1	Nodavirus increases the expression of Mx and inflammatory
2	cytokines in fish brain.
3	
4	L. Poisa-Beiro, S. Dios, A. Montes, R. Aranguren, A. Figueras, B. Novoa*
5	Instituto de Investigaciones Marinas. Consejo Superior de Investigaciones Científicas
6	(CSIC). Eduardo Cabello, 6. 36208-Vigo, Spain.
7	
8	
9	
10	
11	Revised version
12	April 2007
13	Submitted to: Molecular Immunology
14	
15	* Corresponding author
16	Telephone: 34 986 214463
17	Fax: 34 986 292762
18	E-mail: virus@iim.csic.es
19	
20	

21 Abstract

22 Nodavirus has become a serious pathogen for a wide range of cultured marine fish 23 species. In the present work, the expression of genes related to immune and inflammatory 24 responses of sea bream (Sparus aurata L.), considered as non susceptible species, was 25 studied both in vitro and in vivo. No replication of the virus was observed in head kidney 26 macrophages and blood leukocytes. Moreover, the enhancement of expression of several 27 immune genes (tumor necrosis factor alpha (TNF- α), interleukin-1-beta (IL-1 β), interferon-28 induced Mx protein) was not detected in both head kidney macrophages and blood 29 leucocytes in response to an in vitro infection with nodavirus. However, in vivo, nodavirus 30 was detected 1 day post-infection (p.i.) by a reverse transcription-polymerase chain reaction 31 (RT-PCR) in blood, liver, head kidney and brain of experimentally infected sea bream, 32 while its presence clearly decreased in blood after 3 days p.i. Also, a transitory increment of 33 the expression of TNF α and IL-1 β was detected in the brain of intramuscular (i.m.) 34 infected sea bream 3 days p.i. In head kidney, the over expression of TNF α was only 35 observed 1 day p.i. The expression of Mx, an interferon induced gene, was increased in 36 brain and head kidney of infected sea bream, reaching values of 1300 fold compared to 37 controls in brain three days post infection.

For comparative purposes, we analyzed the expression of the same genes on a susceptible species, such as sea bass (*Dicentrarchus labrax*) and, although the same pattern of expression was observed both in brain and kidney, the magnitude was different mainly in the case of brain, the key organ of the infection, where higher expression of TNF α and lower expression of Mx compared with control was observed.

43

Keywords: Nodavirus, sea bream (*Sparus aurata*), sea bass (*Dicentrarchus labrax*),
immune system, cytokines, TNFα, IL-1β and Mx

46 1. Introduction

47

48 Viral encephalopathy and retinopathy (VER), also referred to as viral nervous 49 necrosis (VNN) is an emerging disease caused by several Betanodaviruses, members of the 50 family Nodaviridae inducing high mortalities in infected marine fish. The disease caused 51 by these viruses is identified by abnormal swimming behaviour and neurological lesions, 52 which are characterized by cellular vacuolization and neuronal degeneration mostly found 53 in the brain, retina, spinal cord and ganglia of the affected fish. Since its first description in 54 larvae and juvenile sea bass (Dicentrarchus labrax) reared in Martinique (Bellance and 55 Gallet de Saint-Aurin, 1988), the disease has spread to many other marine species 56 worldwide (Nakai et al., 1994; Munday and Nakai, 1997; Curtis et al., 2001; Barke et al., 57 2002) and recently in freshwater species (Hegde et al., 2003; Athanassopoulou et al., 2004).

Sea bream and sea bass are species of a high economic value cultured in the Mediterranean Sea. Sea bream has been initially reported as an asymptomatic carrier of the disease (Castric et al., 2001). However, we have previously shown that sea bream can be experimentally susceptible to nodavirus, depending upon the temperature and route of infection (Aranguren et al., 2002). Also, sea bream is often cultured in the Mediterranean in the vicinity of sea bass and other susceptible species, raising the possibility of cross infection.

65 So far, little is known about the interactions between nodavirus and the fish immune 66 system. Antibodies to nodavirus were detected by ELISA (Enzyme-Linked Immuno 67 Sorbent Assay) in the serum of adults of striped jack (Mushiake et al., 1992), sea bass 68 (Breuil et al., 2000), barfin flounder (Watanabe et al., 2000) and barramundi (Huang et al., 69 2001), regardless of the sex or origin (wild or cultivated) of the fish examined. Vaccines 70 have been experimentally tested in fish with preliminary positive results (Husgaro et al., 71 2001; Sommerset et al., 2003; 2005) and the effect of nodavirus-neutralizing antibodies on 72 virus clearance or survival has been reported (Tanaka et al., 2001).

