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Abstract - Selection for reduced stalk tunnel length by the Mediterranean corn borer (MCB, 12 

Sesamia nonagrioides Lef.), while maintaining yield under infestation, has already been evaluated. 13 

Significant reductions for tunnel length were reported, but yield showed a non significant 14 

tendency to decrease with selection that could be due to increased inbreeding or significant 15 

genetic correlation between yield and resistance. Simultaneously, the presence of major QTLs for 16 

resistance in chromosome 4 has been suggested. In the present study, we investigated the genetic 17 

relationship between yield and stalk tunneling resistance by conducting one generation of 18 

selection each for yield alone, resistance alone, and yield and resistance combined in a broad-19 

based population. In addition, we tested the effectiveness of marker assisted selection at two 20 

markers on chromosome 4 for reducing tunnels by MCB. Evaluations were made for two years at 21 

two locations under MCB infestation. Unfavorable genetic correlation between stalk tunnel 22 

length and yield has been confirmed and could prevent detection of major QTLs for tunnel 23 

length by using selection mapping. Markers phi076 and umc1329 could be linked to QTLs for 24 

plant height, but are not useful markers for reducing tunnel length and hence damage caused by 25 

borers. Finally, results advise against selection for reduced tunnel length by MCB or any index 26 

involving yield and tunnel length. 27 
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 30 

Introduction 31 

 32 

Host plant resistance has been presented as one of the main strategies for arthropod pest 33 

management in organic farming which is one of the fastest growing sectors of agriculture due to 34 

the increasing demand for organically produced food and feed (Zehnder et al. 2007). Varieties 35 

with partial pest resistance may not be cost effective in conventional farms where pesticides and 36 

GMO organisms are currently used, but are advisable to maintain low-level pest densities that 37 

support natural enemy populations. In the Mediterranean area the Mediterranean corn borer 38 

(MCB, Sesamia nonagrioides Lef.), also named pink stem borer or West African pink borer, is the 39 

main pest threat for maize cultivation and non-Bt resistant cultivars appear as one promising 40 

control method for organic farming. Our group developed a maize synthetic (EPS7) intercrossing 41 

four local Spanish landraces which showed resistance to stalk tunneling by the Mediterranean 42 

corn borer (Ordás 1991; Malvar 1993; Vales et al. 2001) and a selection program was initiated to 43 

improve resistance to MCB, while maintaining high yield during selection, using the breeding 44 

population EPS12 derived from EPS7 (Butrón et al 2005). The breeding scheme used has been 45 

presented in detail by Sandoya et al. (2008). Following three cycles of S1 recurrent selection, 46 

molecular changes during selection were monitored (Butrón et al. 2005) and direct and indirect 47 

responses to selection were determined (Sandoya et al. 2008; 2010). In the evaluations, crop yield 48 

showed a non significant tendency to decrease with selection, while stalk tunneling significantly 49 

decreased (-1.8 cm cycle-1), as well as days to silking and plant height.  Accompanying the 50 

agronomic changes, allele frequencies for two SSR molecular markers located on chromosome 4 51 

showed directional changes due to selection suggesting the presence of QTLs for resistance to 52 

tunneling by MCB in this region.  53 
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Sandoya et al. (2009) also concluded that selection could continue for more cycles 54 

because no reduction of additive variance for tunnel length was observed after three cycles of 55 

recurrent selection. However, effects on yield would be unpredictable because no information on 56 

additive correlation between yield and the length of tunnels made by MCB could be estimated as 57 

additive variance for yield did not significantly differ from zero. The non significant tendency of 58 

yield to decrease with selection could be due to increased inbreeding or to significant genetic 59 

correlation between yield and tunnel length. Inbreeding could be avoided using alternative 60 

breeding schemes in which the number of families selected is increased. High genetic correlation 61 

between yield and tunnel length by MCB, however, would misadvise efforts to increase resistance 62 

to MCB attack except when performing marker-assisted selection with markers linked to 63 

important QTLs for resistance and unlinked to QTLs for yield. In order to study the genetic 64 

relationship between yield and resistance, we compared three alternative breeding methods: (1) 65 

Selection for reduced tunnel length (L), (2) Selection for increased yield under artificial infestation 66 

