of the parameters 

with temperature.  This is in line with the result of Gowen et al. (2007), Sopade and Obekpa (1992) 

and Wang et al. (1996), which found that high soaking temperatures lead to complete hydration in a 

much shorter time. Toda et al. (2001) also reported that the rate of water absorption was faster 

during the first 5 h and then it gradually decreased.  This result suggested that soaking should be 

carried out only until the soybeans were easily ground with most of cells rupturing (Lo et al., 1968).  

High temperature (e.g. 40oC) may be desirable to reduce soaking time (Gowen et al., 2007; Pan and 

Tangratanavalee, 2003).  

 

The activation energy value (Ea) was 41.9 kJ/mol (38.6 kJ/mol using % db), very similar to the 

obtained value (37.2 kJ/mol using % db) by Gowen et al. (2007).  Results in Table 3 also 

demonstrate that final moisture content parameter (Mf) was temperature dependent.  Pan and 

Tangratanavalee (2003) suggested that this relation was caused by the differences in solid losses at 

different temperatures.  Mf is the asymptotic parameter and do not have rate of reaction units.  
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For this reason, an empirical model was used to explain the relationship between this parameter and 

temperature.  Since only four points are available (4 temperatures), a second order polynomic 

function was used (see graphs in Figure 1, right, and Table 3). 

 

3.2. Isoflavones transformations in soaked soybeans at different temperatures 

 

The transformation of daidzin and genistin into their aglycones (daidzein and genistein) at various 

temperatures was studied. The kinetics of these transformation were expressed (see Figures 2 and 3) 

in terms of the daidzin and genistin disappearance (D and G), and the daidzein and genistein 

formation (De and Ge).  In both cases this behaviour can be described by a parallel first-order 

reactions pathway with a kinetic constant of conversion, degradation and transfer to the aqueous 

phase. The proposed mechanism for the daidzin conversion during soaking is presented in Figure 4.  

 

As shown in figure 2, the production of daidzein was not equimolar to the disappearance of daidzin. 

The pathway suggests that the unbalance in daidzin concentration is caused by daidzin-daidzein 

degradation into unknown products (DD and DeD) and by their extraction to the aqueous phase 

(DEx and DeEx) running in parallel to the daidzein formation.  The transformation mechanism 

should be modified in order to introduce a non-zero final asymptote (see appendix).  

 

The corresponding integrated equations are as follows 

 

 ( ) ( )
0

c dd dexk k k t
f fD D D e D− + + ⋅= − ⋅ +  (5) 

 

 ( ) ( )
0

ded deex ck k k t
f fDe De De e De− + − ⋅= − ⋅ +  (6) 

 

If we assume that the relationship of these kinetic constants with temperature is similar, then 

 

 kd=kc+kdd+kdex  

 

and 

 

 kde= kded+kdeex−kc 
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where kd is the rate of disappearance of daidzin and kde the specific rate of daidzein formation.  A 

similar approach has been used by Vaidya et al. (2007) to describe the transformations of 

malonylglucosides into β-glucosides in an ideal reaction systems. According to this 

 

 ( )0
dk t

f fD D D e D− ⋅= − ⋅ +  (7) 

 

 ( )0
dek t

f fDe De De e De− ⋅= − ⋅ +  (8) 

 

Similarly, for the transformation of genistin and genistein 

 

 ( )0
gk t

f fG G G e G− ⋅= − ⋅ +  (9) 

 

 ( )0
gek t

f fGe Ge Ge e Ge− ⋅= − ⋅ +  (10) 

 

Figures 2 and 3 (top) and Tables 4 and 5 illustrate the results of the proposed approach.  Graphs in 

figure 2 and 3 demonstrate that during soaking, the concentration of daidzin-genistin decrease 

accordingly to the daidzein-genistein formation. These results were supported by Wang et al. (1990) 

who found that daidzein and genistein concentrations greatly increased when the soybeans were 

presoaked in water.  Wang and Murphy (1996) also observed that daidzin and genistin 

concentrations dropped according to the genistein increment in soymilk and tofu processing.  Zhu et 

al. (2005) found similar results for two soybean varieties during soaking. 

 

In general, the proposed models were statistically consistent in all cases. However, two parameters at 

85ºC (kde and kge) were not statistically significant (α = 0.05). The correlation between the kinetic 

coefficients and temperature was established using the Arrhenius equation (kd, kde, kg and kge). The 

correlation between the final isoflavones concentrations (Df, Def, Gf and Gef) and temperature was 

modelled with a second order polynomic equation. These results are depicted in Figures 2 and 3 

(bottom) and in Tables 6 and 7. 

