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ABSTRACT 1 

 2 

Brucellosis is an important malady of productive and wildlife animals and a worldwide 3 

zoonosis. The use of effective vaccines and the corresponding diagnostic tests that allow 4 

differentiating infected from vaccinated animals are essential tools to control the disease. For 5 

this, a prototype of Brucella abortus S19 vaccine expressing green fluorescent protein (S19-6 

GFP) was constructed. The S19-GFP was readily identified under ultraviolet light by 7 

macroscopic and microscopic examination and maintained all the biochemical characteristics 8 

of the parental S19 vaccine. S19-GFP replicated ex vivo and in vivo, and protected mice 9 

against challenge with virulent B. abortus to the same extent as the isogenic S19. An 10 

immunoenzymatic assay designed to measure anti-GFP antibodies allowed the discrimination 11 

between mice vaccinated with S19-GFP and those immunized with S19. Both vaccines raised 12 

antibodies against lipopolysaccharide molecule to similar levels. This experimental model 13 

constitutes a “proof of concept” for the use of Brucella-GFP vaccines and associated 14 

diagnostic tests to distinguish vaccinated from naturally Brucella infected animals. 15 

16 
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1. Introduction 1 

 2 

Brucellosis is a disease of terrestrial and marine mammals and an important zoonosis [1]. 3 

Brucella abortus and Brucella melitensis are the most important etiological agents of 4 

domestic ruminants. For more than 60 years, the control and eradication programs around the 5 

world have used live attenuated B. abortus S19 and B. melitensis Rev1 vaccine strains for 6 

protecting large and small domestic ruminants, respectively [1, 2, 3]. These vaccines have 7 

been used in combination with recurrent diagnosis and removal of the reactive animals [1, 2, 8 

3, 4]. In the last decade, however, its use has been restricted based on claims that the 9 

serological and bacteriological diagnosis between infected and vaccinated animals is not 10 

straightforward [5, 6]. Indeed, both B. abortus S19 and B. melitensis Rev1 are smooth 11 

attenuated strains capable of generating antibodies against the O-polysaccharide chain of the 12 

lipopolysaccharide (LPS) molecule, which is the main bacterial antigen used in the diagnosis 13 

of brucellosis [7]. In order to bypass this difficulty, conjunctival vaccination route [2, 4,8], 14 

alternative diagnostic tests [7, 9] and mutant vaccines have been used [10, 11]. Conjunctival 15 

vaccination with B. abortus S19 in bovine or B. melitensis Rev1 in caprine and ovine, is an 16 

efficient route of immunization inducing lower and less persistent antibodies against LPS. 17 

Although these approaches minimize the diagnostic problems of differentiating infected from 18 

vaccinated cattle, they do not solve the serological interferences [12, 13]. 19 

An alternative strategy to avoid the serological interference has been the development of 20 

attenuated B. abortus and B. melitensis rough vaccines [11, 14, 15]. However, all the O-21 

polysaccharide defective mutants that have been generated are less efficient in protecting 22 

animals against virulent infection than the smooth S19 or Rev1 vaccines [10, 16, 17]. After 23 

several field trials, the use of rough B. abortus RB51 vaccine against bovine brucellosis 24 
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remains controversial [10, 17, 18]. Moreover, in countries where the disease is endemic and 1 

the use of rough RB51 vaccine is compelled, brucellosis remains as an important prevalent 2 

disease [10, 18, 19, 20].  3 

An interesting option has been the development of B. abortus S19 and B. melitensis Rev1 4 

deficient in the antigenic periplasmic protein 26kD (bp26), and an associated ELISA for the 5 

identification of negative vaccinated reactors against this protein [21, 22, 23, 24, 25, 26, 27]. 6 

However, antibodies against bp26 are only present in a fraction of the infected animals, 7 

precluding the straightforward differentiation between vaccinated and field infected cattle [25, 8 