73	The aim of this work was to study if the experimental infection of sea bream and sea
74	bass with nodavirus could affect the expression of inflammatory cytokines, such as tumor
75	necrosis factor alpha (TNF- α), interleukin-1 beta (IL-1 β), and an interferon-induced Mx
76	protein, both in vitro and in vivo. Moreover, we have compared the viral replication and the
77	gene expression between the two fish species with the aim to find possible explanations of
78	the differential susceptibility to the disease.
79	
80	2. Materials and methods
81	
82	2.1. Fish
83	
84	Adult sea bream and sea bass of approximately 200 g were obtained from a
85	commercial fish farm. Fish were then acclimatized to laboratory conditions for 2 weeks,
86	maintained at 20 °C and fed daily with a commercial diet (Trouw, Spain).
87	
88	2.2. Virus
89	
90	The nodavirus strain, 475-9/99, was provided by The Istitute Zooprofilattico delle
91	Venize (Italy) after isolation from diseased sea bass. The virus was propagated in the SSN-
92	1 cell line (Frerichs et al., 1996) and then titrated in 96-well plates (Falcon). $TCID_{50} ml^{-1}$
93	(tissue culture infectious dose infecting 50 % of inoculated cultures) was calculated
94	according to Reed and Müench (1938).
95	
96	2.3. Isolation of head kidney macrophages and blood leukocytes
97	

Head kidney macrophages and blood leukocytes were isolated following the method
previously described by Chung and Secombes (1988). The viable cell concentration was
determined by Trypan blue exclusion.

101

102 2.4. Replication of nodavirus in sea bream and sea bass leukocytes and kidney103 macrophages

104

105 Primary cultures of total blood leukocytes and kidney macrophages from sea bass and sea bream were infected with nodavirus (1 x 10^4 TCID₅₀ ml⁻¹). After 1 h of incubation 106 107 with the virus at 25 °C, cells were washed twice with L-15 medium and incubated at 25 °C 108 with L-15 + 5 % fetal calf serum (FCS). After 1, 3, 5 and 7 days, supernatants and cells were collected by scraping the bottom of the wells and separated by centrifuging at 12000 x 109 110 g for 10 minutes at 4 °C. Cells were then suspended in the same medium previously used 111 for the culture. Supernatants and cells were frozen until use and, in the case of cells, 112 another freezing cycle was conducted in order to lyse them. Titration of supernatants and 113 cells was made in SSN-1 96-well plates and the TCID₅₀ calculated.

114

115 2.5. Cytokines induction after a nodavirus infection

116

117 The level of expression of TNF α , IL-1 β and Mx was tested after infection both *in* 118 *vitro* and *in vivo* using quantitative Real Time PCR (qPCR).

The *in vitro* induction of these genes was tested after infecting head kidney macrophages and blood leukocytes (5 x 10^6 cells ml⁻¹) with nodavirus at a final concentration of 7.8 x 10^5 TCID₅₀ ml⁻¹. After 6 hours of incubation at 25 °C, supernatants were removed by centrifuging 5 min at 12000xg and RNA was extracted from the cells using Trizol (Gibco). RNA was then used to obtain cDNA by Superscript Preamplification System (Gibco), which was stored at -20 °C. The *in vivo* induction was tested by intramuscular injection of sea bream and sea bass. Eighteen fish from each species were challenged with 50 μ l of nodavirus (3 x 10⁵ TCID₅₀ ml⁻¹/fish) and eighteen fish were injected with 50 μ l of cell culture medium as control. Fish were sacrificed by MS-222 overdose 1, 3 and 7 days post challenge (three pools of two fish each one) and brain and head kidney were removed aseptically and frozen for RNA isolation and cDNA transcription, as previously described.

131 Quantitative PCR assays were performed using the 7300 Real Time PCR System 132 (Applied Biosystems). cDNA amplification was performed using specific primers designed 133 by Primer 3 software (Rozen and Skaletsky, 2000). 0.5 µl of each primer (10 µM) was 134 mixed with 12.5 µl of SYBR green PCR master mix (Applied Biosystems) in a final volume of 25 µl. The standard cycling conditions were 95 ° for 10 min, followed by 40 135 cycles of 95 ° 15 s and 60 ° for 1 min. The comparative CT method (2- $\Delta\Delta$ CT method) was 136 137 used to determine the expression level of analyzed genes (Livak and Schmittgen, 2001). 138 The expression of the candidate genes was normalized using β -actin as a housekeeping 139 gene. Fold units were calculated dividing the normalized expression values of infected 140 tissues by the normalized expression values of the controls. Primer sequences are shown in 141 Table 1.