 

These figures show that temperature enhances diadzin-genistin disappearance and diadzein-genistein 

formation.  Very similar conclusions were obtained by Carrao-Panizzi et al. (2004).  The 

representation of the daidzin-genistin final concentrations (Df and Gf) vs. temperature have a 
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minimum value around 50-60ºC. In contrast, the relationship between the daidzein-genistein final 

concentrations (Def and Gef) with temperatures shows a maximum value at 50ºC. 

 

 

3.3. β-glucosidase acitivity in soaked soybeans 

 

In Figure 5 the evolution of the β-glucosidase activity during soaking is shown at different 

temperatures.  The kinetic trends of this enzymatic activity evidence that hydrolysis of daidzin and 

genistin during soaking contributed to an increase in the contet of their aglycones (Matsuura and 

Obata, 1993).  At 50oC and 60oC the maximum activity is observed after 1 h.  However, it takes up 

to 6 h to reach similar levels at 30oC, and soaking at 85oC does not develop this activity.  Matsuura 

et al. (1989) and Matsura and Obata (1993) reported inactivation of β-glucosidase at 60oC with an 

optimum temperature of 45oC.  Losses of activity could be due to enzyme inactivation, elution into 

soaking water or combination of both.  Toda et al. (2001) also observed that soaking increased the 

β-glucosidase and isoflavones lost in the aqueous phase. 

 

 

4. Conclusions 

 

The proposed mathematical models provide a statistically consistent description of the evolution of 

the moisture content and the transformations of isoflavones in soybeans during soaking.  These 

equations can also be used to predict the amount of water absorbed and the dynamics of isoflavones 

conversions at different temperatures.  These mathematical tools could be used to establish a 

processing strategy that could help maximising the functionality of soybean processed products. 
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Appendix. Reaction mechanism proposed. 

 

According to the pathway in figure 4, a mass balance would lead to the differential equations that 

represent the changes of daidzin with time 

 

 1)  dexkD DEx→  :   ( )
1

dex
dD k D DEx
dt

= − ⋅ −  

 

 2)  ddkD DD→  :   ( )
2

dd
dD k D DD
dt

= − ⋅ −  

 

 3)  ckD De→  :   ( )
3

c
dD k D De
dt

= − ⋅ −  

 

Though it is not possible to know with accuracy the DEx, DD and De concentrations, it is assumed 

that they are approximately equal to Df or final concentration of daidzin (Df = De = DD = DEx). 

This parameter defines the non-zero final asymptote obtained experimentally (figure 2). The total 

mass balance of the three parallel mechanisms gives 

 

  ( ) ( ) ( )
1 2 3

dex f dd f c f
dD dD dD dD k D D k D D k D D
dt dt dt dt

= + + = − ⋅ − − ⋅ − − ⋅ −  

 

 ( ) ( )c dd dex f
dD k k k D D
dt

= − + + ⋅ −  (A1) 

 

Identical postulates can be used for the daidzein (De) balance to obtain  

 

 ( ) ( )ded deex c f
dDe k k k De De
dt

= − + − ⋅ −  (A2) 

 

Separating variables and integrating (A1) between time 0 and t gives 

 

 ( )
0 0

= − + +
−∫ ∫

D t

c dd dex
fD

dD k k k dt
D D

   ⇒    ( ) ( )
0

D

f c dd dexD
ln D D k k k t− = − + + ⋅  
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 ( )
0

f
c dd dex

f

D D
exp k k k t

D D
−

= − + + ⋅  −
  ⇒    ( ) ( )

0
c dd dexk k k t

f fD D D e D− + + ⋅= − ⋅ +   (A3) 

 

Similarly, for the case of the diadzein and using (A2) we would obtain 

 

 ( ) ( )
0

ded deex ck k k t
f fDe De De e De− + − ⋅= − ⋅ +  (A4) 

 

The limits of the function as time approaches zero and infinite are 

 

 00→
=

t
lim D D   ;  00→

=
t
lim De De   ;  

→∞
= ft

lim D D   and  
→∞

= ft
lim De De  

 

A similar mechanism could be drawn for the genistin conversion (not shown). 
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Figure captions 

 

Figure 1: Left: Kinetics of the moisture content of soaked soybeans at different temperatures (: 30 

ºC; : 50 ºC; : 60 ºC; : 85 ºC) fitted by the Peleg’s equation (2). Right: Relationships between 

the kinetic parameters in equations (2) with temperature. The error bars are the confidence intervals 

(α = 0.05; n = 2). 

 

Figure 2: Daidzin (D) and Daidzein (De) concentrations in soaked soybeans vs. time at different 

temperatures (: 30 ºC; : 50 ºC; : 60 ºC; : 85 ºC).  The points represent experimental data and 

the lines the predicted values according to the models shown in equations (7) and (8).  At the bottom 

the relationship between the kinetic parameters and temperature is shown. The error bars are the 

confidence intervals (α = 0.05; n = 2). 

