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Abstract 

Eukaryotes ubiquitylate the replication factor proliferating cell nuclear antigen, PCNA, to tolerate 

DNA damage. Although in the last few years the understanding of the evolutionarily conserved 

mechanism of ubiquitylation of PCNA, and its crucial role in DNA damage tolerance, has 

progressed impressively, little is known about the deubiquitylation of this sliding clamp in most 

organisms. In the present review we will discuss potential molecular mechanisms regulating 

PCNA deubiquitylation in yeast. 

 

The role of PCNA ubiquitylation in DNA damage tolerance 

The root of the problem is that many types of lesions block DNA replication forks progression 

during S-phase and this is intrinsically dangerous: It is thought that tolerance mechanisms exist 

because they prevent irreversible DNA replication fork collapse when the replisome encounters 

a (bulky) DNA lesion so that the restrictive nature of the active site in processive DNA 

polymerases impedes adequate progression of the replicative machinery. 

 

Mechanism(s) of tolerance are essential for cells to survive exposure to genotoxic agents that 

damage DNA (or to resist treatments with them). In all organisms, these mechanisms ensure 

that DNA can be replicated even when it is damaged. This is of critical importance for cells 

because DNA lesions at damaged sites slows or blocks the progression of DNA replication forks 

increasing the risk for irreversible fork collapse. DNA lesions are circumvented by low stringency 

DNA polymerases that are able to bypass damaged sites in a so-called translesion DNA 

synthesis reaction. These DNA polymerases are called translesion synthesis, TLS, 

polymerases. TLS polymerases are not only damage tolerant enzymes but also mutagenic 

because they induce an error-prone process that causes damaged-dependent mutations. Not 

surprisingly, in mammals mutation of TLS polymerases may be associated to genomic instability 

and cancer. It is well established that in eukaryotes covalent modifications of proliferating cell 

nuclear antigen (PCNA) by ubiquitin regulate the choice of alternative pathways to bypass DNA 

lesions during S-phase [1-5]. 

 

The current understanding of the field is that cells ubiquitylates PCNA to allow the change from 

a processive or replicative DNA polymerase for another (TLS) polymerase to, then, replicate 

over-processive polymerase blocking lesions in DNA. This implies that ubiquitylated PCNA 

signals damaged DNA. Experimental evidence suggest that the process of translesion synthesis 

requires the switch between polymerases in a step-wise dependent manner: High-fidelity 

replicative polymerases are first blocked when they encounter a given DNA lesion, then, likely 

as a consequence of the first step, PCNA is ubiquitylated and, third, the stalled replicative 

polymerase is replaced by a TLS polymerase. In contrast with replicative enzymes, TLS 

polymerases are low-fidelity DNA polymerases, non-processive enzymes that lack any 

proofreading activity and are capable of replicating over DNA lesions. Importantly, TLS-

polymerases DNA lesion bypass is independent from lesion repair (the DNA damage is left 
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behind, once the replisome has passed the lesion, for a later repair independent from S-

phase/DNA replication).  

 

Why the need for PCNA deubiquitylation? It is a likely consequence of the high-affinity 

mechanism underlying translesion DNA synthesis. Monoubiquitylated PCNA not only signals 

damaged DNA but it is also a powerful/specific binding site for TLS polymerases, consequently 

cells need to deubiquitylate PCNA to prevent these non-processive, low-fidelity DNA 

polymerases to sample DNA more frequently than strictly required. In fact, TLS polymerases 

may be constantly sampling chromatin during DNA replication, both in the presence or in the 

absence of ubiquitylated PCNA. However, monoubiquitylated PCNA may prolong (in time) this 

interaction [6]. 