28, 29]. 9 

Here, we have explored the use of green fluorescent protein (GFP) as a xenogenic positive 10 

marker for the construction of a new prototype of B. abortus S19 vaccine (S19-GFP) and the 11 

development of complementary diagnostic assays. We have demonstrated that the S19-GFP 12 

display very similar biological properties as the parental vaccine S19 and allowed the 13 

discrimination between mice immunized with S19-GFP and infected with non-fluorescent 14 

brucellae. 15 

 16 

2. Materials and methods 17 

 18 

2.1. Bacterial strains, inocula and growth conditions  19 

The reference B. abortus S19 and 2308 strains were originally obtained from the culture 20 

collection of the Centro de Investigación y Tecnología Agroalimentaria of Aragón, Spain. B. 21 

abortus 2308 expressing red fluorescent protein (2308-RFP) from Discosoma coral was 22 

kindly provided by Dr. Jean-Jacques Letesson (Unité de Recherche en Biologie Moléculaire, 23 

Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium). Handling of strains, growth 24 
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conditions, and typing of vaccine B. abortus S19 and virulent B. abortus 2308 were 1 

performed as described elsewhere [1, 3, 30]. Bacterial stability, inoculi, cellular and mice 2 

assays were performed as previously described in detail [28]. 3 

 4 

2.2. Construction of fluorescent B. abortus strains  5 

B. abortus S19 and 2308 strains expressing GFP were built as previously reported [31], with 6 

some modifications. Briefly, plasmid pBBR-2-gfp derived from pBBR1MCS-2 containing a 7 

kanamycin resistance (KmR) cassette and under the control of lac promoter [32], provided 8 

Diego Comerci (Instituto de Investigaciones Biotecnológicas, UNSAM, Argentina),  was 9 

introduced in competent B. abortus cells by electroporation in a BTX630 (Genetronics, Inc) 10 

apparatus. Successfully transfected, brucellae were selected by KmR in plates of agar 11 

supplemented with 50 mg/L of kanamycin. For testing in vitro stability of the plasmid 12 

insertion, three consecutive subcultures were performed and bacterial counts were determined 13 

in agar and agar supplemented with kanamycin. The fluorescent S19-GFP stocks were kept at 14 

-80 °C in 50% glycerol, and after the stability of phenotypic, and molecular characteristics 15 

and stability, were confirmed in defreeze bacteria. B. abortus 2308 expressing red fluorescent 16 

protein (2308-RFP) from Discosoma coral was provided by Dr. Jean-Jacques Letesson (Unité 17 

de Recherche en Biologie Moléculaire, Facultés Universitaires Notre-Dame de la Paix, 18 

Namur, Belgium). 19 

 20 

2.3. Cell infections 21 

For intracellular multiplication assays, HeLa cells (ATCC CCL-2) and murine RAW 264.7 22 

macrophages (ATCC TIB-71) were infected with B. abortus strains at multiplicity of infection 23 

of 500 and 50 bacterial colony forming units (CFU), respectively, following previous 24 
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protocols [31, 33]. Adhesion and internalization of B. abortus strains in HeLa cells was 1 

determining by differential extracellular/intracellular immunofluorescence as described 2 

elsewhere [33, 34]. Bacterial colonies or dispersed Brucella cells were checked for 3 

fluorescence under the Chemi Doc XRS apparatus with adequate filter recommended for GFP 4 

(Bio Rad) or UV microscopy (Olympus BH-2), respectively. 5 

 6 

2.4. Mice assays 7 

Swiss CD1 female 4-6 week-old mice were from the Animal Facility Unit of the University of 8 

Costa Rica. Mice were handled, bled and sacrificed according to international 9 

recommendations (http://www.felasa.eu/recommendations.htm) and local guidelines of the 10 

“Comité Institucional para el Cuidado y Uso de los Animales of the Universidad de Costa 11 

Rica”, in agreement with the corresponding law “Ley de Bienestar de los Animales No 7451” 12 

of Costa Rica. 13 

Residual virulence and protection assays in the mouse models were carried out following 14 

standard protocols [3, 30, 35] with slight modifications. Briefly, for virulence studies, groups 15 

of 25 mice were intraperitoneally inoculated with 1x105 CFU/mouse of B. abortus strains, and 16 

spleen counts determined at different days after infection. For protection studies, three groups 17 

of six mice each were injected with 0.1 mL of PBS for controls, or immunized subcutaneously 18 

with 1x105 CFU/mouse of S19 or S19-GFP, respectively. Then, all mice were challenged 19 

sixty days later with 5x104 CFU/mouse of the virulent B. abortus 2308 by the intraperitoneal 20 

route. Two weeks after challenge, the number of B. abortus 2308 in the spleens of vaccinated 21 

mice was determined. In both assays, the data was transformed to logarithms and the mean 22 

and standard deviation of CFU/gram of spleen  was estimated, followed by statistical analysis. 23 

