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ABSTRACT            

A new assay was designed to measure the release of omega-3 acids (eicosapentaenoic 

acid (EPA) and docosahexaenoic acid ( DHA)) from the hydrolysis of sardine oil by 

lipases immobilized inside porous supports. A biphasic system was used containing the 

fish oil dissolved in the organic phase and the immobilized lipase suspended in the 

aqueous phase. The assay was optimized by using a very active derivative of 

Rhizomucor miehie lipase (RML) adsorbed onto octyl agarose. Optimal conditions 

were: a.- an organic phase composed by 30/70 (v:v) of oil in cyclohexane , b.- an 

aqueous phase containing  50 mM methylcyclodextrin in 10 mM TRIS buffer at pH 7.0. 

The whole reaction system was incubated at 25ºC. Under these conditions, up to 2% of 

the oil is partitioned into the aqueous phase and most of the 95% of released acids 

were partitioned into the organic phase.  The organic phase was analyzed by RP-HPLC 

(UV detection at 215 nm) and even very low concentrations (eg.,  0.05 mM)   of 

released omega-3 fatty acid could be detected with a precision higher than 99%.  

Three different lipases adsorbed on octyl-agarose were compared: Candida antarctica 

lipase-fraction B   (CALB), Thermomyces lanuginosa lipase (TLL) and RML. The three 

enzyme derivatives were very active. However, most active and selectivetowards 

polyunsaturated fatty acids (PUFAs) versus oleic plus  palmitic acids (a 4-fold factor) 

was CALB. On the other hand, the most selective derivatives towards EPA versus  DHA 

(a 4.5 fold factor)  were TLL and RML derivatives.  

Keywords:  enzymatic release of omega-3 acids, selective enzymatic release of EPA, 

solubilization of oil by cyclodextrins.  

 



INTRODUCTION 

The release of omega 3 fatty acids(eg. EPA and DHA) from fish oil may mean an 

interesting   first step in the preparation of highly enriched triglycerides (70 to 90% of 

content in one or both polyunsaturated fatty acids, PUFAs). These triglycerides have 

been described as excellent functional ingredients (1). Recently, PUFAs have meant a 

breakthrough  amongst health care professionals of the beneficial  effects of omega-3 

fatty acids derived from fish oils – mainly consisting of docosahexaenoic acid (DHA) 

plus eicosapentaenoic acid (EPA) mixtures.  DHA is required in high levels in the brain 

and retina as a physiologically-essential nutrient to provide for optimal neuronal 

functioning (learning ability, mental development) and visual acuity, in the early stages 

of the life (2).   On the other hand, EPA is  considered to have beneficial effects in the 

prevention  of cardiovascular diseases in adults (3,4).  In general both PUFAs  have 

been reported useful to prevent a significant number of health disorders (5-10). 

The enzymatic release of PUFAs may have important advantages over the 

chemical release: mild reaction conditions, absence of undesirable byproducts, etc. 

Futhermore, the use of immobilized lipases may have additional technological and 

economical advantages for the hydrolysis.  

Immobilization of enzymes inside porous supports is an interesting challenge in 

Enzyme Biotechnology.  Commercially available supports with excellent mechanical 

properties and high enzyme loading capacity can be selected. In this way, very active 

enzyme catalyst can be used in any type of industrial reactor (stirred tank, packed bed, 

etc). In addition, since the easy workability of porous supports, some immobilization 

protocols have been used to improve enzyme properties.(eg., stabilization by a very 



intense multipoint covalent immobilization (11), hyperactivation of lipases by 

immobilization and post-immobilization techniques (12-13),  reactivation of partially 

inactivated lipases (14), etc.)  

Hydrolysis of  fish oils by lipases immobilized inside porous supports is  an otustanding 

example of lipase application in biotechnology. This oils from marine origin are the 

most important source in omega 3-PUFAs in nature, hence their importance in food 

technology to make new food additives. In nature, soluble lipases suffer interfacial 

activation by oil drops. Contrarily, using immobilized lipases on porous materials, the 

enzyme  can only hydrolyze the oil molecules partitioned into aqueous phase (Figure 1) 

(15-16). However, this limitation is compensated by the plethora of advantages that 

immobilization gives to proteins in order to be used in industrial biotransformations. 

From a practical point of view, immobilized lipases can be re-used for a number of 

reaction cycles and lipases (inside a porous structure) cannot be inactivated by 

hydrophobic interfaces present in strongly stirred reactors (e.g., oil interfaces, solvent 

interfaces, small bubbles of oxygen , etc.).   