 

Ubiquitylation of PCNA is induced by chemicals causing disruptive covalent modifications of 

DNA blocking replication and involving the accumulation of single stranded DNA. In the yeast 

Saccharomyces cerevisiae, PCNA is ubiquitylated during S-phase in response to detection of 

DNA lesions caused by methyl methanesulfonate (MMS), hydroxyurea (HU), 4-Nitroquinoline 1-

oxide (4-NQO), UV-light, hydrogen peroxide (H2O2) and ionizing radiation [7]. In fact, it has been 

shown that PCNA is ubiquitylated in response to MMS and UV-light in all eukaryotic organisms 

studied to date (reviewed in [3]). In particular, and in response to DNA damage, PCNA is 

ubiquitylated in budding and fission yeast [8-10] Xenopus [11-13] and human cell lines [14,15]. 

Evidence also suggest that abasic lesions on DNA induce PCNA ubiquitylation because TLS 

DNA polymerases are required for proficient replication through abasic DNA lesions in yeast 

and mammalian cells [16,17]. 

 
Control of PCNA ubiquitylation in S.cerevisiae 

The key regulatory role of covalent modifications of sliding clamp PCNA in the control of 

tolerance to DNA damage is now a solidly established model in S.cerevisiae likely conserved in 

all eukaryotes [2-5,18]. Interestingly, the PCNA homotrimer can be SUMOylated or ubiquitylated 

at the same lysine residue (Lys164). Addition of the SUMO residue to Lys164 is controlled in 

yeast by the SUMO ligase complex Ubc9-Siz1 (E2-E3). PCNA is monoubiquitinated at the same 

Lys164 residue by the E2-E3 complex Rad6-Rad18 , thus, a PCNA monomer can either be 

SUMOylated or ubiquitinated (at Lys164). Monoubiquitinated PCNA can be further 

polyubiquitinated by the E2-E3 complex Mms2-Ubc13-Rad5 whose activity is modulated by the 

complex Esc4-Slx4. Thus, with key regulatory implications, ubiquitylation of PCNA unavoidably 

occurs in a sequential manner. PCNA is first monoubiquitylated to enhance the affinity of Rev1-

Rev3-Rev7 error-prone DNA polymerases that facilitate translesion synthesis (TLS) and then 

eventually undergoes polyubiquitylation to promote template switching, the error-free 

component of lesion bypass that involves sister-strand recombination ([2] and references there 

in). SUMOylated PCNA at Lys164 prevent homologous recombination during S-phase in the 

budding yeats [19]. Finally, also in budding yeast, Lys127 of the sliding clamp monomer can be 

SUMOylated to inhibit sister chromatid cohesion by preventing Eco1 acetyltransferase binding 
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to PCNA [5,20].  

 

Any contribution of the ATR-checkpoint pathway to the regulation of PCNA 

ubiquitylation? 

A checkpoint response ensure cell viability in the face of DNA damage. This surveillance 

mechanism delays, or even arrest, cell cycle progression, thus, providing additional time for 

cells to repair damaged DNA [21-23]. It is initiated by the kinase ATR that activates a signal 

transduction cascade that regulate repair responses including transcription of the DNA damage 

response genes, activation of DNA repair processes and recruitment of proteins to sites of DNA 

damage. All major components, as well as major details in the regulation of the transduction 

pathway, are conserved in eukaryotes. In S.cerevisiae the ATR-homologue Mec1 plays a key 

role in the signalling cascade by phosphorylating downstream effector kinases Rad53 or Chk1 

in response to lesions in DNA and to defects at DNA replication forks [24,25]. Studies in 

S.cerevisiae and S.pombe on a potential mutual dependence of the ATR checkpoint signalling 

and DNA damage tolerance mechanisms indicate that they are different responses to DNA 

damage [7,10], suggesting that the two pathways evolved independently. However, in Xenopus 

and human cells the situation is more controversial and a regulatory role of the ATR-mediated 

checkpoint response or some of its components to the ubiquitylation of PCNA cannot be 

excluded [12,13,26-29]. 