 24 

Comentario [MJG1]:  OJO: si no se 
ponen los pesos de los bazos sería más 
correcto poner CFU/spleen. Si prefieres 
dejar las CFU/gramo, corregir la leyenda de 
las Figs. 2ª y 2B... pensé que esto estaba 
corregido antes de enviarlo. 
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2.5. Immunochemical assays 1 

Recombinant GFP was obtained by affinity chromatography as a glutathione-S-transferase 2 

(GST-GFP) fusion protein from soluble fraction of E. coli XL1-Blue harboring plasmid 3 

pGEX-GFP expression system, and the purity of the fusion protein was determined by SDS-4 

PAGE [36].  5 

Western blotting for estimating the amount of GFP and Omp19 produced by B. abortus-GFP 6 

and 2308-RFP constructs was performed as described elsewhere [36]. For this, 7 

mMonospecific antibodies against GST-GFP were produced by repeated immunizations of 8 

mice or sheep as described elsewhere [36]. And rReactivity of the obtained antibodies against 9 

GFP was tested by agar immunodiffusion test [37]. Western blotting for estimated the 10 

amounts of GFP produced by B. abortus-GFP constructs was performed as described 11 

elsewhere [36].  Monospecific rabbit antibodies Antibody against B. abortus Omp19 was 12 

kindly provided by Dr. Axel Cloeckaert (INRA, UR1282, Infectiologie Animale et Santé 13 

Publique, IASP, Nouzilly F-37380, France).  14 

Indirect enzyme linked immunosorbant assays (ELISA) for the detection of mouse anti-GFP 15 

antibodies (ELISA-GFP) was performed on 96 well plates coated with 100 µL/well of a 10 16 

µg/mL GFP-GST solution prepared in 0.1 M PBS containing 0.01% Tween 20, following 17 

standard protocols [38]. Indirect ELISA for the detection of murine anti-Brucella LPS 18 

antibodies (ELISA-LPS) was performed as described before [39]. In both ELISAs rabbit anti-19 

mouse IgG (H+L) horse radish-peroxidase conjugates (Sigma) were used as detecting reagent, 20 

ABTS as substrate, and readings were performed at 405 nm.  The immune response against 21 

LPS and GFP was evaluated in sera of S19-GFP (n=25), 2308-GFP (n=25) or S19 (n=25) 22 

vaccinated inoculated mice, using as negative reference sera of PBS injected control animals 23 

(n=5) and bled at different times after infection.  24 
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 1 

2.6. Statistical analysis 2 

In all cases, comparisons of means were performed by one way ANOVA’s test, followed by 3 

the Fisher’s Protected Least Significant Differences (PLSD) test [30, 35]. 4 

5 
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3. Results 1 

 2 

3.1. B. abortus S19-GFP keeps the biological properties of S19 vaccine strain 3 

B. abortus S19-GFP maintained the growth properties, phenotypic and bacteriological 4 

characteristics of the isogenic parental S19 strain, such as smoothness, erythritol and 5 

penicillin sensitivity and the distinctive deletion in the ery operon detected by the AMOS-Ery 6 

PCR test [1, 30]. B. abortus- 2308-GFP kept its virulent properties as reported elsewhere [31]. 7 

Bacterial colonies displayed fluorescence in agar plates grown in the presence or absence of 8 

kanamycin and were readily distinguishable from control non-fluorescent Brucella, mainly 9 

when grown for four or more days (Fig. 1A). Regardless of the presence or absence of 10 

kanamycin in TSA plates, all the S19-GFP CFU from mouse spleens counted displayed 11 

fluorescence (Table 1). When examined under the microscope, close to 100 % of the counted 12 

bacteria isolated from mice were fluorescent (Table 1). Those bacteria that did not display 13 

fluorescence were presumably dead, because all individual colonies plated only generated 14 

fluorescent CFU. These properties, which remained constant over time, were in agreement 15 

with previous observations, demonstrating that plasmids are very stable in Brucella cells [40], 16 

probably due to the absence of mechanisms to eliminate them since B. abortus does not 17 

naturally harbor plasmids [1]. 18 

Comparison of S19-GFP with the respective isogenic S19 demonstrated no significant 19 

differences in terms of binding to and internalization into HeLa cells, thus maintaining the 20 

