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ABSTRACT   

 

Imatinib is a Bcr-Abl inhibitor used as first-line therapy of chronic myeloid 

leukemia (CML). p21Cip1, initially described as a cell cycle inhibitor, also protects from 

apoptosis in some models. We describe that imatinib down-regulates p21Cip1 

expression in CML cells. Using cells with inducible p21 expression and transient 

transfections we found that p21 confers partial resistance to imatinib-induced 

apoptosis. This protection is not related to the G2-arrest provoked by p21, a decrease 

in the imatinib activity against Bcr-Abl or a cytoplasmic localization of p21. The results 

suggest an involvement of p21Cip1 in the response to imatinib in CML 
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1. Introduction 

 

p21Cip1 (p21 herein after) is a member of the Cip/Kip family of inhibitors of cell 

cycle progression. The first discovered and so far best studied biochemical activity of 

p21 is to inhibit Cdks, consistent with its activity as cell cycle inhibitor [1-4]. Also, p21 is 

a relevant mediator of p53-cell cycle arrest [5-7]. However, more recent studies have 

shown that p21 has additional functions as differentiation inducer [8], transcriptional co-

regulator [9, 10] and as an inhibitor of apoptosis induced by DNA-damaging agents [11-

13]. The mechanism for p21-mediated apoptosis protection is unclear and is not 

operative in all cell types [14]. However, since cancer cells can escape death induced 

by chemotherapeutic drugs, the antiapoptotic p21 activity might be critically important 

in human cancer (reviewed in [15]). Actually, p21-null mice develop tumours 

spontaneously [16] and show increased tumour susceptibility using chemical 

carcinogenesis [17-20].  

 Imatinib is the main drug used in chronic myeloid leukemia (CML) treatment. 

The hallmark of this leukemia is the Bcr-Abl kinase, encoded by a fusion gene 

produced by the t(9;22) translocation [21, 22]. Several previous studies, including ours, 

have demonstrated that imatinib induced cell death in CML-derived cells, including 

K562 [23-25]. 
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It has been reported that imatinib down-regulates p21 in mouse cells 

transfected with Bcr-Abl [26, 27]. However, it is unknown whether imatinib regulates 

p21 expression in human CML cells and the effects of p21 in these cells. In this work 

we describe that Bcr-Abl inhibition results in low p21 levels and that ectopic p21 

expression antagonizes imatinib-mediated apoptosis, suggesting a role of p21 in the 

apoptosis response to Bcr-Abl inhibition. 

 

 

2. Materials and methods 

 

2.1 Cell culture and transfections  

 

BV173 [28], KBM5 [29], MEG01 [30] and K562 [31] cell lines derive from human 

chronic myeloid leukemia in blast crisis. Kp21-4 subline, a K562 derivative with 

inducible expression of p21 was generated as previously described [32]. The cells were 

grown in RPMI 1640 medium supplemented with 8 % fetal calf serum and antibiotics. 

Unless otherwise stated, cells at a density of 2.5 x 105cells/ml were treated with 75 µM 

ZnSO4 to induce p21 expression. Imatinib mesylate (provided by Novartis, Basel, 

Switzerland) was added one hour after ZnSO4. K562 were transiently transfected by 

nucleofection (Amaxa) following the manufacturer indications with 4,75 µg of pCEFL-

p21 [32] or empty vector and 0.25 µg of a Green Fluorescent Protein vector 

(pmaxGFP, Amaxa) to assess transfection efficiency.  