 
Ubiquitin-specific proteases in budding yeast 
In S.cerevisiae, the E2-E3 ubiquitin ligase complex that ubiquitylates PCNA in response to DNA 

damage during S-phase, as mentioned earlier, is well characterized (reviewed in [2]). PCNA is 

ubiquitylated by the Rad6/Rad18 complex during S-phase and, then, it is actively 

deubiquitylated. However, the nature of the yeast enzyme (or enzymes) that deubiquitylates 

PCNA remains unknown. In budding yeast there are 17 genes that codify for different ubiquitin-

specifc proteases (therefore potential candidates), some of them have been extensively studied 

while the function of others remains uncharacterized (and so they are putative deubiquitinating 

enzymes) [30,31]. These are named UBPs (from UBP1 to UBP17), where UBP stands for 

ubiquitin protease. Among the characterised UBPs, the ubiquitin protease complex Bre5/Ubp3 

has been circumstancially related to the cellular response to phleomycin-mediated DNA 

damage [32] perhaps a consequence of its role on RNA polymerase II deubiquitylation [31]. 

Ubp10/Dot4, a nuclear DUB, has been shown to regulate histone H2B deubiquitylation helping 

to localise histone deacetylase Sir2 to the telomeres [33]. Interestingly, Ubp9, a cytoplasmic 

DUB, and Ubp10 have been identified as in vitro checkpoint kinase Rad53 substrates [34] 

suggesting a potential regulatory framework in response to DNA damage. The other nuclear 

DUB, Ubp8 is a component of the SAGA complex and plays a role in gene activation also 

through deubiquitylation of histone H2B [35]. Despite these evidences the S.cerevisiae PCNA 

ubiquitin protease remains elusive, in part because neither genetic nor biochemical screening 

has been designed yet to identify potential candidates. However, a comparative analysis with 

characterized PCNA interacting protein, PIP, domains may reveal key information. 
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PIP interacting domains in yeast (S.cerevisiae) UBPs 

Assuming that PCNA deubiquitylating enzyme must interact in vivo with the sliding clamp, what 

sequence analysis of yeast Ubp proteins reveals is that there are no full canonical PIP domains 

conserved in S. cerevisiae UBPs. QxxL/I/MxxFF is a full consensus PCNA-binding site present 

in many proteins that interact with the processivity factor during DNA replication [36]. 

S.cerevisiae UBPs lack such a consensus binding site. However, direct or indirect interaction 

between PCNA and an Ubp regulating deubiquitylation of covalently modified PCNA must exist, 

because active PCNA deubiquitylation occurs as cells exit from DNA damage. Alternatively, it 

has been described a PIP box variant that allows Eco1 to interact with PCNA. Eco1/Ctf7 is 

directly coupled to PCNA to trigger chromatid cohesion during replication via a conserved PIP 

box variant (QxxL/I) within the N-terminal PCNA binding domain [20]. A simple analysis of the 

primary amino acid sequences revealed that such PIP plain variant is present a number of times 

in four out of seventeen UBPs in yeast, namely Ubp3, Doa4/Ubp4, Ubp8 and Dot4/Ubp10 

(Figure 1).  

 

Any (auto)regulatory control on PCNA deubiquitylase(s) in yeast? 

In human cell lines, USP1 deubiquitylates PCNA constantly in the absence of DNA damage. 

USP1 has been identified as the DUB that deubiquitylates PCNA [37]. Upon UV-light induced 

DNA damage, USP1 is (auto)degraded so that PCNA becomes ubiquitylated [37,38]. PCNA 

ubiquitylation is required for mammalian cell survival after UV-irradiation, hydroxyurea and 

methyl methanesulfonate [39]. However, the persistence of ubiquitylated PCNA based on USP1 

disapareance upon UV-irradiation is not observed when DNA replication forks progression is 

blocked with HU [40]. USP1 is also involved in the deubiquitylation of the Fanconi Anemia  

protein FANCD2 that, indeed, has a role in repair of DNA crosslinks [41,42]. Of particular 

interest is that inactivation of murine USP1 results in genomic instability and a Fanconi anemia 

phenotype [42]. An autocatalytic cleavage event in human USP1 in response to UV-irradiation 

suggest a mechanism of self control that eventually would allow net ubiquitylation of PCNA (as 

long as the DNA damage response is active). However, yeast DUBs lack the autoproteolytic 

domain observed in human and conserved in vertebrates USP1-like deubiquitylating enzymes 

[37]. Thus, yeast UBPs are unlikely to be regulated in a similar manner.  