reported interaction of S19 with host cells (Fig. 1B). Similarly, S19-GFP replicated to the 21 

same extent as its parental strain in HeLa cells and in macrophages (Fig. 1C). All CFU 22 

recovered from S19-GFP infected macrophages or HeLa cells were fluorescent, 23 

demonstrating the stability of the construct.  24 
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B. abortus S19 follows distinctive replication kinetics in mice, and induces significant levels 1 

of protection after challenge with virulent strains [41]. The replication profile of S19-GFP 2 

shows a characteristic peak at 14 days of infection paralleling the replication profile of the 3 

isogenic S19 reference strain (Fig. 2A). In addition, S19-GFP vaccinated mice showed a 4 

similar level of protection against challenge with virulent B. abortus 2308 than S19 (Fig. 2 B). 5 

In cases in which few colonies of S19-GFP were present in challenged animals, they were 6 

readily resolved from the B. abortus 2308 by fluorescence, without the need of a selective 7 

bacteriological agar media. 8 

 9 

3.2. B. abortus S19-GFP induces antibodies against LPS and GFP 10 

The rational for using a S19-GFP vaccine relies partly on its potential for inducing anti-GFP 11 

antibodies in vaccinated animals. This would allow the development of serological tests that 12 

could differentiate vaccinated from naturally Brucella infected animals. To test this, an 13 

ELISA-GFP for detecting antibodies against GFP in S19-GFP vaccinated animals was 14 

developed and tested. Mouse positive control serum against purified GFP demonstrated a 15 

single immunoprecipitation band (Fig. 3A) and no reaction against B. abortus antigens, 16 

including LPS (not shown). This positive control immune serum displayed a proportional 17 

ELISA-GFP reaction after dilution, indicating a good correlation between the binding of 18 

antibodies to the GFP antigen and the enzymatic reaction (Fig. 3A). All the mice vaccinated 19 

with S19-GFP or infected with 2308-GFP produced significant levels (p<0.001) of antibodies 20 

against GFP, already detectable at three weeks after inoculation and persistent up to the end of 21 

the experiment at 12 weeks after infection (Fig. 3B). All mice injected with S19-GFP showed 22 

significantly higher antibody titers (p< 0.001) against GFP during the 12 weeks of the assay 23 

than mice infected with B. abortus 2308-GFP (Fig. 3B). The differences in antibody 24 
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production between mice vaccinated with S19-GFP and those infected with 2308-GFP, were 1 

not due to different expression of GFP between both strains, as demonstrated by 2 

immunodetection of this protein in bacterial lysates (Fig. 3D3C). Moreover, no cross 3 

reactioncross-reaction against the coral RFP present in 2308-RFP lysates was observed with 4 

either goat sheep anti-GFP (Fig. 3D3C) or mice anti-GFP (not shown), demonstrating the 5 

specificity of the reaction.  Similarly, none of the mice vaccinated or infected with non-6 

fluorescent isogenic parental B. abortus S19 or 2308 strains developed cross-reacting 7 

antibodies against GFP. Although S19-GFP vaccinated mice showed variable levels of 8 

antibodies against LPS during the first weeks of infection as compared to animals vaccinated 9 

with the parental S19 strain, eventually antibodies leveled up at later times (Fig. 3D).  10 

 11 

4. Discussion  12 

 13 

Several attempts to construct Brucella vaccines exhibiting “negative” molecular markers, 14 

such as the absence of periplasmic bp26 or O-polysaccharide chain of the LPS, have been 15 

reported [10, 11, 42, 43]. Although valuable, these approaches have disadvantages. For 16 

instance, the value of vaccine candidates devoid of Omps [44] is hampered by the fact that an 17 

important proportion of naturally infected individuals do not produce antibodies against this 18 

negative cell envelope marker [25, 28, 29]. Similarly, animals vaccinated with rough  B. 19 

abortus RB51 spontaneous mutant or rough B. melitensis punctual mutants, in addition to 20 

produce antibodies against many Brucella protein antigens, also generate antibodies against 21 