 

Figure 3: Genistin (G) and Genistein (Ge) concentrations in soaked soybeans vs. time at different 

temperatures (: 30 ºC; : 50 ºC; : 60 ºC; : 85 ºC).  The points represent experimental data and 

the lines the values predicted by the models shown in equations (9) and (10).  The relationship 

between the kinetic parameters and temperature is shown at the bottom. The error bars are the 

confidence intervals (α = 0.05; n = 2). 

 

Figure 4: Reaction mechanism proposed for the transformation between daidzin and daidzein in 

soaked soybeans.  kc: is the kinetic constant (h-1) of conversion of Daidzin in Daidzein; kdd and kded 

are degradation kinetic constants of daidzin and daidzein respectively (h-1); and kdex and kdeex are 

kinetic constants of the transfer of daidzin and daidzein into the aqueous phase (h-1). The error bars 

are the confidence intervals (α = 0.05; n = 2). 

 

Figure 5: β-glucosidase activity in soaked soybeans at different temperatures (: 30 ºC; : 50 ºC; 

: 60 ºC; : 85 ºC). The error bars are the confidence intervals (α = 0.05; n = 2). 
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Table captions 

 

Table 1: Notation used with units. 

 

Table 2: Parametric estimations corresponding to Peleg’s kinetic model (2) applied to the moisture 

content of soaked soybeans at different temperatures. CI values are confidence intervals (α = 0.05), 

F is the F-Fisher test (df1 = degrees of freedom of the model; df2 = degrees of freedom of the error) 

and r is the correlation coefficient between observed and predicted data. 

 

Table 3: Effect of temperature on the kinetic parameters of the Peleg model (2).  The Arrhenius 

equation in linear form (4), and a second order polynomic function (Mf) have been used to fit this 

parameter.  r is the correlation coefficient between observed and predicted data. 

 

Table 4: Parametric estimations corresponding to the kinetic model (7) and (8) applied to the 

disappearance of daidzin (D) and formation of daidzein (De) in soaked soybeans at different 

temperatures. CI values are confidence intervals (α = 0.05), F is the F-Fisher test (df1 = degrees of 

freedom of the model; df2 = degrees of freedom of the error), and r is the correlation coefficient 

between observed and predicted data. NS: non significant. 

 

Table 5: Parametric estimations corresponding to the kinetic model (9) and (10), applied to the 

disappearance of genistin (G) and formation of genistein (Ge) isoflavones of soaked soybeans at 

different temperatures.  CI values are confidence intervals (α = 0.05), F is the F-Fisher test (df1 = 

degrees of freedom of the model; df2 = degrees of freedom of the error) and r is the correlation 

coefficient between observed and predicted data. NS: non significant. 

 

Table 6: Effect of the temperature on the kinetic parameters obtained with the models (7) and (8) 

and summarized in Table 4.  The Arrhenius equation in linear form (with constants kd and kde) and a 

second order polynomic function (Df and Def) were used. r is the correlation coefficient between 

observed and predicted data. 

 

Table 7: Effect of temperature on the kinetic parameters obtained with models (9) and (10) and 

summarized in Table 6. The Arrhenius equation in linear form (with constants kg and kge) and a 

second order polynomic function (Gf and Gef) were used.  r is the correlation coefficient between 

observed and predicted data. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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TABLES 
 
 
Table 1. 
 
   

Peleg´s equation (2)     
M: Moisture content, % wet basis (% wb). 
M0: Initial moisture content, % wb. 
t : Time, h. 
k1 : Peleg’s constant 1, h/(% wb). 
k2 : Peleg’s constant 2. % wb-1. 
Mf: Final or asymptotic moisture content, % wb.     
Arrhenius model (4):     
Ea: Activation energy of the reaction, J/mol. 
R: Universal gas constant, 8.3145 J mol-1 K-1. 
T: Absolute temperature, K. 
A0: Pre-exponential factor or frequency constant, h-1.     
Modified first order kinetic model for daidzin and daidzein profiles (7 and 8):     
D, De: Daidzin (D) and daidzein (De) concentrations, mg/g (wet basis, wb). 
D0, De0: Initial daidzin (D0) and daidzein (De0) concentrations, mg/g (wb). 
Df, Def: Final daidzin (Df) and daidzein (Def) concentrations, mg/g (wb). 
kd, kde: Specific rate of daidzin disappearance (kd) and specific rate of daidzein formation (kde), h-1. 
t : Time, h.     
Modified first order kinetic model for genistin and genistein profiles (9 and 10):     
G, Ge: Genistin (G) and genistein (Ge) concentrations, mg/g (wb). 
G0, Ge0: Initial genistin (G0) and genistein (Ge0) concentrations, mg/g (wb). 
Gf, Gef: Final genistin (Gf) and genistein (Gef) concentrations, mg/g (wb). 
kg, kge: Specific rates of genisitin disappearance (kg) and specific rate of genistein formation (kge), h-1. 
t : Time, h.   
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Table 2 
 