142

143 2.6. Nodavirus detection by RT-PCR

144

In order to determine whether nodavirus was present in the different organs of sea bream in which the expression of cytokines was studied in a similar way than it happens in sea bass, viral detection was performed using an RT-PCR based on the amplification of a highly conserved region of the coat protein gene as previously described by Dalla Valle et al. (2000). Products of the amplification reaction were visualized on a 2 % agarose gel.

150

151 *2.7. Statistics*

152 153 Data were compared using Student's t test. Results are expressed as mean + 154 standard deviation and differences were considered statistically significant at p < 0.05. 155 156 3. Results 157 158 3.1. Replication of nodavirus in head kidney macrophages and blood leukocytes 159 160 The viral titer did not increase with time in sea bream and sea bass kidney 161 macrophages or in blood leukocytes (Figure 1), neither in the cells nor in the supernatants, 162 indicating that these cell populations do not support viral replication in any of the two 163 studied species. No cytopathic effect was ever observed in head kidney macrophage or 164 blood leukocyte cultures during the nodavirus infection. 165 166 3.2. Nodavirus detection by RT-PCR 167 168 In order to confirm that the lack of susceptibility of sea bream to nodavirus infection 169 was due to a problem in the accessibility to the key organ, the presence of nodavirus was 170 assessed in infected sea bream at days 1 and 3 post-infection in blood, liver, kidney and 171 brain. Nodavirus, as in the case of sea bass (data not shown), was strongly detected in blood 172 1 day post-infection but the amount of virus detected highly decreased 3 days after 173 infection (Figure 2a). However, nodavirus presence was confirmed 1 and 3 days p.i. in the 174 remaining tissues, especially in brain as the target organ of the disease (Figure 2b, 2c and 175 2d). Nodavirus was never detected in control sea bream tissues (Figure 2a, 2b, 2c and 2d). 176 177 3.3. Cytokines expression analysis in sea bream and sea bass

179 The expression of TNF- α , IL-1 β and Mx both in sea bream and sea bass 180 macrophages and blood leukocytes was not enhanced after exposure to nodavirus *in vitro* in 181 this study (data not shown).

However, with regard to the *in vivo* infection of sea bream, a significant but transitory up-regulation of the expression of TNF α and IL-1 β was detected in the brain of infected sea bream 3 days p.i. (Figure 3a and 3c, respectively). In head kidney, the over expression of TNF- α was only observed 1 day p.i. (Figure 4a), and a down-regulation was detected 3 days p.i. in the case of IL-1 β (Figure 4c). The expression of Mx protein was increased both in brain and head kidney (Figures 3e and 4e, respectively), reaching values of 1300 fold compared to controls in brain three days post infection (Figure 3e).

The pattern of expression described above for sea bream was similar to the one observed both in brain and kidney of infected sea bass. Nevertheless, the magnitude was different mainly in the case of brain, the target organ of the infection, where higher expression of TNF- α and lower expression of Mx compared with control was observed (Figure 3b and 3f).

194

195 4. Discussion

196

197 Nodavirus is an increasingly important pathogen for several marine fish species, 198 causing mortalities mainly in larvae and juveniles due to a degenerative process in brain, 199 retina and spinal cord. Despite of many species are affected by this disease including sea 200 bass and sea bream, the pathogenesis and immune response of nodaviriosis is not well 201 known so far. Innate immunity is the first line of defense in fish and other invertebrates and 202 therefore has a relevant role after body injury or infection. Pro-inflammatory cytokines 203 such as interleukins and tumor necrosis factors that participate in the Acute Phase Response 204 (APR) or the effectors molecules involved in the antiviral interferon (IFN) pathway such as 205 Mx proteins are one of the most studied.

206 In the present study, in contrast to what occurs with other fish viruses (Chilmonczyk 207 et al., 1995; Tafalla et al., 1998), the in vitro experiments suggested that nodavirus 208 replication in sea bream and sea bass immune system cells (head kidney macrophages and 209 blood leukocytes) was limited or non existent. Even when viral replication is not supported 210 by cells of the immune system, viruses often cause an alteration of their immune functions 211 (Stolhman et al., 1982). However, this seems not to be the case in sea bream and sea bass 212 macrophages and leukocytes infected *in vitro*, as at least in the genes analyzed (TNF- α , IL-213 1β and Mx), no modulation of expression was detected (data not shown). In vivo studies 214 seem to support the in vitro results since, although nodavirus was present in the blood and 215 several organs 1 day post-infection, after three days, the analysis of RT-PCR products 216 indicated low nodavirus concentration in the blood of infected sea bream but a high 217 concentration in liver, head kidney and above all in brain. This confirmed the spread of 218 nodaviruses through the circulating system towards the target organ for replication and 219 development of the disease. This result indicates that the virus behaves in a similar way in 220 both fish species reaching the brain where the viral pathogenesis is evident. The lack of 221 susceptibility of sea bream cannot then be explained by a different ability to reach and 222 replicate in the brain, indicating that a stronger response should be present in sea bream 223 which confers resistance against the disease.

