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Abstract

In many cases, it is difficult to derive a precise mathematical model, based on
first principles, for a given process. Besides, the computation of the solution
of models obtained through this methology may require a large computational
effort making them useless for real time tasks like control or optimization.
Neurofuzzy modelling, which permits an easy way to derive successful mod-
els, is a good alternative which can be employed to overcome such limitations.
In this paper, together with the neurofuzzy modelling, several strategies
based on non-linear predictive control are presented. The low computa-
tional cost associated with neurofuzzy models and controllers makes them
suitable candidates to be implemented into industrial Programmable Logic
Controllers (PLC). Both the model and controllers are validated and imple-
mented in a pilot plant for the thermal sterilization of solid canned food in
steam retorts and based on the results, a comparison between the different
predictive control strategies is presented.
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1. Introduction

Nowadays, predictive control is considered a well established technology in
many fields, especially in industrial processes. Its efficiency has been demon-
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strated over the last few years. In general, most applications of predictive
control are based on linear models, which present good results especially if
they work around a duty point [1]. However, there are many applications
where the region of operation and/or the degree of “non-linearity” of the
system reduce the prediction capabilities of linear models thus leading to a
poor control quality. In such cases, Non Linear Model Predictive Control
(NMPC) is a suitable option.
Although the number of applications of NMPC is limited, its potential is
enormous. The possibility of dealing with nonlinear dynamics is the main
advantage over MPC. However, developing precise nonlinear models from
first principles may be a difficult task in many complex processes. Another
disadvantage is that the optimizer solution in non-linear Predictive Control
is a non-convex problem and a large computational effort may be required
to obtain the solution. This is especially relevant when dealing with real
time tasks due to the low computational capabilities of most platforms for
industrial control based on PLCs (Programmable Logic Controllers).
Fuzzy models permit explicit solutions of the optimization (without restric-
tions) with a low computational cost. It should be remarked that an NMPC
procedure based on Fuzzy models could be implemented on small platforms
like PLCs. In this paper, neurofuzzy modelling has been used having a Fuzzy
Inference System (FIS) as a model for NMPC. Fuzzy control has been applied
successfully in many industrial processes [2]. It has required a special part
of the IEC 1131[4] standard, which is about industrial PLC. Many groups
have been involved in this part, leading to IEC 1131-7 [3]. In this part, a
set of functions to program fuzzy control applications, is defined. This set of
functions is named FCL (Fuzzy Control Language). Function blocks defined
on FCL may be used in other languages established by IEC 1131-3. FCL
functions are defined with the following names: Fuzzification, Defuzzification
and Ruleblock [3]. The norm establishes, in addition, a set of optional pa-
rameters for them. Within the scope of the norm, programmers have a easy
way to implement NMPC.
The sterilization of solid food in steam retorts has been chosen as a bench-
mark because this system presents a highly nonlinear behaviour. In addition,
the operation needs to be guided by the achievement of strict requirements
on microorganisms thermal destruction while maintaining the product under
acceptable organoleptic specifications. Such goals must be attained despite
a number of undesirable disturbances acting within the process like sudden
steam temperature shut down situations due to boiler overload (excessive
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steam demand from different retorts). The process is also subject to a con-
siderable degree of parameter uncertainties and to some extent also to a lack
of accurate dynamic models (structural uncertainty): many simplifications
like spatial homogeneity or isotropy assumptions are considered in order to
obtain tractable models. All these issues make the plant be a good testbed for
the illustration of the capabilities of the nonlinear predictive control strate-
gies based on fuzzy models quoted before. Two different techniques have
been developed using neurofuzzy models with Generalized Predictive Control
(GPC)[5] and applied to control the thermal sterilization process in steam
retorts.
This paper is organized as follows. In section 2, a description of the steril-
ization of food plant is presented. In section 3, the neurofuzzy model of a
Food Thermal Processing Application is described. In section 4, three MPC
strategies for autoclave’s temperature control are presented. The practical
implementation of strategies is discussed in section 5. Finally, the conclusions
derived from the results will be commented on section 6.