        

T (ºC) k1 ± CI k2 ± CI Mf ± CI F (df1=3, df2=4; α=0.05) p-value r               
30 0.0296 ± 0.0120 0.0189 ± 0.0025 64.12 ± 6.86 1393.44 0.0000 0.997 
50 0.0179 ± 0.0098 0.0205 ± 0.0029 62.12 ± 6.21 1155.66 0.0000 0.996 
60 0.0052 ± 0.0018 0.0204 ± 0.0012 60.88 ± 1.96 5299.06 0.0000 0.999 
85 0.0027 ± 0.0008 0.0199 ± 0.0011 61.62 ± 1.49 6546.68 0.0000 0.999        
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Table 3 
 
    

Peleg´s model         
Mathematical relationships Ea (kJ/mol) r       

( )11 20 03 50348= −ln / k . . / T  41.85 0.978 
20 002 0 287 70 936−= ⋅ ⋅ +fM . T . T .  - 0.990 
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Table 4 
 
       

T (ºC) kd ± CI Df ± CI F (df1=3, df2=4; α=0.05) p-value r             
30 0.665 ± 0.233 0.215 ± 0.072 315.27 0.0000 0.996 
50 1.367 ± 0.812 0.180 ± 0.087 241.39 0.0000 0.992 
60 9.693 ± 9.217 0.174 ± 0.106 60.84 0.0009 0.974 
85 18.842 ± 18.102 0.186 ± 0.120 42.72 0.0017 0.964             

T (ºC) kde ± CI Def ± CI F (df1=3, df2=4; α=0.05) p-value r             
30 0.404 ± 0.180 0.175 ± 0.019 856.40 0.0000 0.994 
50 0.418 ± 0.291 0.288 ± 0.052 274.62 0.0000 0.986 
60 0.525 ± 0.399 0.232 ± 0.038 263.03 0.0000 0.981 
85 138.521 (NS) 0.060 ± 0.059 83.67 0.0005 0.418       
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Table 5 
 
       

T (ºC) kg ± CI Gf ± CI F (df1=3, df2=4; α=0.05) p-value r             
30 0.713 ± 0.143 0.377 ± 0.031 4195.24 0.0000 0.999 
50 1.727 ± 0.998 0.171 ± 0.071 302.04 0.0000 0.994 
60 14.102 ± 9.145 0.204 ± 0.070 131.47 0.0002 0.986 
85 20.107 ± 10.573 0.261 ± 0.046 322.76 0.0000 0.993             

T (ºC) kge ± CI Gef ± CI F (df1=3, df2=4; α=0.05) p-value r             
30 0.631 ± 0.379 0.127 ± 0.014 573.71 0.0000 0.988 
50 0.349 ± 0.339 0.283 ± 0.076 168.99 0.0001 0.976 
60 2.510 ± 1.915 0.193 ± 0.012 928.62 0.0000 0.994 
85 6.000 (NS)  0.049 ± 0.017 49.94 0.0013 0.303       
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Table 6 
 
    

Daidzin dissapearance         
Mathematical relationships Ea (kJ/mol) r       

22 74 7043 2dln k . . / T= −  58.56 0.939 
5 23 10 0 0045 0 319− − ⋅= ⋅ ⋅ +fD T . T .  - 0.999 

      
Daidzein formation         
Mathematical relationships Ea (kJ/mol) r       

35 07 11300 2deln k . . / T= −  93.95 0.826 
4 22 10 0 019 0 230− += − ⋅ ⋅ ⋅ −fDe T . T .  - 0.983 

   
 



Wardhani et al. 28 

 
Table 7 
 
    

Genistin dissapearance         
Mathematical relationships Ea (kJ/mol) r       

22 93 7043 2gln k . . / T= −  58.56 0.924 
4 22 10 0 023 0 900− − ⋅= ⋅ ⋅ +fG T . T .  - 0.960 

      
Genistein formation         
Mathematical relationships Ea (kJ/mol) r       

15 54 50001geln k . . / T= −  41.57 0.814 
4 22 10 0 021 0 317− ⋅ += − ⋅ ⋅ −efG T . T .  - 0.937 

   
 
 
 