224 TNF- α is an important mediator in resistance against parasitic, bacterial and viral 225 infections among other therapeutic roles (Aggarwal and Vilcek, 1991; Vilcek and Lee, 226 1991; Czarniecki, 1993; Wride and Sanders, 1995; Goldfeld and Tsai, 1996; Steinshamn et 227 al., 1996; Krueger et al., 1998; Secombes et al., 2001). IL-1 β on the other hand plays a 228 pivotal role in the inflammatory response as initiates and/or increases a wide variety of non-229 structural function associated genes that are characteristically expressed during inflammation, particularly other cytokines (Dinarello, 1994; Bird et al., 2002). In this study, 230 231 we observed a strong up-regulation of TNF- α expression in head kidney 1 day post-232 infection both in sea bream and sea bass infected with nodavirus (Figure 4a and 4b, respectively), this up-regulation was no longer obvious 3 and 7 days after infection. This result could be explained as head kidney is the main immune organ in fish and therefore responds in the APR to fight against the infection (Dinarello, 1996; Bayne et al., 2001). In the case of IL-1 β , a down-regulation was detected 3 days p.i. in both species (Figure 4c and 4d) which was not longer observed 7 days post infection. The regulation of these two cytokines in kidney in the first stages of the disease in both species could be then considered as a generalized response against nodavirus.

240 In the case of brain, the key organ of the disease, TNF- α and IL β over-expression 241 in sea bream was mainly observed 3 days post-infection (Figure 3a and 3c). The fact that 242 TNF- α was modulated in brain 3 days after infection unlike to what happened in kidney (1 243 day p.i.), may suggest that immune system seems to be activated in brain when nodaviruses 244 reach their target organ and start replication, as we previously reported (Dios et al., 2007). 245 This pattern of expression was similar to the one observed in the brain of infected sea bass. 246 Nevertheless, the expression values for TNF- α were much higher in sea bass (more than 30 247 times) than in sea bream (Figure 3b). We suggest that the strong up-regulation of this pro-248 inflammatory cytokine in the brain of a susceptible species like sea bass, may be 249 responsible of the vacuolization and the neuroinflammatory process associated to this 250 disease in brain, retina and spinal cord. In fact, inflammation has been described as an 251 important factor causing irreparable brain damage in the pathogenesis of neurodegenerative 252 diseases and microbial infections of the nervous system (Brabers and Nottet, 2006; Kim 253 and Joh, 2006; Lafon et al., 2006; Sutton et al., 2006; Wei et al., 2006; Ghoshal et al., 2007; 254 Konsman et al., 2007).

The interferon system is one of the most important mechanisms for antiviral defense and the Mx proteins one of its effectors molecules best known (Meier et al., 1990; Staeheli et al., 1993; Arnheiter et al., 1996; Robertsen et al., 1997; Trobridge et al., 1997; Haller et al., 1998; Jensen and Robertsen, 2000; Haller and Kochs, 2002; Ko et al., 2002; Caipang et al., 2003; Plant and Thune, 2003; Larsen et al., 2004; Chen et al., 2006; Wu and Chi, 2006).

260 In the present work, an over-expression of Mx was not observed in vitro however, a 261 significant up-regulation was detected in general both in brain and head kidney of sea 262 bream and sea bass infected with nodavirus in all sampling points (Figures 3e, 3f, 4e, and 263 4f). These results corroborated the unequivocal participation of Mx proteins in the antiviral 264 responses in sea bream and sea bass. Noteworthy, just like we previously described for 265 TNF- α in brain, even when the Mx expression pattern is similar in both species, the 266 magnitude of expression in terms of fold change values is higher in sea bream in this case 267 (more than 1300 times) (Figure 3e). This strong up-regulation of Mx protein in the brain of 268 sea bream with respect to the one observed in sea bass could be related to the effectiveness 269 in solving the infection and could explain why sea bream is an asymptomatic carrier of the 270 disease. Also, all the results taking together seem to support recent findings, in which was 271 suggested that human neurons, although are not located in an immune organ, have the 272 intrinsic machinery to mount robust inflammatory, chemoattractive, and antiviral responses 273 (Lafon et al., 2006). To our knowledge, this is the first time this response in fish brain 274 against a viral infection is described.