LPS core epitopes and in cases, to residual quantities of O chain determinants present in some 22 

of these rough bacterium, including RB51 [11, 17, 45]. These phenomena may be exacerbated 23 

after revaccination; a common practice in many low-income countries, mainly, when 24 
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concomitant infections with field Brucella strains are present [17, 18, 46]. In addition, it has 1 

been argued that the level of protection of rough mutants is considerable lower than that 2 

conferred by smooth attenuated vaccines [10, 11, 18, 20]. Brucella vaccines injected by the 3 

subcutaneous route have been shown to produce abortions and they can be isolated from 4 

tissues or aborted fetuses [13, 47, 48], hampering the expedite distinction between field 5 

Brucella and vaccine strains. These events complicate the direct and differential 6 

bacteriological and serological diagnosis of vaccinated and naturally infected cattle and the 7 

further use of vaccines.  8 

Accordingly, all the mice injected with Brucella strains expressing GFP throughout the course 9 

of this investigation, generated statistically significant levels of specific antibodies against 10 

GFP, which were easily detected by the indirect ELISA-GFP developed here. Taking into 11 

account that GFP displays a particular structure not related to mammalian proteins or mammal 12 

commensal microorganisms [49], it is unlikely that cross-reactions arise, maintaining low 13 

background levels. Furthermore, antibodies against GFP raised in sheep and mice do not cross 14 

react with related fluorescent proteins such as the coral RFP, which shares critical amino acid 15 

motifs and stable three-dimensional beta-can barrel structure with GFP. Although we have 16 

observed that the GFP is highly immunogenic in mice and in a restricted number of ovine 17 

tested, others have shown that the form in which this fluorescent protein is presented to the 18 

immunized animals is relevant for antibody production [50,51]. For instance, while rinderpest 19 

virus vaccine expressing membrane-anchored GFP induces good level of antibodies against 20 

GFP in cattle, that vaccine designed to produce GFP inside infected cells does not [50, 51]. In 21 

this regard it is worth noting that vaccinated mice with S19-GFP consistently generated higher 22 

levels of antibodies than the 2308-GFP infected animals, despite of the fact that both strains 23 

expressed similar quantities of GFP (Fig. 3). Interestingly, B. abortus S19 vaccinated cattle 24 
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consistently produce lower levels of antibodies against the LPS antigen than infected animals 1 

[2, 7, 9], an event that seems to be reversed in the case of anti-GFP antibodies, at least in the 2 

murine model used here. Therefore, the manner in which brucellosis infection proceeds seems 3 

to be a relevant factor for the production of antibodies against GFP and LPS. 4 

The S19-GFP vaccine in addition to induce antibodies against the GFP marker antigen, it 5 

possesses other advantages that eventually could be extrapolated to alternative GFP anti-6 

Brucella vaccines, such as Rev1. First, the S19-GFP is easily distinguished from other 7 

Brucella strains by its intrinsic fluorescence, either macroscopically or microscopically, in 8 

pure cultures or animal tissues and the presence of the gfp gene in vaccine strains could be 9 

detected by a specific PCR. Second, since S19 and Rev1 have been tested extensively over 10 

sixty years, and have been shown to be successful vaccines for the control and eradication of 11 

ruminant brucellosis [2, 4], the need of large and costly trials is precluded. Third, the risk and 12 

cost of production should not differ from that of S19 or Rev1 reference vaccines. Fourth, the 13 

genetics, biochemical and biological properties of these two Brucella vaccine strains have 14 

been extensively studied [1, 11, 52]. Fifth, conventional tests developed to distinguish 15 

infected from S19 or Rev1 vaccinated animals will remain functional. This is important 16 

because some of these tests are able to distinguish abortions and bacterial shedding due to 17 

exacerbated infections with the vaccine strain [47]. And last but not least, it is likely that these 18 

vaccines are eagerly accepted by farmers and agriculture authorities, due to the already 19 

recognized immunogenic and protective properties of its parent S19 or Rev1 reference strains. 20 

The S19-GFP vaccine studied here is a prototype, containing a non-integrative plasmid that 21 

expresses GFP constitutively and owns an antibiotic resistant cassette. In addition it was 22 

tested in mice, widely used in experimental brucellosis, but which do not correspond to the 23 

natural hosts. In conclusion, our approach constitutes a “proof of concept” demonstrating that 24 