2. The sterilization of solid food plant

A schematic representation of the pilot plant is depicted in Figure 1. This
unit belongs to IIM-CSIC (Instituto de Investigaciones Marinas-Consejo Su-
perior de Investigaciones Cient́ıficas, Spain). The retort contains the product
to be sterilized, usually consisting of a number of cans with the same specifi-
cations (geometry, size and type of food). Once in the retort, the load will be
subjected to a time-temperature sterilization profile previously “designed” so
to ensure a given lethality (a parameter related to the degree of reduction
in a reference pathogen microorganism) while preserving in as much as pos-
sible the product quality. The specified profile is enforced by regulating the
flow of a stream of saturated steam produced by the boiler. Such stream
will first (in the venting stage, the first of the three stages of a sterilization
cycle) be used to remove the air present in the retort, thus ensuring that
the cans will be heated under the condition of a saturated steam. Such part
of the operation, which is where sterilization is really carried out, is known
as heating. During this stage, the product is usually kept at a given con-
stant working temperature for a certain (predefined) time that will ensure
the achievement of the desired microbiological lethality. At the critical point
(the coldest point/point of least lethality inside the product), lethality is
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defined as follows:

F0 =

∫ t

0

10
Tk

ref−T (r0)

Z dt (1)

where z represents a kinetic parameter, T k
ref its associated temperature and

T (r0) the temperature at the critical point. It is pointed out that due to the
exponential type relationship between temperature and lethality (equation
1), a fine temperature control is needed along this stage in order to avoid
disturbances that could result in a serious over-processing of the product.
Finally, and in order to avoid over-processing and therefore quality losses, the
product needs to be cooled as fast as possible. Cooling water is employed
during this part of the operation as a means of fast cooling while compressed
air will be introduced in the retort in order to compensate for sharp pressure
drops. A complete description of the sterilization process and operation for
different control schemes can be found in [6], [7], [8] and [9]. In this pilot
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Figure 1: A prototype of thermal sterilization in a steam retort [8]

plant, the steam coming from the boiler is passed through a reduction valve
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in order to make the inlet steam valve pressure to be constant (in this case
P ∼ 3.5 bar).
The retort temperature is measured by three resistance thermometers (PT100 )
located at the center cross section of the vessel and eight thermocouples
(TC). The inlet steam, outlet bleeder and outlet drain temperatures are also
measured with PT100 sensors while the pressure is measured with mem-
brane transducers. The PT100 and pressure signals are sent to a external
data acquisition module WebDAQ/100 which communicates with the PC
through a TCP/IP internet protocol while the thermocouple signals are sent
to a external acquisition module (ADAM ) which communicates with the
PC through a serial port. The monitorization and control is programmed
in LabV IEW TM 7 Express. The signal is sent to the motorized valves
(Siemens PV 90(DN15)) through the internal data acquisition system (a
digital input/digital output card NI −DAQTM7).
From a control point of view, the system can be described as a Multi-input
Multi-output MIMO plant, or more precisely, a set of MIMO plants repre-
senting the different stages of the process namely venting, heating and cool-
ing. In the first two situations, inputs correspond with the positions of the
steam, drain and purge valves, while the outputs are temperature and pres-
sure inside the retort. The transition from venting to heating is detected by
comparing current pressure measurements with the pressure corresponding
to saturated steam which can be easily estimated from temperature mea-
surements by applying the Antoine Law. In this way, when both variables
(current pressure and saturated steam pressure) become the same, no air is
present in the retort and heating may proceed. The system can be described
by a set of ordinary differential equations, partial differential equations and
algebraic equations, derived from mass and energy balances [8], [11]