275 In summary, the results presented here for sea bream and sea bass pointed out the early activation of TNF- α and II-1 β in head kidney as a generalized response against 276 277 nodavirus infection. Their expression increased 3 days after infection in brain, where the 278 immune responses seem to be activated when nodaviruses reach the target organ and start 279 replication. Also, TNF- α was highly over-expressed in the brain of infected sea bass, which 280 seems to be related to the vacuolization and neurodegenerative symptoms of the 281 disease. Mx protein was also up-regulated as an antiviral mechanism in both species but the 282 expression level (in fold change units) in brain was higher in sea bream than in sea bass, 283 suggesting an explanation why sea bass is a susceptible species and sea bream is an 284 asymptomatic carrier. Moreover, these results support the fact that fish brain, in the same 285 way that human neurons, is able of triggering a strong inflammatory response characterized 286 by the expression of inflammatory cytokines, chemokines, and antiviral molecules.

- Further studies will be conducted to elucidate another genes involved in the immune response of sea bream and sea bass against a nodavirus infection.
- 289

290 Acknowledgements

291

We want to thank Dr. Bovo from The Institute Zooprofilattico delle Venize (Italy) for providing the nodavirus strain used in this study. L. Poisa-Beiro, A. Montes and R. Aranguren gratefully acknowledge the Ministerio de Educación y Ciencia, the CSIC (I3P program) and the "Departamento de Agricultura y Pesca of the Basque Government and the Fundación ProVigo", for their research fellowships. This research was partially supported by the Commission of the European Communities QLRT-2002-01691 and CT-2003-501984.

299

```
300 References
```

301

Aggarwal, B., Vilcek, J., Eds., 1991. Tumor necrosis factors: structure, function and mechanism. Marcel Dekker Publishers, New York.

- 304
- Aranguren, R., Tafalla, C., Novoa, B., Figueras, A., 2002. Experimental transmission of
 encephalopathy and retinopathy induced by nodavirus to sea bream *(Sparus aurata* L.)
 using different infection models. J. Fish Dis. 25, 317-324.
- 308
- Arnheiter, H., Frese, M., Kambadur, R., Meier, E., Haller, O., 1996. Mx transgenic miceanimal models of health. Curr. Top. Microbio. Immunol. 206, 119-147.
- 311

312	Athanassopoulou, F., Billinis, C., Prapas, T., 2004. Important disease conditions of newly
313	cultured species in intensive freshwater farms in Greece: first incidence of nodavirus
314	infection in Acipenser sp. Dis. Aquat. Organ. 60(3), 247-252.
315	
316	Barke, D.E., MacKinnon, A.M., Boston, L., Michael, D.B., Cone, D.K., Speare, D.J.,
317	Griffiths, S., Cook, M., Ritchie, R., Olivier, G., 2002. First report of piscine nodavirus
318	infecting wild winter flounder Pleuronectes americanus in Passamaquoddy Bay, New
319	Brunswick, Canada. Dis. Aquat. Org. 49, 99-105.
320	
321	Bayne, C.J., Gerwick, L., 2001. The acute phase response and innate immunity of fish.
322	Dev. Comp. Immunol. 25(8-9), 725-743.
323	
324	Bellance, R., Gallet de Saint-Aurin, D., 1988. L'encéphalite virale du loup de mer. Caraibes
325	Médical 2, 105-114.
326	
327	Bird, S., Zou, J., Wang, T., Munday, B., Cunningham, C., Secombes, C.J., 2002. Evolution
328	of interleukin-1β. Cytokine Growth Factor Rev. 13, 483-502.
329	
330	Brabers, N.A., Nottet, H.S., 2006. Role of the pro-inflammatory cytokines TNF-alpha and
331	IL-1beta in HIV-associated dementia. Eur. J. Clin. Invest. 36(7), 47-458.
332	
333	Breuil, G., Pepin, J.F., Castric, J., Fauvel, C., Thiery, R., 2000. Detection of serum
334	antibodies against nodavirus in wild and farmed adult sea bass: Application to the
335	screening of Broodstock in sea bass hatcheries. Bull. Eur. Ass. Fish Pathol. 20, 95-100.
336	
337	Caipang, C.M., Hirono, I., Aoki, T., 2003. In vitro inhibition of fish rhabdoviruses by
338	Japanese flounfer, Paralichthys olivaceus Mx. Virology 317(2), 373-382.