On the other hand, a rapid evaluation of the intrinsic properties of new lipases 

on these oily substrates (activity, stability, selectivity) may be directly tested using 

immobilized derivatives even before any previous purification process.  Developing this 

partial but very rapid and highly sensitive assay for such purposes may become of 

great interest.   

Using biphasic systems (water / immiscible solvents) may be an interesting for the 

above mentioned assays. Oil will be partitioned into the organic phase and the 

enzymatic catalyst will be in the aqueous phase only acting on isolated oil molecules 



that are partitioned into the aqueous phase. Pure oils are very viscous and difficult to 

work with, but mixtures oil/organic solvents (eg. cyclohexane) could simplify the 

reaction design. In the case of fish oil, their high content in  PUFAs (as acyl chains 

forming part of triacylglycerol in the oil) could facilitate the aqueous/organic partition 

of oil molecules. Additionally, released PUFAs could be easily detected by RP-HPLC 

with UV detectors.   

 

 

MATERIALS AND METHODS 

Materials. 

Lipases from  CAL-B (Novozym 525L), Rizomucor miehei (Palatase) and Thermomyces 

lanuginose (Lypozyme TL) were generously donated by Novozymes (Denmark). 

Randomly Methylated BCD (TRMB-T) (methylcyclodextrin) was layed in Cyclodextrin 

Resource, CTD Inc. (High Springs, Florida, USA). Triton X-100,  p-nitrophenyl butyrate 

(pNPB), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)  were obtained 

from Sigma Chemical Co. (St. Louis, USA). Octyl sepharoseTM CL-4B was purchased from 

GE Healthcare (Uppsala, Sweden). Sardine Oil was donated by BTSA, Biotecnologías 

Aplicadas, S.L (Madrid. Spain). Other reagents and solvents were of analytical or HPLC 

grade. 

 

 



Enzyme activity assay 

It was performed by measuring the increase in absorbance at 348 nm produced by the 

release of p-nitrophenol in the hydrolysis of 0.4 mM p-nitrophenyl butyrate (pNPB) in 

25mM sodium phosphate at pH 7 and 25 C. To initialize the reaction, 0.1mL of lipase 

solution or suspension was added to 2.5 mL of substrate solution. An international unit 

of pNPB activity is defined as the amount of enzyme necessary to hydrolyze 1µmol of 

pNPB/min (IU) under the above described conditions. 

 

 

Immobilization of lipases on octyl-agarose supports 

10 g of octyl-agarose were added to 900 mL of 5 mM sodium phosphate buffer at pH 7 

containing 250 mg of protein and the suspension was incubated at 25ºC.  A blank of 

each soluble enzyme with the same concentration was incubated under the same 

experiment conditions. The activity of the blanks was fully preserved for 4 hours. On 

the contrary, the activity of the supernatant of the immobilization suspension 

decreases down to 5%. That is, in all cases, more than 95% of the enzyme was 

immobilized. After 4 h, the immobilized preparation was filtered and washed with 

distilled water.  The activity of immobilized derivatives was very low because of mass 

transfer limitations. The derivatives were broken (to reduce particle size) by strong 

magnetic stirring.  After this treatment the recovered activities (towards pNPB) were 

120, 1000 and 2000 % for CALB, RML and TLL.  The same hyperactivation was also 

observed for very low loaded derivatives (eg., 0.25 mg of lipase per gram of support) 



and this hyperactivation is due to interfacial activation of lipases on hydrophobic 

supports (12, 17, 18).   

 

Hydrolysis of Sardine Oil  

The hydrolysis of sardine oil was performed in an organic and aqueous two-phase 

system. The procedure was as follows: 5 mL of cyclohexane, 5 mL of tris buffer (0.1 M) 

pH 7, and 0.5 mL of sardine oil were placed in a reactor and pre incubated at 25ºC  for 

30 min. The reaction then was initiated by adding different amounts (from 0.1 up to 1 

g) of lipase derivative and the reaction suspension was stirred  at 150 rpm. A pH-stat 

Mettler Toledo DL50 graphic was used to maintain constant the pH value during the 

reactions. The concentration of free fatty acids was determined at various times by 

HPLC–ELSD and HPLC-UV methods. 