(Y), and, (3) Selection for reduced tunnel length while maintaining yield (T), as done during the 67 

previous four cycles of selection. Simultaneous to the phenotypic selection for improved 68 

resistance to MCB, one cycle of divergent marker-assisted selection was carried out in EPS12 69 

using those markers for which allele frequency changes due to selection were significant.  The 70 

goal was to confirm if those markers were indeed linked to major QTLs for tunnel length and 71 

unlinked to QTLs for yield.  72 

In the present study, we investigated the genetic relationship between yield and stalk 73 

tunneling resistance by conducting one generation of selection each for yield alone, resistance 74 

alone, and yield and resistance combined in a broad-based population. In addition, we tested the 75 

effectiveness of marker assisted selection at two markers on chromosome 4 for reducing tunnel 76 

length by MCB. 77 

78 
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Materials and methods 79 

 80 

EPS12(T)C2, EPS12(T)C3, and EPS12(T)C4 were derived from EPS12 through S1 recurrent 81 

selection. The 10% families with the least tunnel length and higher yield than the average yield of 82 

families evaluated were selected (Sandoya et al. 2008). Synthetics EPS12(L)C1, EPS12(Y)C1, and 83 

EPS12(T)C5 were obtained following one cycle of S1 recurrent selection in EPS12(T)C4 for 84 

reduced tunnel length,  increased yield under infestation or  simultaneous selection for both traits, 85 

respectively. In 2005, S1 families were obtained from EPS12(T)C4 and, in 2006, 90 families were 86 

evaluated in a simple lattice 9 x 10 under infestation with MCB. In this selection trial, 87 

heritabilities and genotypic and phenotypic correlation coefficients were computed following 88 

Holland (2003, 2006). The estimated heritabilities on a family mean basis (± standard error) for 89 

yield and tunnel length were 0.78 (± 0.05) and 0.32 (± 0.15), respectively. The genotypic and 90 

phenotypic correlation coefficients (± standard error) between both traits were 0.41 (± 0.24) and 91 

0.22 (± 0.08), respectively. In 2007, ten families with the highest yield or shortest tunnel length 92 

were recombined to constitute EPS12(Y)C1Syn 1 and EPS12(L)C1Syn1, respectively. Seed of 93 

each selected progeny was sown in a 15-plant row. In each row, five plants were used as males 94 

and another five plants as females. Bulked pollen from the 50 male plants was used to pollinate 95 

the five female plants in each row. The resulting ears contributed equally to the bulk of 1,000 96 

seeds named EPS12(Y)C1Syn1 and EPS12(L)C1Syn1. Similarly, EPS12(T)C5Syn1 was the result 97 

of recombining 10 families with the shortest tunnel length and higher yield than the average yield 98 

of families. In 2008, a second recombination was made within each population 99 

[EPS12(Y)C1Syn1, EPS12(L)C1Syn1, and EPS12(T)C5Syn1] in order to reach linkage 100 

equilibrium: 300 seeds were planted from each population, thinned to 150 plants, and crosses 101 

were made using each plant only once as male or female. At harvest, at least 50 ears were 102 

obtained from each population and an equilibrated bulk of 1,000 seeds was collected establishing 103 
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the synthetics EPS12(Y)C1, EPS12(L)C1, and EPS12(T)C5, respectively. In the same year, 104 

EPS12, EPS12(T)C2, EPS12(T)C3, and EPS12(T)C4 were multiplied to obtain homogeneous 105 

seed for evaluations.  106 

In a previous work, marker phi076 segregated for three alleles, arbitrarily coded as 1, 2, 107 

and 3; and umc1239 segregated for two alleles, coded 1 and 2; and frequencies of alleles 1 and 3 at 108 

marker phi076 and alleles 1 and 2 at marker umc1329 showed directional changes due to selection 109 

(Butrón et al., 2005). In order to check whether markers phi076 and/or umc1329 could be useful 110 

markers for marker-assisted selection toward reducing tunnel length by MCB, five individuals 111 

carrying a determined combination of alleles at both markers were selected in EPS12 and 112 

intercrossed to constitute populations EPS12-1111, EPS12-1112, EPS12-1122, EPS12-1311, 113 

EPS12-1312, EPS12-1322, EPS12-3311, EPS12-3312, and EPS12-3322 (first two digits after 114 

dash refer to phi076 alleles and the other two to umc1329 alleles, presence of both alleles at a 115 

determined maker does not mean all individuals are heterozygote but each allele is present at a 116 

frequency equal to 0.5). The genotypes at other loci were not controlled because marker-assisted 117 

selection would only be effective if these markers are linked to major QTLs and genetic 118 

background should not obscure effects of major QTLs.       119 

Genotypes were evaluated using triple-lattice designs at Pontevedra (42º24’ N, 8º38’ W, 120 