14   Brucella-GFP vaccines 

brucellae expressing GFP can successfully deliver this protein as an immunogen after 1 

infection. The stability, biological behavior and the immunogenic properties of the S19-GFP, 2 

makes realistic to design efficient Brucella fluorescent vaccines with a single gfp gene 3 

encoded in the chromosome, which then could be used in domestic ruminants and may be in 4 

wild life hosts.  Moreover, the S19-GFP tested here provides a standard for comparing the 5 

performance of chromosomal GFP-expressing Brucella vaccine candidates in the mouse 6 

model, a fact that gives value to this vaccine prototype.  The prediction that the high 7 

immunogenic properties of the GFP protein would remain in domestic cattle natural hosts of 8 

Brucella spp, and that a combination of simple serological tests shall give the appropriate 9 

specificity and sensibility to unambiguously differentiate Brucella infected from Brucella-10 

GFP vaccinated animals, is currently being tested in ruminants.  11 

 12 
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Table 1. Proportion of fluorescent B. abortus S19 colonies and bacteria isolated from 1 

spleens of vaccinated mice. 2 

  Number of S19-GFP CFU counted in agar plates 

Mouse CFU/spleena  alone / supplemented with 

50 mg/L kanamycin 

under UV light  

A 5.5 ×106 100/100 96 ± 3 

B 5.7 ×106 100/100 98 ± 2 

C 5.5 ×106 100/100 99 ± 2 

D 5.3 ×106 100/100 97 ± 4 

 3 

a Total number of CFU isolated in spleens of mice, at 14 days after intraperitoneal infection 4 

with 1x105 CFU/mouse. 5 

b Fluorescent bacteria from five 100 colonies were counted under the  ultraviolet light in a 6 

Chemi-Doc apparatus (BioRad), while non-fluorescent bacteria were counted in the same 7 

field by phase contrast microscopy. 8 

9 

Comentario [MJG3]:  or by UV 
microscopy? 
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Figure legends 1 

 2 

Fig 1. Biological characteristics of the B. abortus S19-GFP strain. Fluorescent S19-GFP and 3 

non-fluorescent S19 colonies stripes illuminated with UV (A). Number of intracellular and 4 

extracellular B. abortus S19-GFP bacteria and their corresponding parental strain in HeLa 5 

cells, at one hour after infection (B). Replication of B. abortus S19-GFP and their 6 

corresponding parental strain (control) in HeLa cells and Raw 264.7 murine macrophages 7 

(Mø) after 48 h of infection (C). Experiments were repeated at least three times. 8 

 9 

Fig. 2. B. abortus S19-GFP and S19 replication and protection assays in mice. Twenty-five 10 

mice were infected inoculated intraperitoneally with 105 CFU of B. abortus S19-GFP or the 11 

parental S19 reference strain, and groups of five mice killed at the indicated times for 12 

determining the mean number of CFU in the spleens (A). Groups of six mice were 13 

subcutaneously vaccinated with 105 CFU of S19-GFP or S19. An additional group of six 14 

unvaccinated mice (inoculated with 0.1 mL of PBS) was used as control. After sixty days, 15 

mice were intraperitoneally challenged with 5 x 104 CFU of the virulent B. abortus 2308. 16 

After two weeks, all mice were killed and mean (n=6) CFU of virulent 2308 counted in the 17 

spleens, after logarithmic transformation (B). Experiments were repeated twice.  18 

 19 

Fig. 3. Antibody immune response against GFP and Brucella LPS in S19-GFP immunized 20 

mice. Monospecific mouse anti-GFP was diluted and tested by ELISA using rabbit anti-21 

mouse IgG (H+L) horse radish peroxidase conjugate (A). The insert in “A” shows the 22 

immunodiffusion reaction of log2 serial dilutions of monospecific serum against purified 10 23 

µg/30 µl L of GFP. Each point in “A” represents the average of three replicas. Antibody 24 

Comentario [MJG4]:  Ojo! entre esto y 
los ejes de abscisas de las figures 
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response of 1/200 diluted murine serum in PBS against GFP-GST tested by ELISA in mice 1 

inoculated intraperitoneally with 105 CFU of B. abortus S19-GFP or 2308-GFP (B). Western 2 

blot of B. abortus S19-GFP, 2308-GFP and 2308- red fluorescent protein (RFP) against sheep 3 

anti-GFP and rabbit anti- B. abortus Omp19 antibodies (C). Murine aAntibody response 4 

against B. abortus LPS detected by ELISA in mice inoculated intraperitoneally with 105 CFU 5 

of S19-GFP or S19 (D). Each point in “B” and “D” represents the average of five mice. 6 

 7 