 

Is there any mutagenesis safeguard mechanism to keep TLS polymerases in check?  

Mutation of PCNA ubiquitin protease(s) should progressively result in increasing amounts of 

PCNA ubiquitylation. This is potentially damaging for the cell as an increase in 

monoubiquitylated PCNA would allow TLS polymerases to sample DNA more frequently than 

required, resulting in a net increase in mutation rates. If this is the case, it should be predicted 

that abrogation of PCNA DUB should result in a TLS polymerases-dependent mutator 

phenotype. Another direct effect of the net increase in the amounts on monoubiquitylated PCNA 

is that mutation of yeast PCNA ubiquitin protease(s) should break the relative balance in wild-
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type cells between TLS and strand swichting bypass of DNA lesions. The Rad6/Rad18 

ubiquitylation pathway is naturally unbalance towards the error-free branch, since it is estimated 

that strand swichting accounts for more than 70% of the lesion bypassing events [43]. 

 

In undamaged human cells, deubiquitylation of PCNA by USP1 reveals the possibility of a 

mechanism against the mutagenic effect of damage-tolerant DNA polymerases [44]. As 

mentioned before, in cycling cell lines, it has been suggested that USP1 continuously 

deubiquitylates the DNA replication processivity factor, PCNA, as a safeguard against error-

prone translesion synthesis of DNA. When UV-light mediated DNA damage is sensed, USP1 is 

down-regulated by an autocatalityc-induced two-step proteolysis process. Proteolysis of USP1 

allows accumulation of monoubiquitylated PCNA [37].  

 

The deubiquitylation of PCNA may be envisioned as a control process that provides a 

mechanism for the cell to counterbalance the potential deleterious effect of TLS polymerases. If 

this is the case, it should be predicted-or so our thinking goes-that mutation of the UBP enzyme 

controlling PCNA deubiquitylation shoud have an impact in the balance of the bypass of a given 

lesion by the error-free or the error-prone branches of covalent modifications of PCNA. 

 

Model(s) for deubiquitylation of PCNA in budding yeast: Two working hypothesis 

We hypothesize simple alternative models that explain how replicative complex switches back 

and forth to processive DNA polymerases when a given lesion on DNA is bypassed by using 

TLS polymerases. We propose two different scenarios. In a first model (Figure 2) a yet 

uncharacterized UbpX deubiquitylating enzyme (a single DUB or a number of them) forms part 

of the replicative complex (thanks to its capacity to interact with PCNA). When a lesion is 

detected, PCNA is monoubiquitylated to regulate the interaction with TLS (error-prone) 

polymerases that will result in lesion bypass or with Mms2/Ubc13/Rad5 ubiquitin ligase complex 

with a similar, but error-free, purpose. Once the lesion is left behind, UbpX-dependent PCNA 

deubiquitylation will take place, thus, preventing excessive action of these non-processive, low-

fidelity DNA polymerases (TLS-polymerases) or less-processive template switching, thus, 

allowing the return to normal replicative DNA polymerases. In the second model, ubiquitylated 

PCNA will signal where the DNA lesion localizes. The mechanistic details of how the DNA 

lesion is bypassed will not differ from the first model, however, there will be no switch back to 

processive DNA polymerases and mono and polyubiquitylated PCNA will help to attract also 

repair enzymes for a later repair at the end of the replicative phase or even, perhaps, 

independently from it. A major difference between these alternative models is WHEN lesion 

bypass occurs. In the first model lesion bypass occurs immediately after the replisome finds the 