20 m above sea level), and Zaragoza (41º 44’ N, 0º 47’ W, 230 m above sea level) in Spain in 2009 121 

and 2010. In Pontevedra, the experiment was hand-planted and consisted of two rows spaced 122 

0.80 m. apart with 29 plants within each row spaced 0.21 m. apart. Plots were overplanted and 123 

thinned to obtain a final population density of about 60,000 plants ha-1. In Zaragoza, plots were 124 

machine-planted and consisted of two rows spaced 0.70 m apart with 25 plants within each row 125 

spaced 0.20 m apart. Plots were overplanted and thinned to a final population density of 70,000 126 

plants ha-1.  At flowering, ten adjacent and competitive (equally spaced apart from adjacent 127 

plants)plants per plot were infested by placing egg masses of about 40-50 eggs between the upper 128 
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ear and the stem. The MCB rearing method used has been described by Eizaguirre & Albajes 129 

(1992). 130 

Observations were  recorded for days to pollen shed (days from planting when  50% of 131 

plants had  shed pollen), days to silking (days from planting to when 50% of plants  had silks 132 

emerged),  plant height (recorded in Pontevedra on ten competitive plants as the distance from 133 

the ground to the top of the plant), stem height (recorded in Zaragoza on ten competitive plants 134 

as the distance from the ground to the flag leaf), stem lodging (percentage of plants in the plot 135 

with the stem broken below the main ear), root lodging (percentage of plants in the plot leaning 136 

more than 45º  to the vertical), kernel moisture (g of water in 100g of kernels), yield (Mg ha-1 of 137 

kernels at 140 g H2O kg-1), tunnel length (total length in cm per plant of stem tunnels made by 138 

borers), and visual ratings for kernel, shank, and cob damages (on a 9 point subjective scale 139 

determined as follows: 1  > 90% damage, 2 = 81 to 90% damage, 3 = 71 to 80% damage, 4 = 61 140 

to 70% damage, 5 = 41 to 60% damage, 6 = 31 to 40% damage, 7 = 21 to 30% damage, 8 = 1 to 141 

20% damage, and 9 = no damage). 142 

Combined analysis of variance was done considering genotypes as fixed effects and 143 

environments (each location-year combination was considered an environment) as random (SAS 144 

2007). The relationship between phi076 and umc1329 markers and agronomic traits was computed 145 

considering environments as random effects and markers as fixed effects. Mean comparisons 146 

were made using Fisher’s protected LSD. 147 

 148 

Results and discussion 149 

 150 

The combined analyses of variance showed significant differences among genotypes for days to 151 

anthesis and  silking, stem and root lodging, kernel moisture, plant and stem heights, yield and 152 
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tunnel length (Table 1).  In our experiments, significant differences among EPS12, EPS12(T)C2, 153 

EPS12(T)C3, EPS12(T)C4, and EPS12(T)C5 were not detected for tunnel length (Table 2), but 154 

there was a tendency for decreasing tunnel length with selection, agreeing with results obtained 155 

previously (Sandoya et al. 2008, 2009).  The non-significant tendency to reduce yield during the 156 

first three cycles of selection became significant in the following two cycles with plant height 157 

changes also becoming undesirable. These undesirable changes could be the result of inbreeding 158 

depression due to genetic drift or consequence of negative correlation between resistance to stem 159 

tunneling and yield.  Comparisons among EPS12(L)C1, EPS12(Y)C1, and EPS12(T)C5 160 

developed from EPS12(T)C4 using three alternative breeding criteria [tunnel length, yield or both 161 

traits (applying more selection pressure on tunnel length)] confirmed that resistance to stem 162 

tunneling and yield could be genetically related. As new genetic variability has not been 163 

introduced, changes due to increased inbreeding would not be recovered, but original yield and 164 

plant height were recovered after one cycle of selection made exclusively for yield, suggesting that 165 

inbreeding increase due to genetic drift was not responsible for yield and plant height reductions. 166 

In addition, one cycle of selection made exclusively for yield tended to increase tunnel length, 167 

meanwhile one cycle of selection made exclusively for tunnel length reduced tunnel length, 168 

resulting in EPS12(L)C1 that was the only cycle significantly different from EPS12 for tunnel 169 

length. These results give enough evidence for a strong and negative genetic correlation between 170 

yield and resistance to stem tunneling, although the estimated genetic correlation coefficient 171 

between yield and tunnel length (0.41 ± 0.24) was not significantly different from 0. Previously, 172 