3. Neurofuzzy Models

Takagi-Sugeno Fuzzy models (TS) [14] have been applied successfully in
non-linear model based techniques [15]. These models may be formulated
as an Adaptive Neuro-Fuzzy Inference System (ANFIS) [16]. In figure 2
an ANFIS is presented as an example with N input variables, one output
variable and five layers. The first layer is composed of membership functions
Auij, defined by the membership degree

µAuij
: ui ∈ R 7−→ µAuij

(ui) ∈ R (2)
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Figure 2: Fuzzy Neural Network [16]

The output of each node i is µAuij
(ui), the membership degree of ui. For the

definition of these membership functions, some standard types are used. In
this work, gaussian membership functions are used (see figure 4).
The second layer has nodes labelled with Π which implement fuzzy inference
machine. For example, if logical operation AND is carried out by multipli-
cation, the output of each node j of this layer is:

ωj = µAu1j
(u1)·µAu2j

(u2)·...·µAuNj
(uN) (3)

The third layer normalizes the inference motor. The output of each node of
this layer is:

ωi =
ωi∑N
i=1 ωi

(4)

The fourth layer has adaptive nodes:

ωi·fi = ωi·(p1iu1 + ... + pNiuN + ri) (5)

Finally, the fifth layer is the defuzzyfication node. For TS systems, the output
will be:

N∑
i=1

ωi·fi =

∑N
i=1 ωi·fi∑N

i=1 ωi

(6)

Fuzzy Neural Networks (FNN) combine the capability of uncertainty han-
dling in information with learning skills [16], [17]. Recurrent Fuzzy Neural
Networks (RFNN) have demonstrated to be better at getting all the dynam-
ics of nonlinear systems. They are systems which have the same advantages
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as recurrent neural networks [18],[19]. RFNN are also named Fuzzy Dynam-
ical Systems (see figure 3) and extend the application domain of FNN to
temporal problems. Feedback allows the capture of dynamics and change.
In the neurofuzzy model proposed by Takagi-Sugeno (TS), the structure of

Outputs

Inputs

i

Figure 3: Dynamical Neurofuzzy System

antecedent describes fuzzy regions in the input space, and the one of conse-
quent presents non-fuzzy functions of the model inputs. If recurrent functions
with NARMAX structure (Non-linear Auto Regressive Moving Average with
eXogenous input) of the kind:

ŷ(k + 1) = f(y(k), ..., y(k −m), u(k), ..., u(k − n))

are used, being u, y for each rule the inputs and outputs of the system re-
spectively, the system may be described by the following way:

Rj :
IF x1(k) is F1j, ..., and xn(k) is Fnj,
THEN: yj(k) = aj(z

−1)y(k − 1) + bj(z
−1)u(k − d) + cj

With aj(z
−1) = a1j + a2jz

−1 + ... + anyjz
−(ny−1) and bj(z

−1) = b0j + b1jz
−1 +

b2jz
−2 + ... + bnujz

−nu and where X(k) = [x1(k)x2(k)...xn(k)]T is the input
vector of the neurofuzzy system in the instant k, Fij is the fuzzy set respec-
tive to xi(k) on the rule j, yj(k) is the output of the model respective to
the operating region associated to the rule, d is the dead time and cj is a
constant term. If µij(k) is the membership degree of xj(k) in the fuzzy set
Fij and the number of implications or rules is L, the RFNN complete model
is possibly described by

y(k) =
L∑

j=1

wj(k)
[
aj(z

−1)y(k − 1) + bj(z
−1)u(k − d)

]
+ ξ(k) (7)
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where

wj(k) =
µ̄j(k)∑L
j=1 µ̄j(k)

, µ̄j(k) =
n∏

i=1

µij(k), ξ(k) =
L∑

j=1

wj(k)cj (8)