13

339	Castric, J., Thiery, R., Jeffroy, J., de Kinkelin, P., Raymond, J.C., 2001. Sea bream Sparus
340	aurata, an asymptomatic contagious fish host for nodavirus. Dis. Aquat. Org. 47, 33-
341	38.
342	
343	Chen, Y., Su, Y., Lin, J.H., Yang, H., Chen, T., 2006. Cloning of an orange-spotted grouper
344	(Epinephelus coioides) Mx cDNA and characterisation of its expression in response to
345	nodavirus. Fish Shellfish Immunol. 20, 58-71.
346	
347	Chilmonczyk, S., Voccia, I., Monge, D., 1995. Pathogenesis of viral haemorrhagic
348	septicaemia virus: cellular aspects. Vet. Res. 26, 505-511.
349	
350	Chung, S., Secombes, C.J., 1988. Analysis events ocurring within teleost macrophages
351	during the respiratory burst. Comp. Biochem. Physiol. 89B, 539-544.
352	
353	Curtis, P.A., Drawbridge, M., Iwamoto, T., Nakai, T., Hedrick, R.P., Gendron, A.P., 2001.
354	Nodavirus infection of juvenile white sea bass, Atractoscion nobilis, cultured in
355	southern California: first record of viral nervous necrosis (VNN) in North America. J.
356	Fish Dis. 24, 263-271.
357	
358	Czarniecki, C.W., 1993. The role of tumor necrosis factor in viral disease. Antiviral Res.
359	22, 223-258.
360	
361	Dalla Valle, L., Zanella, L., Patarnello, P., Paolucci, L., Belvedere, P., Colombo, L., 2000.
362	Development of a sensitive diagnostic assay for fish nervous necrosis virus based on
363	RT-PCR plus nested PCR. J. Fish Dis. 23, 321-327.
364	

365	Dinarello, C.A., 1994. The interleukin-1 family: 10 years of discovery. FASEB J. 8, 1314-
366	1325.
367	
368	Dinarello, C.A., 1996. Biologic basis for interleukin-1 in disease. Blood 87, 2095-2147.
369	
370	Dios, S, Poisa-Beiro, L., Figueras, A., Novoa, B., 2007. Suppression subtraction
371	hybridization (SSH) and macroarray techniques reveal differential gene expression
372	profiles in brain of sea bream infected with nodavirus. Mol. Immunol. 44(9), 2195-204.
373	
374	Frerichs, G.N., Rodger, H.D., Peric, Z., 1996. Cell culture isolation of piscine neuropathy
375	nodavirus from juvenile sea bass, Dicentrarchus labrax. J. Gen. Virol. 77, 2067-2071.
376	
377	Goldfeld, A.E., Tsai, E.Y., 1996. TNF-alpha and genetic susceptibility to parasitic disease.
378	Exp. Parasitol. 84, 300-303.
379	
380	Ghoshal, A., Das, S., Ghosh, S., Mishra, M.K., Sharma, V., Koli, P., Sen, E., Basu, A.,
381	2007. Proinflammatory mediators released by activated microglia induces neuronal
382	death in Japanese encephalitis. Glia 55(5), 483-496.
383	
384	Haller, O., Frese, M., Kochs, G., 1998. Mx proteins: mediators of innate resistance to RNA
385	viruses. Revue Scientifique et Tecnique de L'office International des Epizooties 17,
386	220-230.
387	
388	Haller, O., Kochs, G., 2002. Interferon-induced Mx proteins: dynamin-like GTPases with
389	antiviral activity. Traffic 3(10), 710-717.
390	

391	Hegde, A., Teh, H.C., Lam, T.J., Sin, Y.M., 2003. Nodavirus infection in freshwater
392	ornamental fish, guppy, Poicelia reticulata, comparative characterization and
393	pathogenicity studies. Arch. Virol. 148, 575-586.
394	
395	Huang, B., Tan, C., Chang, S.F., Munday, B., Mathew, J.A., Ngoh, G.H., Kwang, J., 2001.