Ordás et al (2010) co-localized QTLs of small effect for increased yield and stalk tunneling by 173 

MCB in a population of recombinant inbred lines derived from the cross EP39 x EP42, although 174 

they did not detect significant genetic correlation between both traits. Genetic linkage between 175 

yield and stalk tunneling by another stem borer, Ostrinia nubiblalis Hübner (European corn borer), 176 

seems to be a common phenomenon (Schulz et al. 1997; Kreps et al. 1998) and this negative 177 

association has made that selection for reduced tunnel length resulted in significant yield 178 
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reductions (Klenke et al. 1986). In addition, minor improvement for resistance to European corn 179 

borer has achieved when selection is done simultaneously for agronomic performance and 180 

resistance to borers (Bohn et al. 2003).   181 

 One cycle of selection for yield significantly increased productivity of EPS12(T)C4, while 182 

one cycle of selection for reduced tunnel length did not significantly change EPS12(T)C4 183 

resistance as expected based on estimated heritabilities for yield (0.78 ± 0.05) and tunnel length 184 

(0.31 ± 0.15). 185 

Marker–assisted selection has proved an useful tool for  improving resistance to the 186 

European corn borer (Flint-Garcia et al. 2003) using the bi-parental mapping approach. The 187 

QTL mapping approach (selection mapping) used by Butrón et al. (2005) identified alleles whose 188 

frequencies significantly changed with selection and Wisser et al. (2008) has suggested that this 189 

kind of mapping identifies the loci responsible for the strongest selection response and allow the 190 

discovery of superior alleles at these loci. However, as genotypic classes for markers phi076 and 191 

umc1329 did not significantly differ for tunnel length (Table 3), markers phi076 and umc1329 were 192 

totally discarded as useful markers for marker-assisted selection for improving resistance to 193 

tunneling by MCB. The homozygote ‘33’ for phi076 was significantly taller than the homozygote 194 

‘11’ [Butrón et al. (2005) reported that allele ‘1’ was fixed in EPS12(T)C3] and the homozygote 195 

‘22’ for umc1329 was significantly (at 0.10 probability level) less productive and tended to be 196 

smaller than ‘11’ [Butrón et al. (2005) reported that allele ‘2’ was fixed in EPS12(T)C3]. Therefore 197 

QTLs linked to umc1329 could contribute to the yield reduction trend observed during selection 198 

and markers phi076 and umc1329 could be used to partially explain the indirect responses in traits 199 

such as stem height that was significantly reduced within the first three cycles of the recurrent 200 

selection program. These results agree with the fact that previously reported additive genetic 201 

correlation between plant height and tunnel length depends on the environment, Sandoya et al. 202 

(2009) reported a correlation coefficient close to zero in one year and higher than 0.7 in another 203 
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year. Therefore, markers potentially linked to plant height and/or stem height such as phi076 and 204 

umc1329 could have some effect on tunnel length under determined conditions and become 205 

irrelevant for resistance to stem tunneling under other conditions.  206 

In conclusion, unfavorable genetic correlation between stalk tunnel length by MCB and 207 

yield has been confirmed and could prevent detection of major QTLs for resistance to stalk 208 

tunneling when selection mapping has performed in a selection program using both traits as 209 

selection criteria. Markers phi076 and umc1329 could be linked to QTLs for plant height, but are 210 

not useful markers for reducing tunnel length and hence damage caused by borers. Finally, results 211 

advise against selection for reduced tunnel length by MCB or any index involving yield and 212 

tunnel length. Selection for increased yield under infestation with MCB is recommended to 213 

increase maize tolerance to MCB attack. In the future, phenotypic selection could be combined 214 

with marker-assisted selection for reduced tunnel length, once makers linked to important QTLs 215 

for resistance and unlinked to QTLs for yield are identified. 216 
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Table 1. Mean squares (MS) and degrees of freedom (DF) of the combined analysis of variance of maize breeding varieties evaluated in four 274 