DNA lesion, in the second model it may occur later during S-phase (even in G2) after 99% of 

the genome has been replicated. In fact, in mammals, two lines of evidence support the second 

model, first, ubiquitylated PCNA remains bound to chromatin well after the lesion has been 

removed [28], and, second, Rev1 TLS polymerase is highly expressed at the G2/M transition 
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[45]. Several predictions may be inferred from these hypothesis, in particular the second model 

leads to the conclusion that DNA replication will end nearby the PCNA ubiquitylation site (that is 

to say where the DNA lesion is). Another prediction is that deubiquitylation of PCNA will take 

place late (or very late) during an extended S-phase. Future studies are required to address 

these issues. 

 

Yeast as a model for understanding the control of PCNA deubiquitylation 

Regulation of PCNA deubiquitylation may differ significantly from yeast to mammals, and even 

among yeast models as it has been shown that PCNA is ubiquitylated during unperturbed DNA 

replication in the fission yeast S.pombe [10] while at least in some strain backgrounds of 

S.cerevisiae is not and PCNA only becomes ubiquitylated upon DNA damage [7]. Thus, 

S.cerevisiae is unlikely the model that harbours a general/eukaryotic mode of control of PCNA 

deubiquitylation given the data known from human cells regarding the control of PCNA 

deubiquitylation. However, S.pombe may control deubiquitylation of DNA replication 

processivity factor, PCNA, in a similar manner to multicellular eukaryotes, not only because 

PCNA appears to be ubiquitylated during S-phase but also because PCNA ubiquitylation further 

increase upon MMS-induced DNA damage. This plausible scenario does not exclude the 

possibility that deubiquitylation of PCNA may be controlled by an evolutionary conserved DUB, 

that, intriguingly, remains to be identified in budding and fission yeast.  

 

In Escherichia coli it has been shown that TLS polymerases Pol II and Pol IV freely exchange 

with the replicative Pol III and form alternative replisomes, even before Pol III stall at a given 

lesion, to slow down fork progression. And then Pol III switches back with Pol II and Pol IV to 

produce a processive replisome and resume rapid replication in vitro [46]. Similarly, polymerase 

switching in eukaryotes may result in slow DNA replication (in MMS-mediated DNA damage) as 

a consequence of the increase in monoubiquitylated PCNA forms (TLS would sample more 

frequently DNA and prolong the interaction in MMS-perturbed S-phase). What would be the 

purpose of slowing down replication when the replisome encounters DNA lesions in wild-type 

cells? Usefully this TLS polymerases-dependent replication fork progression slowdown may 

give the cell additional time to repair its DNA by the BER or NER. 

 

Future perspectives 

From our point of view, three open questions remain to be answered: First, the nature of the 

yeast PCNA deubiquitylating enzyme (or enzymes), second, when lesion bypass occurs (prior 

to or after encountering the covalent modification of DNA that disrupt replicative fork 

progression) and, third, if there is a switch that restores in vivo processive DNA replication 

resumption once the replisome has passed the lesion (on the understanding that the replisome 

contains both processive and non-processive DNA polymerases). A critical point (common to all 

three questions) is the analysis of the timing of PCNA deubiquitylation during the cell cycle.  
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Figure Legends 

Figure 1. Amino acid sequence comparison of the catalytic domain of budding yeast 

UBPs 

The core catalytic (Cys-BOX) domain is boxed, the consensus sequence indicated on top and 

the critical catalytic cysteine indicated by arrows. The conserved (QxxL/I) PIP box variant 

present in Ubp3, Doa4/Ubp4, Ubp8 and Dot4/Ubp10 is also boxed. 

 

Figure 2. A model for UbpX function in the regulation of PCNA deubiquitylation in 

budding yeast. 

Once the DNA lesion is bypassed, UbpX (one or more than one DUB) deubiquitylates the 

replication factor PCNA for cells to resume processive DNA replication. Different enzymes may 

deubiquitylate mono and polyubiquitylated PCNA, in the model we present one DUB (UbpX) for 

simplicity. 

 