- Detection of nodavirus in barramundi, *Lates calcarifer* (Block), using recombinant coat
 protein-based ELISA and RT-PCR. J. Fish Dis. 24, 135-141.
- 398
- Husgaro, S., Grotmol, S., Hjeltnes, B.K., Rodseth, O.M., Biering, E., 2001. Immune
 response to a recombinant capsid protein of striped jack nervous necrosis virus
 (SJNNV) in turbot *Scophthalmus maximus* and Atlantic halibut *Hippoglossus hippoglossus*, an evaluation of a vaccine against SJNNV. Dis. Aquat. Org. 45, 33-44.
- 403
- Jensen, V., Robertsen, B., 2000. Cloning of an Mx cDNA from Atlantic halibut
 (*Hippoglossus hippoglossus*) and characterization of Mx mRNA expression in
 response to double-stranded RNA or infectious pancreatic necrosis virus. J. Interferon
 Cytokine Res. 20(8), 701-710.
- 408
- Kim, Y.S., Joh, T.H., 2006. Microglia, major player in the brain inflammation: their roles
 in the pathogenesis of Parkinson's disease. Exp. Mol. Med. 38(4), 333-347.
- 411
- Ko, J.H., Jin, H.K., Asano, A., Takada, A., Ninomiya, A., Kida, H., Hokiyama, H., Ohara,
 M., Tsuzuki, M., Nishibori, M., Mizutani, M., Watanabe, T., 2002. Polymorphisms and
 the differential antiviral activity of the chicken Mx gene. Genome Res. 12, 595-601.
- 415
- Konsman, J.P., Drukarch, B., Van Dam, A.M., 2007. (Peri)vascular production and action
 of pro-inflammatory cytokines in brain pathology. Clin. Sci. (Lond.) 112(1), 1-25.

418	Krueger, J.M., Fang, J., Taishi, P., Chen, Z., Kushikata, T., Gardi, J., 1998. Sleep. A
419	physiologic role for IL-1 beta and TNF-alpha. Ann. N Y Acad. Sci. 856, 148-159.
420	
421	Lafon, M., Megret, F., Lafage, M., Prehaud, C., 2006. The innate immune facet of brain:
422	human neurons express TLR-3 and sense viral dsRNA. J. Mol. Neurosci. 29(3), 185-
423	194.
424	
425	Larsen, R., Rokenes, T.P., Robertsen, B., 2004. Inhibition of Infectious Pancreatic Necrosis
426	Virus Replication by Atlantic Salmon Mx1 protein. J. Virol. 78(15), 7938-7944.
427	
428	Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-
429	time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408.
430	
431	Meier, E., Kunz, G., Haller, O., Arnheiter, H., 1990. Activity of rat Mx proteins against a
432	rhabdovirus. J. Virol. 64, 6263-6269.
433	
434	Munday, B.L., Nakai, T., 1997. Special topic review: nodaviruses as pathogens in larval
435	and juvenile finfish. World J. Microb. Biot. 13, 375-381.
436	
437	Mushiake, K., Arimoto, M., Furusawa, T., Furusawa, I., Nakai, T., Muroga, K., 1992.
438	Detection of antobodies against striped jack nervous necrosis virus (SJNNV) from
439	brood stocks of striped jack. Nippon Suisan Gakkaishi 58, 2351-2356.
440	
441	Nakai, T., Nguyen, H.D., Nishisawa, T., Muroga, K., Arimoto, M., Ootsuki, K., 1994.
442	Occurrence of viral nervous necrosis in kelp grouper and tigger puffer. Fish Pathol. 29,
443	211-212.
444	

- Plant, K.P., Thune, R.L., 2003. Cloning and characterisation of a channel catfish (*Ictalarus punctatus*) Mx gene. Fish Shellfish Immunol. 16, 391-405.
- 447
- 448 Reed, L.J., Müench, H., 1938. A simple method of estimating fifty per cent end-points.
 449 Am. J. Hyg. 27, 493-497.
- 450
- Robertsen, B., Trobridge, G., Leong, J.A., 1997. Molecular cloning of double-stranded
 RNA inducible Mx genes from Atlantic salmon (*Salmo salar* L.). Dev. Comp.
 Immunol. 21, 397-412.
- 454
- Rozen, S., Skaletsky, H.J., 2000. Primer3 on the WWW for general users and for biologist
 programmers. In: Krawetz S., Misener S. (Eds.), Bioinformatics Methods and
 Protocols: Methods in Molecular Biology. Humana Press, Totawa, NJ, pp. 365-386.
- 459 Secombes, C.J., Wang, T., Hong, S., Peddie, S., Crampe, M., Laing, K.J., Cunningham, C.,
 460 Zou, J., 2001. Cytokines and innate immunity of fish. Dev. Comp. Immunol. 25, 713461 723.
- 462
- Sommerset, I., Lorenzen, E., Lorenzen, N., Bleie, H., Nerland, A.H., 2003. A DNA vaccine
 directed against a rainbow trout rhabdovirus induces early protection against a
 nodavirus challenge in turbot. Vaccine 21, 4661-4667.
- 466
- Sommerset, I., Skern, R., Biering, E., Bleie, H., Fiksdal, I.U., Grove, S., Nerland, A.H.,
 2005. Protection against Atlantic halibut nodavirus in turbot is induced by recombinant
 capsid protein vaccination but not following DNA vaccination. Fish Shellfish
 Immunol. 18, 13-29.