 

2.2 Proliferation, cell cycle and apoptosis assays  

Cell proliferation was assayed with a Nucleocounter (Chemometec). For cell 

cycle analysis, cells were fixed in 90% ethanol at 4ºC and resuspended in PBS-sodium 

citrate buffer containing 10 µg/ml bovine serum albumin, 200 µg/ml RNAse and 50 

µg/ml propidium iodide (Sigma). Stained cells were analyzed by flow cytometry as 

previously described [14]. Apoptosis was assessed by annexin V binding and TUNEL 

assays. Annexin V binding was detected by flow cytometry using the BD-Pharmingen 

kit. TUNEL assays were performed using In situ Cell Death Kit (Roche Applied 

Science). Apoptosis in each cell cycle phase was determined by incubating cells with 

Hoescht 33342 (Sigma) (10 µg/ml for 90 min) to stain nuclei, and then annexin V 

binding was analyzed as above. 
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2.3 RNA extraction and expression analysis 

Total RNA from cell lines and from bone marrow cells was isolated using the 

RNeasy kit (Qiagen). For reverse transcription and polymerase chain reaction (RT-

PCR), first-strand cDNA was synthesized from 1 g of total RNA using SuperScriptTM II 

RNase reverse transcriptase (Invitrogen) and random primers. Quantitative RT-PCR was 

performed as described [33] with a QuantiTectTM SYBR green PCR kit (Qiagen). The 

following primers were used: for p21 5'-AAGACCATGTGGACCTGTCA-3’ and 5’-

GGCGTTTGGAGTGGTAGAAA-3’; for ribosomal protein RPS14, 5'-

GGCAGACCGAGATGAATCCTC-3' and 5'-CAGGTCCAGGGGTCTTGGTCC-3'. For 

each gene, duplicate PCR reactions were performed on the same 96-well plate on an 

ICycler iQTM apparatus (Bio-Rad). The expression levels of p21 were normalized by the 

internal control ribosomal protein RPS14.  

 

2.4 Immunofluorescence staining, immunobloting and cellular fractionation 

Cytospin preparations were fixed with paraformaldehyde and the presence of 

p21 was detected by immunofluorescence using a rabbit polyclonal antibody (C-19 

from Santa Cruz Biotech) and Texas Red conjugated secondary antibody (Dako). Actin 

cytoskeleton was detected using phalloidin-FITC (Sigma). Samples were mounted with 

Vectashield (Vector) containing 4'-6-diamidino-2-phenylindole (DAPI) to stain nuclei 

and examined under a fluorescence microscope (Zeiss-Axioskop2). Immunoblots were 

performed as previously described [14]. Blots were revealed with the ECL system (GE 

Healthcare). Antibodies used were: anti-actin (I-19), anti-poly(ADP-ribose)polymerase 

(PARP) (H250), anti-p27 (C-19), anti-UBF (F-9), anti-RhoGDI (A-20) and anti-phospho-

tyrosine (PY20) all from Santa Cruz Biotech; anti-c-Abl from BD Pharmingen; anti-p21 

(P-184) from Sigma, and anti-α-tubulin antibody kindly provided by Nicholas Cowan 

(New York University, New York). For cellular fractionation, cells were treated in 0.1% 

paraformaldehyde in PBS during 5 min and washed with 50 mM glycine in PBS. 

Nuclear and cytoplasmic extracts were then obtained essentially as described [34] 

using 50 mM Tris, 1% Nonidet P-40, 0.2% SDS, 1 mM EDTA, 10% glycerol as nuclear 

lysis buffer. 

 

2.5. CML Patients 

Bone marrow mononuclear cells from 17 healthy individuals and from 58 CML 

patients and were studied. CML cases included 36 samples collected at the time of 

diagnosis, 7 in blast crisis and 15 in chronic phase treated with imatinib. In this case 

samples were taken up to 24 months of treatment.  The patients are from two hospitals: 
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Hospital Universitario Marqués de Valdecilla (Santander, Spain) and Hospital 

Universitario Dr. Negrín (Las Palmas, Spain). The study was approved by the ethics 

committees according to procedures approved by the two hospitals providing the 

samples. Statistical analysis was carried out with the SPSS software. 