environments. 275 

Source 

of 

variation† 

Days to 

silking 

Days to 

pollen 

shedding

Stem 

lodging

Root 

lodging

Kernel 

humidity

Plant 

height 

Stem 

height Yield 

Ear 

damage

Shank 

damage

Cob 

damage

Tunnel 

length 

G MS 31.36** 39.78** 126** 112** 27.85** 391** 309** 4.24** 0.33 0.48 0.86 75** 

DF 24 24 24 24 24 24 24 24 24 24 24 24 

GE MS 3.13** 2.40** 60** 41** 6.97** 71* 24 0.40** 0.22* 0.49* 0.50** 49 

DF 44 64 64 64 64 20 20 64 44 44 20 44 

Error MS 0.48 0.36 27 24 0.30 35 21 0.08 0.14 0.30 0.19 36 

DF 134 170 185 158 212 91 79 182 152 152 106 134 

† G refers to genotype and GE to genotype x environment 276 

*. ** Significant at 0.05 and 0.01 probability level, respectively 277 

 278 

 279 
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Table 2. Mean comparison among breeding populations for agronomic traits evaluated at two locations for two years.  280 

  

Days to 

silking 

Days to 

pollen 

shedding 

 

Stem 

lodging 

 

Root  

lodging 

 

Kernel 

humidity 

 

Plant 

height  

 

Stem 

height 

 

 

Yield 

 

Tunnel 

length† 

 

Genotype 

 

Days 

 

Days 

 

% 

 

% 

 

% 

 

cm 

 

cm 

 

Mg ha-1 

 

cm 

Phenotypic selection          

EPS12 65 63 28 24 20 234 135 6.1 33.1 

EPS12(T)C2 68 64 22 14 22 234 127 5.4 29.7 

EPS12(T)C3 67 64 21 16 20 225 121 5.2 30.7 

EPS12(T)C4 64 62 19 19 19 217 118 4.8 27.0 

EPS12(T)C5 64 62 16 16 20 196 105 3.5 26.4 

EPS12(L)C1 64 62 16 11 19 209 112 4.4 23.2 

EPS12(Y)C1 65 63 27 10 19 230 132 5.6 31.9 

Marker-assisted selection          

EPS12-1111 64 64 30 20 21 216 113 5.9 31.1 
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EPS12-1112 65 63 32 17 20 217 126 5.5 34.2 

EPS12-1122 64 63 33 20 20 217 126 5.9 36.1 

EPS12-1311‡ 67 65 32 20 22 241 135 6.4 31.2 

EPS12-1312 66 64 28 18 19 226 122 5.9 40.0 

EPS12-1322 65 63 27 25 21 226 129 5.2 38.2 

EPS12-3311 68 66 24 25 22 250 135 5.6 34.7 

EPS12-3312 65 63 21 26 21 238 130 5.8 36.0 

EPS12-3322 66 64 29 15 19 246 132 5.1 32.3 

LSD (0.05) 3 2 12 10 2 19 9 1.0 9.7 

 281 

† Total length in cm of stem tunnels made by borers. 282 

‡ Presence of both alleles at a determined maker does not mean all individuals are heterozygote but each allele is present at a frequency equal to 0.5.283 
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Table 3. Differences in agronomic traits among genotypic classes for SSR markers phi076 and 284 

umc1329†. 285 

   

Tunnel 

length 

 

 

Yield 

 

Days to 

silking 

Days to  

pollen  

shedding

 

Kernel 

humidity 

 

Plant 

height  

 

Stem 

height 

Marker Allele‡ cm Mg ha-1 Days Days % cm cm 

phi076 33 34.1 a 5.4 a 66 a 64 a 20 a 245 a 133 a 

 13 36.5 a 5.8 a 66 a 64 a 21 a 231 b 129 ab 

 11 33.8 a 5.7 a 64 b 63 b 20 a 216 c 122 b 

         

umc1329 11 32.3 a 6.0 a§ 66 a 65 a 22 a 236 a 128 a 

 12 36.8 a 5.7 ab 65 a 63 b 20 b 225 a 125 a 

 22 35.5 a 5.4 b 65 a 63 b 20 b 229 a 129 a 

† For each marker and trait, means followed by the same letter did not differ at 0.05 probability 286 

level  287 

‡ Butrón et al. (2005) reported that frequency of allele ‘1’ increased at marker phi076 and 288 

decreased at marker umc1329 during the first three cycles of selection for reduced tunnel length, 289 

while maintaining yield. Presence of both alleles at a determined maker does not mean all 290 

individuals are heterozygote but each allele is present at a frequency equal to 0.5 291 

§  Differences were significant at 0.10 probability level. 292 