471	Staeheli, P., Pitossi, F., Pavlovic, J., 1993. Mx proteins: GTPases with antiviral activity.
472	Trends Cell Biol. 3, 268-272.
473	

- Steinshamn, S., Bemelmans, M.H., van Tits, L.J., Bergh, K., Buurman, W.A., Waage, A.,
 1996. TNF receptors in murine *Candida albicans* infection: evidence for an important
 role of TNF receptor p55 in antifungal defense. J. Immunol. 157, 2155-2159.
- 477
- 478 Stolhman, S.A., Woodward, J.G., Frelinger, J.A., 1982. Macrophage antiviral activity:
 479 extrinsic versus intrinsic activity. Infect. Immunol. 36, 672-677.
- 480
- Sutton, C., Brereton, C., Keogh, B., Mills, K.H.G., Lavelle, E.C., 2006. A crucial role for
 interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune
 encephalomyelitis. J. Exp. Med. 203, 1685-1691.
- 484
- Tafalla, C., Figueras, A., Novoa, B., 1998. In vitro interaction of viral haemorrhagic
 septicaemia virus and leukocytes from trout (*Oncorhynchus mykiss*) and turbot
 (*Scophthalmus maximus*). Vet. Immunol. Immunopathol. 62, 359-366.
- 488
- Tanaka, S., Mori, K., Arimoto, M., Iwamoto, T., Nakai, T., 2001. Protective inmunity of
 sevenband grouper, *Epinephelus septemfasciatus* Thunberg, against experimental viral
 nervous necrosis. J. Fish Dis. 24, 15-22.
- 492
- Trobridge, G.D., Chiou, P.P., Kim, C.H., Leong, J.A.C., 1997. Induction of the Mx protein
 of rainbow trout *Oncorhynchus mykiss in vitro* and *in vivo* with poly I:C dsRNA and
 infectious hematopoietic necrosis virus. Dis. Aquat. Org. 30, 91-98.
- 496

497	Vilcek, J., Lee, T.H., 1991. Tumor necrosis factor. New insights into the molecular
498	mechanisms of its multiple actions. J. Biol. Chem. 266, 7313-7316.
499	
500	Watanabe, K.I., Nishizawa, T., Yoshimizu, M., 2000. Selection of brood stock candidates
501	of barfin flounder using an ELISA system with recombinant protein of barfin flounder
502	nervous necrosis virus. Dis. Aquat. Org. 41, 219-223.
503	
504	Wei, G., Zhang, M., Mei, Y., Dong, J., 2006. Expression of cytokines IL-2, IL-10 and
505	TNF-alpha in mice with herpes simplex viral encephalitis. J. Huazhong Univ. Sci.
506	Technolog. Med. Sci. 26(3), 308-310.
507	
508	Wu, Y.C., Chi, S.C., 2006. Cloning and analysis of antiviral activity of a barramundi (Lates
509	calcarifer) Mx gene. Fish Shellfish Immunol. In press.
510	
511	Wride, M.A., Sanders, E.J., 1995. Potential roles for tumour necrosis factor alpha during
512	embryonic development. Anat. Embryol. (Berl) 191, 1-10.
513	
514	
515	
516	
517	
518	
519	
520	
521	
522	
523	

524 Figure legends

- once normalized regarding to the β -actin expression. (A, C and E) sea bream; (B, D and F)
- 545 sea bass.

Figure 1

Figure 2

Figure 3

Figure 4

	F / R	SEA BREAM	SEA BASS
β-actin	Forward	TCGGTCGCCCCAGGCATC	GTGCGTGACATCAAGGAGAA
β-actin	Reverse	CTCCTTAATGTCACGATTT	GCTGGAAGGTGGACAGAGAG
Tumor necrosis factor α	Forward	CAAGCCGGAAATTCTGGTAA	CGAGGGCAAGACTTTCTTTG
Tumor necrosis factor α	Reverse	TTTCTCAGCGTGGTCCTTCT	GCACTGCCTGTTCAGCTACA
Interleukin-1 B	Forward	ATGCCCGAGGGGGCTGGGC	CAGGACTCCGGTTTGAACAT
Interleukin-1 B	Reverse	CAGTTGCTGAAGGGAACAGAC	GTCCATTCAAAAGGGGACAA
Mx protein	Forward	CTCTGCTGAGGACCCAGTTC	GGGGTCAGAAGGAGATCACA
Mx protein	Reverse	GTGCAGCATCAACTCCTTCA	ATGATGCACCAGCTCAAGTG

Table 1. Primer sequences of the genes analyzed.