 

Analysis of Polyunsaturated free fatty acids (PUFAS) by HPLC-UV  

After a given time, aliquots of 0.1 mL of organic phase were withdrawn and dissolved 

in 0.8 mL of acetonitrile. The unsaturated fatty acids produced were analyzed by RP-

HPLC (Spectra Physic SP 100 coupled with an UV detector Spectra Physic SP 8450) 

using a Kromasil C8 (15 cm×0.4 cm) column. Products were eluted at a flow rate of 1.0 

mL/min using acetonitrile-10 mM ammonium TRIS buffer at pH 8 (70:30, v/v) and UV 

detection performed at 215 nm. The retention times for the unsaturated fatty acids 

were: 9.4 min for eicosapentaenoic acid (EPA) and 13.5 min for docosahexaenoic acid 



(DHA). These PUFAs enzymatically produced were compare with their corresponding 

pure commercial standars.  

 

 

Analysis of free fatty acids by HPLC-ELSD 

After a given time, aliquots of 0.1 mL of organic phase were withdrawn and dissolved 

in 0.8 mL of propanol. The fatty acids produced were analyzed by RP-HPLC (Spectra 

Physic SP 100 coupled to a ELSD 2000 evaporative laser light scattering detector). N2 

was used as the nebulising gas at a flow of 3 mL/min, and a nebulising temperature of 

30ºC. A Kromasil C18 (25 cm×0.4 cm) column was used and a gradient elution was 

performed using solvent A (acetonitrile/water, 98:2, v/v) and solvent B 

(acetonitrile/propanol, 95 : 5, v/v) with the following 22 min gradient: 0–6.5 min: 100% 

A; 6.5-7.5 min: 50% A; 7.6–15 min: 100% B; 15.1 min-18 min: 50% B. 18.1-22 min: 

100% A. The total flow rate was set to 1 mL per minute. The retention times for the 

fatty acids were between 5 and 13.5 min. The column was thermostated at  40 ºC. 

 

 

 

 

 



RESULTS  AND DISCUSSION  

1.- Detection of traces of PUFAs by using isocratic RP-HPLC with  UV detection.  

Polyunsaturated fatty acids (PUFAs) exhibited a high absorbance at low wavelengths in 

the UV region. EPA exhibited a very high absorbance at 210, 215 and 220 nm (Table 1). 

A wavelength of 215 was selected in order to minimize interferences by impurities 

present in sardine oil samples.  By using pure commercial  EPA and DHA different 

standard solutions with different concentration of each omega-3 fatty acids in 

cyclohexane were prepared. 20 µl samples of each standard solution were analyzed by 

RP-HPLC with UV detection at a constant 1 ml/min flow rate. Integration areas were 

perfectly proportional to  PUFA concentrations (Figure 2). The absorbance of DHA was 

a 50% higher than such one from EPA.  UV-HPLC chromatograms of aliquots of the 

organic phase of the reaction mixture were compared to the corresponding calibration 

curves and hence the rates of hydrolysis (EPA+DHA) and the EPA/DHA ratios could be 

easily calculated  

DHA exhibited a similar (a 50 % higher) absorbance at 215 nm (Table 2) .   On 

the contrary, a similar concentration of oleic acid absorbed around 1 % in comparison 

to PUFAS.  Besides, the polyunsaturated structure of PUFAs may them less apolar and 

hence the retention times in RP-HPLC under isocratic conditions are relatively low.  

(Table 3).  

Therefore, using an isocratic HPLC under the previously mentioned conditions, 

a rapid, easy and highly precise analysis of omega 3 fatty acids released by enzymatic 

hydrolysis of fish oil could be designed. For instance, when analyzing a sample of 0.1 

mM DHA utilizing a 1 ml/min flow the peak area was very high (over 4800000 ± 10000 



units with a very low baseline noise) (Figure 2). On the other hand, sardine oil was  not 

spontaneously hydrolyzed at pH 6.0 for 24 hours. Thus,  EPA and  DHA conversions  

lower than 0.2% in 24 hours (concentration of 0.05 mM of PUFAs in the organic phase) 

could be easily detected. A rapid preliminary evaluation of very lowly active 

immobilized lipases could be performed by this protocol. In addition to that, the 

enzyme selectivity towards either on or the other PUFA (EPA/DHA ratio) can also be  

measured using this protocol because of the high resolution to separate both EPA and 

DHA using HPLC.  

 

  2.- Use of an isocratic HPLC with a light scattering detector for the detection 

of traces of fatty acids.  