 

  

3. Results  

We studied the expression of p21 in four CML cell lines (K562, MEG01, KBM5 

and BV173) in response to imatinib treatment. p21 levels were low although detectable 

in growing cells, and decreased upon imatinib treatment (Fig. 1A). In sharp contrast 

p27Kip1 expression, which was also very low, was unchanged or moderately up-

regulated by imatinib. p21 down-regulation by imatinib in K562 was also detected at the 

mRNA level, as assayed by qRT-PCR (Fig. 1B). We next asked whether p21 down-

regulation was involved in the cell death mediated by imatinib. To test this hypothesis 

we used a K562 subline with inducible p21 expression, termed Kp21-4 [32]. In these 

cells the expression of p21 is induced by ZnSO4 and p21 levels were dramatically 

increased 3 h after ZnSO4 addition and depended on the inducer concentration (Fig. 

1C). Next, we demonstrated that imatinib did not modify the induction of p21 by Zn2+ in 

Kp21-4 cells (Fig. 1D). In these conditions, both p21 and imatinib provoked growth 

arrest (data not shown). It is reported in many models, including K562, that p21 

induces accumulation of cells in the G2 cell cycle phase [32, 35]. We found p21 

induced G2 accumulation in the presence of imatinib after 48 h of treatment, in contrast 

to the G1 arrest mediated by imatinib alone (Fig. 1E), thus confirming that the induced 

p21 was functional in the presence of imatinib. Altogether, the results indicate that 

imatinib did not impair p21 activity on cell cycle in the K562 model. At longer times (3-5 

days) p21 induces polyploidy in K562 cells [32] but imatinib induced extensive 

apoptosis after long treatment periods [25], which precludes the analysis after long 

treatments.  

We next asked whether p21 modified the apoptosis induced by imatinib. The 

results showed that p21 significantly reduced the imatinib-mediated apoptosis. This 

was assessed by several techniques as PARP proteolysis (Fig. 2A), TUNEL assay 

(Fig. 2B) and the fraction of cells with sub-G0/G1 DNA content (Fig. 2C). The 

protection that the induction of p21 exerts against the imatinib-mediated apoptosis was 

also demonstrated by determining the binding of annexin V to cell surface (Fig. 2D). As 

p21 induced G2 phase accumulation, we asked whether cells in G2 were less sensitive 

to imatinib-mediated apoptosis. However, in double-staining experiments (Hoechst 
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33342 and annexin V) we found that the fraction of apoptotic cells was similar in the G1 

and G2 cell cycle phases (Fig. 2E). 

To confirm that p21 was indeed the responsible for the apoptosis protection we 

first performed a dose-response experiment. Different p21 levels were induced with two 

ZnSO4 concentrations (40 and 75 μM). As expected, the higher p21 levels correlated 

with a faster cell growth arrest (Fig. 3A) and with less apoptosis, as assessed by PARP 

proteolysis (Fig. 3B). The above results were obtained with the p21-inducible cell line 

Kp21-4. As this cell line was generated by selection of stable transfectants, [32] we 

wanted to rule out the possibility that the p21 effect was due to the specific behavior of 

the Kp21-4 cell line. Therefore, we transiently transfected parental K562 with an 

expression vector for p21. p21 overexpression upon transfection was confirmed by 

immunoblot (Fig. 3C). The results showed that p21-expressed cells were more 

resistant to imatinib-mediated apoptosis (Fig. 3D). Taken together, these results 

demonstrate that p21 antagonizes imatinib-induced apoptosis in K562 cells. 

It has been reported that cytoplasmic but not nuclear p21, protects leukemia 

cells from apoptosis [36]. In addition, it is reported that in murine myeloid cells 

overexpressing Bcr-Abl, p21 is predominantly cytoplasmic and imatinib treatment 

results in decreased cytoplasmic p21 expression [37]. Thus, we studied the cellular 

localization of p21 in our model of Kp21-4 cells. Immunofluorescence studies showed 

that the induced p21 was found in the nuclei and remained nuclear after imatinib 

treatment (Fig. 4A). We also carried out nucleo-cytoplasmic fractionation studies of 

Kp21-4 extracts. Immunoblot analysis showed that p21 was predominantly found in the 

nuclear compartment and that imatinib did not modify this localization (Fig. 4B). p21 

was also predominantly nuclear in untreated K562 (not shown). Finally, as imatinib-

induced apoptosis depends on Bcr-Abl inhibition we assayed the effect of p21 on Bcr-

Abl activity by determining the levels of phospho-tyrosine-Bcr-Abl. The results 

demonstrated that imatinib efficiently inhibited Bcr-Abl activity, and that the induction of 

p21 protein levels did not significantly modify this inhibition (Fig. 4C). 