A study and comparison of fuzzy model based predictive control strategies,
will be covered in this paper. Two strategies of NLMPC using neurofuzzy
models will be presented, which, due to its low computational cost, will be
suitable to implement on a typical industrial PLC of medium range, which is
very common in industry. Moreover, taking into account that fuzzy technolo-
gies are being incorporated more and more in these kind of devices, which
include specific libraries of functions, the programming and tuning of con-
trollers will be simplified [2], [3].
In order to describe temperature profile in the heating period, a neurofuzzy
model has been made. A previous knowledge of influence of variables in the
temperature of autoclave and heuristic simulation expertise, have been used
to obtain the inputs of the system, which were shown effective under com-
puter simulations.
Inputs correspond with the positions of the steam valve (us), drain and purge
valves (ud, ub), temperature of steam (Ts) and previous samples for the tem-
perature inside the retort (T (t − 1), T (t − 2)), while the output T (t) is the
current temperature of autoclave.
A real operation data set has been used in addition to simulation data
obtained from a model derived from first principles and implemented in
EcosimPror[10], [11].
Subtractive clustering (SC) method [12] has been used to provide initial rule
parameter values. The training process to fit the FIS to dataset is based on
a combination of the least-squares method and the backpropagation gradient
descent method [13]. The rules base obtained is:

• IF us(t) IS in1mf1 AND Ts(t) IS in2mf1 AND ub(t) IS in3mf1 AND
ud(t) IS in4mf1 AND T (t− 2) IS in5mf1 AND T (t− 1) IS in6mf1
THEN:

T (t) = 0.385us(t)− 0.141Ts(t) + 0.0584ub(t) + 0.0875ud(t)

+ 0.125T (t− 2) + 0.732T (t− 1) + 0.116; (9)

• IF us(t) IS in1mf2 AND Ts(t) IS in2mf2 AND ub(t) IS in3mf2 AND
ud(t) IS in4mf1 AND T (t− 2) IS in5mf2 AND T (t− 1) IS in6mf2
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THEN:

T (t) = 0.0354us(t) + 0.002Ts(t) + 0.007ub(t) + 0.011ud(t)

− 0.308T (t− 2) + 1.272T (t− 1) + 0.015; (10)

where inimf j are the membership functions (MF) presented in figure 4.
There is only one MF for input 4 (in4mf1) because after the clustering
method, two equal MF: in4mf1 and in4mf2 were produced. The mean-
ing of MFs is not relevant to make the model. In fact, clustering methods
frequently give arise to MFs difficult to interpret. In figure 5 the compari-
son between the model and the real data (open loop) of the temperature in
the autoclave can be observed. The temperature shows a highly oscillatory
behavior. This is due to the conversion to liquid of the steam inside the re-
tort and other disturbance. As shown, the fuzzy model is able to accurately
describe the system’s behavior.

4. Model based Predictive Control

The control strategies presented here are based on one of the most popular
algorithms: Generalized Predictive Control (GPC) [5]. The output predic-
tion in GPC is given by a CARIMA (Controlled Auto-Regressive Integrated
Moving Average) model of the plant:

A(z−1)y(t) = z−dB(z−1)u(t− 1) + C(z−1)
ε(t)

∆
(11)

where u(t) and y(t) are the control and output sequence of the system, d the
dead time of the plant, ε(t) is a zero mean white noise

A(z−1) = 1 + a1z
−1 + a2z

−2 + ... + anaz
−na

B(z−1) = b0 + b1z
−1 + b2z

−2 + ... + bnbz
−nb

C(z−1) = 1 + c1z
−1 + c2z

−2 + ... + cncz
−nc

being ∆ = 1− z−1.
For simplicity, in the following C(z−1) is chosen to be 1. The sequence of
future control signals are calculated such that they minimize a multistage
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cost function defined by:

J(N1, N2, Nu) =

N2∑
J=N1

δ(j) [ŷ(t + j | t)− w(t + j)]2 +
Nu∑
j=1

λ(j) [∆u(t + j − 1)]2

(12)
Where ŷ(t + j | t) is a j-step ahead prediction of the system output on data
up to time t, N1 and N2 are the minimum and maximum prediction horizon,
δ(j) and λ(j) are weighted sequences, and w(t + j) is the future reference
trajectory.
To solve the problem, we considered the following Diophantine equation:

1 = ∆ej(z
−1)A(z−1) + z−jfj(z

−1) (13)

where ej(z
−1), fj(z

−1) are polynomials uniquely defined. They can be ob-
tained recursively in an easy way and they can be expressed by: ej(z

−1) =
ej,0 + ej,1z

−1 + ej,2z
−2 + ... + ej,j−1z

−(j−1),
fj(z

−1) = fj,0 + fj,1z
−1 + fj,2z

−2 + ... + fj,nyz
−ny ,

In order to obtain the predictive output, let us first define the following
expression:

gj(z
−1) = ∆ej(z

−1)B(z−1) (14)

where gj(z
−1) = gj,0 + gj,1z

−1 + gj,2z
−2 + ... + gj,j+Nu−1z

−(j+Nu−1),
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and let us multiply equation (11) by ∆zjej(z
−1) to get

∆zjej(z
−1)A(z−1)y(k) = ∆zjej(z

−1)B(z−1)u(k − d) + ξ̄(k) (15)

where ξ̄(k) = ∆zjej(z
−1)

ε(t)

∆
. Therefore by using (13) and (14), the following

predictive output is obtained:

ŷ(k + j|k) = fj(z
−1)y(k) + gj(z

−1)∆u(k + j − d) (16)

The horizon can be defined by N1 = d+1, N2 = d+N and Nu = N . To solve
the GPC problem, the set of control signals u = [u(t), u(t + 1), ..., u(t + N)]T

has to be obtained in order to optimize the expression (12). As the cost
function is quadratic, the optimum can be easily obtained, assuming there
are no constraints on the control signals, making the gradient of J equal to
zero. Considering δ(j) and λ(j) constants and grouping the terms of equation
(16) which depend on the past, into f , it leads to

u = (GT G + λI)−1GT (w − f) (17)

where G =
[
gd,0 gd+1,0 ... gNp,0

]T

and w = [w(t + d + 1) w(t + d + 2) ... w(t + d + N)]T The control signal
that is sent to the process is the first element of u, given by:

∆u(t) = K(w − f) (18)

Fuzzy Generalized Predictive Control

As mentioned in the introduction, linear controllers may result too poor
on reference tracking when dealing with highly nonlinear systems. This fact
will be illustrated in the following section by means of an experimental case
study (the sterilization of solid food in steam retorts). In these cases, other
alternatives, in which non-linear models in predictive control could be used,
may result in suitable alternatives to the linear controllers. There are sev-
eral proposals in this field [1], [20], [29] and [21]. An interesting option is to
use neurofuzzy models [22],[23],[24],[25],[26],[27],[28]. Perhaps, the main is-
sue in non-linear Predictive Control is how to obtain the optimizer solution,
which consists in a non-convex problem and its resolution includes a high
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computational cost to solve in real time. During the last few years, several
techniques have arisen to avoid the problems associated of an exact solution
to the non-convex optimization problem [1]. Moreover, closed loop stability
must be guaranteed.
Two strategies based on the neurofuzzy model obtained for autoclave are ap-
plied here. It is seen in section 3, the nonlinear model of the Takagi-Sugeno
system, has a set of linear models described in equations 9 and 10. For sim-
plification, supposing that Ts, ub and ud are constant for each rule, it can be
written:
for rule 1:

∆T (t) = T (t)−T (t−1) = 0.385∆u+0.125∆T (t−2)+0.732∆T (t−1) (19)

and for rule 2:

∆T (t) = T (t)−T (t−1) = 0.0354∆u−0.308∆T (t−2)+1.273∆T (t−1) (20)

the linear models equations for the controllers are:
for rule 1:

T (t) = 0.385u(t−1)−0.385u(t−2)+0.125T (t−3)+0.606T (t−2)+1.732T (t−1)
(21)

and for rule 2:

T (t) = 0.035u(t−1)−0.035u(t−2)−0.308T (t−3)+1.580T (t−2)+2.273T (t−1)
(22)

where u(t) is the position of the steam valve.
A strategy proposed in [26], [28], [29] and [30] lies in calculating as many
GPC controllers as linear models obtained in the neurofuzzy model, such
that the controller output be:

u(k) =
L∑

j=1

wj(k)uj(k) (23)

where L is the number of linear models and wj was defined in (8), uj(k) is
the control action given by equation (17), for each linear model of neurofuzzy
model. This procedure will be referred to as the FGPC1. The advantage of
this technique lies on its easy and fast implementation, which allows its pro-
gramming on a simple industrial PLC. The main disadvantage of this strat-
egy is that global optimum is not always found. However, a local optimum
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is guarantied for each rule or implication [30].
Another non-linear strategy based on neurofuzzy models (FGPC2) is pro-
posed in [22]. Recurrent neurofuzzy model could be rewritten as a Linear
Time Variant (LTV)

ā(z−1)y(k) = b̄(z−1)u(k − d) + ξ(k) (24)

Where d is a transport delay, ξ(k) is a white noise sequence with null average
and

ā(z−1) = 1− ā1z
−1 − ā2z

−2 − ...− ānyz
−ny

b̄(z−1) = b̄1z
−1 + b̄2z

−2 + ... + b̄nuz
−nu

āi =
L∑

j=1

wj(k)aijz
−i

b̄i =
L∑

j=1

wj(k)bijz
−i

The cost function defined in (12) can be expressed like:

J(k) = (Fy(k)+G∆u(k)+Λ−ΦW )T (Fy(k)+G∆u(k)+Λ−ΦW )+(λ(z−1)∆u(k))2

(25)
Where

F =
[
fd(z

−1) fd+1(z
−1) ... fNp(z

−1)
]T

,

Λ =

[
d+Nu−1∑

ρ=1

gd,ρ∆u(k − ρ)
d+Nu∑
ρ=1

gd+1,ρ∆u(k − ρ) ...

...

Np+Nu−1∑
ρ=1

gNp,ρ∆u(k − ρ)

]T

Φ = diag{δd δd+1 ... δNp}
W = [w(k + d) w(k + d + 1) ... w(k + Np)]

T

To reduce computational cost, control horizon is reduced to Nu = 1. Which
leads to

GT (Fy(k) + Λ− ΦW ) + (GT G + λ(z−1)λ0)∆u∗(k) = 0 (26)
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To be able to simplify the control law, λ2
0 = λ > 0 is chosen. Values

λ1, λ2, ..., λNp are adjusted such that they meet:

∆u∗(k) =
GT (ΦW − Fy(k))

GT G + λ
. (27)

5. Control developments and experimental Results

The pilot plant described in section 2 will be employed in this section in
order to illustrate the performance of the different controllers, derived in this
paper, on a real case study.
A previous control strategy using a PI-type controller parameterized by
means of the Internal Model Control (IMC) technique [31] is presented on
[8]. In the real plant, the controller has been readjusted, improving its per-
formance.
For linear GPC, the model used was:

T (z)

u(z)
=

0.01177z − 0.01182

z2 − 1.982z + 0.9821
(28)

Where T (z) is the temperature inside the retort and u(z) the opening of
steam valve. After a tuning process over a simulation, the values chosen for
the controller were: prediction and control horizons:Np = Nu = 4, weighting
parameter of the control action λ = 0.6. Using equation 18:

u(k) = u(k−1)−12.01T (k−1)+21.68T (k−2)−12.85T (k−3)+2.30T (k−4)

+ 0.44w(k + 1) + 0.27w(k + 2) + 0.14w(k + 3) + 0.04w(k + 4) (29)

Where a soft approximation of future reference trajectory r(t + k) has been
used with α = 0.7

w(t + k) = αw(t + k − 1) + (1− α)r(t + k), k = 1, ..., Np (30)