 A “light scattering” detector (ELSD) was used to analyze the ratios between 

polyunsarurated fatty acids and the abundant oleic and palmitic acid also present in 

fish oil (19). The detection of oleic and palmitic acid (at high concentrations, eg., 0.5-1 

mM) was much more sensitive using this detector than the UV one and hence they 

were easily compared to the PUFAS. Now, a  much more apolar mobile phase was used 

in order to decrease the retention time of oleic and palmitic acids (RT of 9 minutes 

approximately). Anyway, representation of the absorbance versus concentration 

follows a complex sigmoidal trend and hence calibration curves have to be used to 

calculate the exact concentration of each fatty acid (Figure 3).  (20)  

   



3.- Design of a biphasic reactor water-cosolvent for the hydrolysis of fish oil using 

lipases immobilized on porous supports.  

Oils are very viscous and difficult to handle (they become adsorbed on the walls of the 

containers, on moderately hydrophobic supports or on the stirring devices). Thus, in 

order to make oil manipulation feasible (especially at low oilconcentrations) the 

biphasic systems water-immiscible cosolvents (eg.,  cyclohexane) was approached. 

Firstly, it was proposed 1:1 ratio aqueous/ organic phase where the aqueous phase 

contained the catalyst (lipase) immobilized on porous structures  (eg., agarose gels). In 

this case, the enzyme inside the porous  could only hydrolyze the oil molecules present 

in the aqueous phase of the system. 

The biphasic system and the reaction conditions were optimized by using a very active 

RML derivative containing 5 mg of RML adsorbed per gram of octyl agarose (4%) and 

showing  10-fold hyperactivation  due to stabilization of active (open) form of the 

lipase (16).  

 a.- Partioning of the released fatty acids.  

The partition of a DHA standard in a biphasic system 1:1 at different pHs was studied. 

In a wide range of pHs (pH 5-8) the non ionized acid was mainly found in the organic 

phase. Similar values were obtained with EPA. . Since it has been reported for PUFAs a 

pK ~ 9-10, (21) pH 7 seems to be suitable  to perform the hydrolysis of fish oils with a 

number of lipases idependently of their corresponding optimal pHs. In this sense, the 

product to analyze (PUFAs) can be directly withdrawn from the organic phase. Another 

advantage of this system is the low concentration of released acids in the aqueous 



phase which would avoidproduct inhibitions issues and/or saponification processes 

even at high hydrolytic conversions.  

 

   b.- Optimization of the reaction conditions.   

 The composition of the aqueous phase was also optimized (Tables 3,4) 

observing two highlightable effects; low buffer concentration contributed to increase 

the reaction rate and added methylcyclodextrin to the aqueous phase had a positive 

effect in the hydrolytic activity. Considering those two beneficial effects induced by 

both low pH and methylcyclodextrin, lipase activity increased from 3.67 U at high 

buffer concentrations to 20.14 U at low ones. . This activity improvement seems to be 

related to a better partition of the oil in the aqueous phase from 0.15 % in 100 mM 

TRIS up to 2% in 20 mM TRIS and 50 mM methylcyclodextrin. The use of cyclodextrins 

to increase the solubility in water of apolar compounds has been widely utilized   

(22,23). 

On the other hand, at higher pH values like the activity the PUFAs type 

selectivity was increased because the higher EDA/DHA ratio values (Table 5). This 

insight migh be a intrinsic property from one particular lipase (RML in this case). This 

fact is hard to contrast in the literature because most of lipases have been studied at 

pH 7 in this biotransformation because of the activity/stability binomial. Here we have 

studied this differential enzyme behavior in terms of selectivity in function of media 

pH, opening  a new framework to study the effect of reaction pH on selectivity of many 

lipases.  



The effect of oil concentration in the organic phase on the hydrolytic activity 

was also tested. From this study is observed that concentration of up to 50% of fish oil 

rose the lipase activity, likely because of the higher concentration of oil in the aqueous 

phase, increasing the substrate availability to be used by the lipase in that phase. 

(Table 6).  Optimal reaction conditions were reached at  30% of fish oil, keeping  low 

viscosity, making oils easier to work with at the same time than the lipase showed a 

high hydrolytic activity. Under these optimal  conditions the rate of reaction was 

proportional to the amount of catalyst used (Figure 4). 

c.- Hydrolysis of sardine oil using three different immobilized lipases.  