Although it is known that p21 is expressed in hematopoietic precursors 

(reviewed in [38]), the expression of p21 has not been systematically analysed in CML 

patients. We asked whether p21 levels correlated with CML progression. We 

determined the expression of p21 by quantitative RT-PCR in bone marrow samples of 

36 CML patients at diagnosis, 15 in chronic phase under imatinib treatment and 7 

cases of blast crisis (the final and fatal stage of CML) [39] as well as in 17 healthy bone 

marrow samples as controls. The results indicate that the expression of p21 mRNA 

was similar in all groups (Fig. 4D). The highest expression was observed cells from 
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patients in blastic phase. However, the difference was not statistically significant (P> 

0.05). 

 

 

4. Discussion 

 

Here we show first that imatinib, the drug almost universally used in CML 

treatment, results in p21 down-regulation in human CML cells. Imatinib represses p21 

expression at the transcriptional level. The mechanism is unknown, but it is unrelated 

to p53 as three of the four cell lines tested (K562, KU812 and MEG01) do not carry 

active p53 alleles [40]. p21 gene has a complex promoter, which is regulated by many 

transcription factors [41]. Imatinib effect could be mediated by STAT5, which 

transactivates p21 [42] and is activated by Bcr-Abl [43, 44].  

It is striking that inhibition of Bcr-Abl activity results in the down-regulation of a 

protein known to stop cell cycle. However, p21 exerts apoptosis protection in many 

models [11-13]. We show here that induction of p21 protects K562 cells from imatinib-

induced apoptosis. In our model, p21 did not rescue the growth-arrest induced by 

imatinib, conversely to the result reported with mouse cells [27]. The reasons for this 

discrepancy may lie, first, in that we are using human CML cells expressing 

endogenous Bcr-Abl instead of murine cells transfected with Bcr-Abl gene, and second, 

that we use an inducible p21 gene and transient p21 transfections, rather than stable 

selected clones with high constitutive p21 expression. Given the depressing effects of 

p21 on proliferation it is likely that stable constitutive transfectants have acquired other 

epigenetic changes. 

The induced p21 remains in K562 cell nuclei in the presence of imatinib, ruling 

out in our system the described anti-apoptotic effect of cytoplasmic p21. In K562, as 

other cell models, p21 provokes the accumulation of cells in the G2 phase of the cycle, 

but imatinib did not modify this pattern. Moreover, we ruled out the hypothesis the drug 

is less active in G2 cells so as to explain p21-mediated protection. Thus, the 

mechanism for p21-mediated apoptosis protection in K562 remains unclear, as it is 

also the case in the other cell models where this effect has been observed [12, 13]. 

However, in K562 the mechanism operates downstream of Bcr-Abl inhibition as there is 

no significant change in the activity of Bcr-Abl mediated by p21. We also observed an 

increased level of p21 in cells from blastic crisis CML. This result seems consistent with 

the refractoriness of these cells to treatment with imatinib, although the difference in 

expression did not get statistical significance. Regardless of the mechanism involved, 
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our report describes for the first time the p21-mediated protection to apoptosis by the 

most used drug in CML, suggesting that p21 levels could modulate the response to the 

drug in CML treatments.  
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 Legends to Figures 

 

Fig. 1. Effects of imatinib on p21 expression in CML cells. (A) Immunoblot for p21 and 

p27, and actin as loading control, in CML-derived cell lines treated with 1 μM imatinib 

for 24 h. (B) qRT-PCR analysis showing the down-regulation of p21 mRNA in K562 

cells treated with imatinib. Data are expressed as means ± SEM. (C) Immunoblot 

analysis showing Inducible p21 expression in Kp21-4 cell line. Cells were treated with 

75 µM ZnSO4 and 0.5 µM imatinib for 3 to 48 h (left panel) or 40 and 80 μM ZnSO4 for 

6 h (right panel). (D) K562 and Kp21-4 cells were treated for 24 h with 0.5 μM imatinib 

and 75 μM ZnSO4. The blot for p21 in K562 was overexposed with respect to Kp21-4. 