Figure 6 shows the closed loop response of the retort temperature (black line)
with the PI and GPC controller. Four different steps have been introduced in
the set point (green line). As illustrated in figure 6(a), the GPC controller is
not only slow but it rarely reaches a good approximation to the set point. The
PI controller has a better performance. In figures 6(b)/(c) we can observe a
dependence of steam temperature (TS), which is a disturbance variable, on
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Figure 6: Performance of PI and GPC. (a) Tracking of temperature inside the retort. (b)
Steam Temperature. (c) Steam valve opening percentage
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Table 1: Index comparison

Index PI GPC FGPC1 FGPC2
IAE 3107 13901 5429 3975
Et 107360 65741 58911 73907

uS. This is due to the change of the pressure produced by the valve in the
steam pipeline. The PI controller is more aggressive in this change and the
variation in TS helps to do better tracking than GPC. However, an MPC
strategy will permit less energy consumption.
As mentioned in the introduction, a good controller performance is required
in these kind of processes. In order to obtain a better closed loop response
with less consumption, the nonlinear controller FGPC1 (see section 4) has
been implemented. To carry out FGPC controllers proposed here using an
industrial PLC, the gaussian membership functions (see fig. 4) are changed
by new triangular membership function. In figure 7, the new equivalent
functions are shown. This is due to many PLC only have triangular functions

The comparison between FGPC and GPC controllers is presented in Fig-
ure 8. It is clear that this control scheme is able to approach the retort
temperature (black line) to the set point (green line) better than the GPC
(blue line).
Comparison between FGPC and PI behavior is shown in figure 9. We can
observe a better tracking of PI, but with more energy consumption In a third
test, the FGPC2 technique has also been applied to the pilot plant under sim-
ilar conditions than the other controller. Black line in Figure 10 corresponds
with the closed loop (FGPC2) temperature response. At first sight it seems
(although difficult to assert) that it improves the FGPC1 results. In order to
obtain a more quantitative comparison between these strategies, the IAE (as
a measurement of the tracking error) and an index of energy consumption

Et =

∫

t

us(t)dt. have been computed and presented in Table 1. The IAE for

the FGPC2 is about 27% lower than the IAE for the FGPC1 asserting that
its performance is better.
It is important to highlight that the FGPC2 presents a similar performance
to the PI, but with a savings of approximately 41% of energy. In figure 11,
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Figure 7: Equivalent triangular membership functions
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we can compare all the strategies presented.

6. Conclusions

Three MPC control strategies (one linear and two nonlinear) have been
designed and implemented in a pilot plant for the thermal sterilization of solid
canned food in steam retorts. The nonlinear controllers have been based on
Neurofuzzy models which have been validated with experimental data from
the real plant. A very good agreement between experimental and simulated
data by the model has been obtained even for a large prediction horizon. The
controller with the best performance has been the Non-linear GPC based
on a recurrent Fuzzy Network LTV. Both nonlinear strategies present much
better behavior than linear MPC strategy based on GPC. In comparison with
a PI controller parameterized by means of the IMC technique [8], the second
NLMPC strategy presents less energy consumption with similar tracking.
The main advantage of these non-linear strategies is the possibility of being
carried out on a PLC, saving a considerable cost in hardware; no distributed
control systems (DCS) or expensive comercial hardware platforms are needed.
This, in addition to modelling simplicity, makes it very attractive to the
implementation into an industrial environment.
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Figure 9: Comparison between PI and FGPC1. (a) Tracking of temperature inside the
retort. (b) Steam Temperature. (c) Steam valve opening percentage
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Figure 10: Comparison between PI and FGPC2. (a) Tracking of temperature inside the
retort. (b) Steam Temperature. (c) Steam valve opening percentage
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Figure 11: Comparison between PI, GPC, FGPC1 and FGPC2. (a) Tracking of tempera-
ture inside the retort. (b) Steam Temperature. (c) Steam valve opening percentage
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