 Using octil-agarose derivatives of three different lipases the hydrolysis of 

sardine oil under optimal reaction conditions was studied. Beside to HPLC-UV analysis 

to follow the rate of PUFAs release and the selectivity EPA/DHA,   HPLC-light scattering 

analysis was carried out to determine lipase selectivity towards either unsaturated or 

saturated fatty acids. RML  andTLL  were  the most selective enzymes towards EPA 

regarding to  DHA ( EPA/DHA ratio of 4.5). Unlikely,  CALB did have low EPA/DHA ratio 

but high unsaturated/saturated (oleic or palmitic acids) ratio (around 4), showing itself 

as a very selective lipase towards unsaturated (EPA or DHA) acyl chains although it is 

not able to selectively hydrolyze different unsaturated acyl chains as DHA and EPA.   

In this paper the interfacial activation is directly promoted on the support (12) 

and the possible inactivation by hydrophobic interfaces was avoided because the 

protection of immobilized enzymes inside porous structures (24, 25).  In addition to 

this hyperactivation on hydrophobic supports, other hyperactivation protocols during 

and after immobilization have been reported (26).   



CONCLUSIONS  

The optimal conditions for  sardine oil hydrolysis by lipases immobilized on 

porous supports were a biphasic system at 25 C where   organic phase was composed 

by a 30/70 mixture of oil and cyclohexane and  aqueous phase contained  50 mM 

methylcyclodextrin in 10 mM TRIS buffer at pH 6.0.. Under these conditions any 

derivative of any lipase (even immobilized from crude extracts) can be easily assayed: 

conversions as low as 0.2 % of hydrolysis in 24 hours could be easily detected. In 

addition,  the initial rate of PUFA hydrolysis (release of DHA and EPA) and the 

selectivity of the hydrolysis (EPA/DHA ratio)could be easily calculated.  

The use of fish oil as substrate has a great practical interest because of the PUFAs 

releasing, being this the first step to synthesize new key functional ingredients 

(triglycerides highly enriched in PUFAs).  From a more basic point of view, hydrolysis of 

fish oil (e.g. from sardine) may also be a very good test of lipolytic activities of a 

number of lipases: a.- sardine oil has a high percentage of the main types of fatty acids 

(PUFAs, monounsaturated and saturated); b.- TLL, CALB and  RML (an very likely a 

number of other lipases) hydrolyze all kinds of fatty acids within  the same order of 

magnitude and thus releasing of PUFAs can provide a fair semi-quantitative 

measurement of the whole lipolytic activity of different enzymes; c.- PUFAs could be 

easily detected by UV-HPLC (at 215 nm) with a very high sensitivity and this fact would 

allow a simple test of even poorly active derivatives (eg., new crude extracts) at very 

low conversion values (eg., 0.2 %) for a long time (eg., 24 hours), d.- at higher 

conversions and using  a slightly more complex system (light scattering – HPLC) the 

release of saturated and monounsaturated fatty acids could also been easily detected.  



FIGURE LEGENDS  

Figure 1.- Some special features of hydrolysis of oils in strongly stirred biphasic 

systems catalyzed by lipases immobilized on porous supports. A.- Immobilized lipase 

is only acting on fully water soluble oil molecules. B.- There is a low partition between 

oil in the organic phase and oil in the aqueous phase. C.- Gas bubbles promoted by 

strong stirring are not able to penetrate  inside the porous structure of the catalyst. D.- 

Drops of organic phase are not able to penetrate inside the porous structure of the 

catalyst. 

 

Figure 2.- UV response of  EPA and DHA at different concentrations. Experimental 

conditions are described in Method. Response is expressed as Absorbance Units 

observed for the corresponding peaks in the RP-HPLC chromatograms. Injected 

samples:  20 µl of solutions with  different concentrations (from 0.125 to 2 mM) of 

PUFAs. 

 

Figure 3.- “Light-scattering” response of EPA and DHA at different concentrations. 

Experimental conditions are described in Methods. Response is expressed as 

Absorbance Units observed for the corresponding peaks in the RP-HPLC 

chromatograms. Injected samples: 20 µl of solutions with different concentrations of 

PUFAs (from 0.125 to 3 mM).   

 



Figure 4.- Effect of the amount of immobilized lipase on hydrolytic rates. 

Experimental conditions are described in Methods. Activity  is expressed as µmols of 

PUFAS (EPA plus DHA) released per minute.  Amount of immobilized lipase is 

expressed as weight of catalyst added to 10 mL of biphasic reactor (from 0.1 to 1 

grams of biocatalyst).   
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