(E) Cell cycle analysis of K562 and Kp21-4 cells treated for 48 h with 1 μM imatinib and 

75 μM ZnSO4. The arrow indicates the position of G2 phase and the percentage of 

cells in G2 is indicated in each case. 

 

Fig. 2. Ectopic expression of p21 confers partial resistance to imatinib-induced 

apoptosis. (A) Apoptosis was assessed by proteolytic cleavage of PARP determined by 

immunoblot in K562 and Kp21-4 cells treated with 75 µM ZnSO4 and 1 µM imatinib for 

48 h. (B) Kp21-4 cells were treated as in (A) for 24 and 48 h and TUNEL-positive cells 

were analyzed by fluorescence microscopy. Data are expressed as means ± SEM. (C) 

Kp21-4 cells were treated for 48 h as in (A). DNA content was measured by iodide 

propidium staining and flow cytometry and the fraction of cells with DNA content lower 

than 2C was scored. (D) Kp21-4 cells were treated for 48 h as in (A) and the  fraction of 

cells annexin V-positive cells was determined by flow cytometry.  Data are expressed 

as means ± SEM. (E) Cells were treated as in (A) and the apoptosis in each cell cycle 

phase was assessed by annexin V binding measured by flow cytometry. Black bars 

correspond to the fraction of annexin V positive cells, and the percentages of annexin 

V-positive cells within each cell cycle phase are indicated in each case. 

  

Fig. 3. p21 antagonizes imatinib-induced apoptosis. (A) Cell proliferation analysis of 

Kp21-4 cells treated for 48h with 1 μM imatinib and 40 or 75 μM ZnSO4. (B) Apoptosis 

of Kp21-4 cells assessed by PARP proteolysis in cells treated for 24 h with 1 μM 

imatinib and 40 or 75 μM ZnSO4. (C) Expression of p21 in K562 cells nucleofected with 

a p21 expression vector. Cell lysates were prepared 24 h after nucleofection and 

analyzed by immunoblot. (D) Apoptosis assessed by cytometry in K562 transfected 

with p21. Imatinib (1 μM) was added 24 h after transfection and cells were further 

incubated for 24 h. Data are expressed as means ± SEM. 
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Fig. 4. Nuclear localization of p21 (A) p21 subcellular localization in Kp21-4 cells 

treated for 24 h with 75 µM ZnSO4 and 1 µM imatinib. Cytospin preparations were 

subjected to immunofluorescence with anti-p21 and stained with phalloidin-FITC and 

DAPI to visualize cytoskeleton and nuclei, respectively. (B) Cellular fractionation of 

Kp21-4. Extracts from nuclear and cytoplasmic fraction were analyzed by immunoblot 

with anti-p21, anti-UBF (nuclear fraction control) and anti-RhoGDI (cytoplasmatic 

fraction control). (C) Inhibition of Bcr-Abl activity as determined by phospho-tyrosine-

Bcr-Abl. Extracts of K562 and Kp21-4 cells were treated as in (A) and subjected to 

immunoblot using the antibodies against Bcr-Abl, c-Abl, p21, actin and phospho-

tyrosine. The blot for p21 in K562 was overexposed with respect to Kp21-4. (D) p21 

mRNA expression assayed by qRT-PCR in samples from CML patients at different 

stages of the disease. p21 mRNA levels were normalized with RPS14 expression. 

Each box refers to the range defined by the 25th and the 75th percentiles and the line 

indicates the median value. HC, healthy controls; CP-Dg, chronic phase at diagnosis; 

CP-Im, chronic phase treated with imatinib; BC, blastic crisis. In all comparisons the 

differences were not significant (P > 0.05).  
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