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Metabolic syndrome-associated dyslipidemia is mainly initiated by hepatic overproduction of the
plasma lipoproteins carrying triglycerides. Here we examined the effects of the peroxisome pro-
liferator-activated receptors (PPAR)-�/� activator GW501516 on high-fat diet (HFD)-induced hy-
pertriglyceridemia and hepatic fatty acid oxidation. Exposure to the HFD caused hypertriglyceri-
demia that was accompanied by reduced hepatic mRNA levels of PPAR-� coactivator 1 (PGC-1)-�
and lipin 1, and these effects were prevented by GW501516 treatment. GW501516 treatment also
increased nuclear lipin 1 protein levels, leading to amplification in the PGC-1�-PPAR� signaling
system, as demonstrated by the increase in PPAR� levels and PPAR�-DNA binding activity and the
increased expression of PPAR�-target genes involved in fatty acid oxidation. These effects of
GW501516 were accompanied by an increase in plasma �-hydroxybutyrate levels, demonstrating
enhanced hepatic fatty acid oxidation. Moreover, GW501516 increased the levels of the hepatic
endogenous ligand for PPAR�, 16:0/18:1-phosphatidilcholine and markedly enhanced the expres-
sion of the hepatic Vldl receptor. Interestingly, GW501516 prevented the reduction in AMP-acti-
vated protein kinase (AMPK) phosphorylation and the increase in phosphorylated levels of ERK1/2
caused by HFD. In addition, our data indicate that the activation of AMPK after GW501516 treat-
ment in mice fed HFD might be the result of an increase in the AMP to ATP ratio in hepatocytes.
These findings indicate that the hypotriglyceridemic effect of GW501516 in HFD-fed mice is ac-
companied by an increase in phospho-AMPK levels and the amplification of the PGC-1�-lipin
1-PPAR� pathway. (Endocrinology 152: 1848–1859, 2011)

Excess caloric intake and nutrient availability have in-
creased the incidence of obesity and insulin resistance,

which are the main factors responsible for the develop-
ment of metabolic syndrome. This condition is charac-
terized by dyslipidemia, which is a major risk factor for
cardiovascular disease, and predisposes to early athero-

sclerosis and cardiovascular morbidity (1). Dyslipidemia
in metabolic syndrome is characterized by high levels of
plasma triglycerides, low levels of high-density lipoprotein
cholesterol, and the appearance of small, dense, low-den-
sity lipoproteins and excessive postprandial lipemia (2). It
is now recognized that the dyslipidemia associated with
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the metabolic syndrome is mainly initiated by the hepatic
overproduction of the plasma lipoproteins carrying trig-
lycerides, the very low-density lipoproteins (VLDL),
which induce a sequence of lipoprotein changes leading to
atherogenic lipid abnormalities in metabolic syndrome
(3). It is thus important to find new pharmacological treat-
ments to reduce plasma triglyceride levels and thus prevent
the development of atherogenic dyslipidemia in metabolic
syndrome.

Among the new pharmacological treatments to prevent
the increase in triglyceride levels, peroxisome proliferator-
activated receptors (PPAR)-�/� activators have attracted
widespread attention. PPARs are members of the nuclear
receptor superfamily of ligand-activated transcription fac-
tors that regulate the expression of genes involved in many
important biological processes (4). The PPAR family con-
sists of three members, PPAR� (NR1C1 according to the
unified nomenclature system for the nuclear receptor su-
perfamily), PPAR�/� (NR1C2), and PPAR� (NR1C3) (5).
PPAR� was the first to be identified and was demonstrated
to be the molecular target of the fibrate hypolipidemic
class of drugs. This PPAR isotype is expressed primarily in
tissues that have a high level of fatty acid catabolism such
as liver, brown fat, kidney, heart, and skeletal muscle (6).
PPAR� has a restricted pattern of expression, mainly in
white and brown adipose tissues and colon, and it is also
expressed in macrophages, whereas other tissues such as
skeletal muscle and heart contain limited amounts.
PPAR�/� is expressed ubiquitously, including metaboli-
cally active tissues such as liver, muscle, and fat, and its
role in the metabolic syndrome has been elucidated in the
last years (7–9).

Among other effects, treatment with the high-affinity
PPAR�/� ligand GW501516 has been shown to decrease
triglycerides (10). In PPAR�/�-null mice, the hypotriglyc-
eridemic effect of PPAR�/� has been associated with its
effect on hepatic VLDL production and clearance (11), but
the contribution of additional mechanisms has not been
explored. Interestingly, the main factor influencing he-
patic triglyceride secretion is fatty acid availability (12). In
liver, fatty acids are either incorporated into triglycerides
or oxidized by mitochondrial �-oxidation. An increase in
fatty acid oxidation in liver would thus reduce the avail-
ability of fatty acids and subsequent hepatic triglyceride
secretion. However, it is unknown whether the hypotrig-
lyceridemic effect observed after PPAR�/� activation in-
volves increased hepatic fatty acid oxidation and the
mechanisms involved. The rate-limiting step for mito-
chondrial �-oxidation is the transport of fatty acid into
mitochondria by liver carnitine palmitoyltransferase-1
(CPT1a). This fatty acid transporter is under the control of
both PPARs and AMP-activated protein kinase (AMPK),

which detects low ATP levels and in turn increases oxi-
dative metabolism (13) by reducing the levels of malonyl-
CoA. Interestingly, PPAR�/� activation can increase the
activity of AMPK, and the increase in fatty acid oxidation
in human skeletal muscle cells after GW501516 treatment
is dependent on both PPAR�/� and AMPK (14).

A novel protein, lipin 1, determines whether fatty acids
are incorporated into triglycerides or undergo mitochon-
drial �-oxidation. The expression and compartmentaliza-
tion of lipin 1 controls the secretion of hepatic triglycerides
(15). Thus, in the cytoplasm, lipin 1 promotes triglyceride
accumulation and phospholipid synthesis by functioning
as an Mg2�-dependent phosphatidate phosphatase (phos-
phatidic acid phosphatase-1). In contrast, in the nucleus
lipin 1 acts as a transcriptional coactivator linked to fatty
acid oxidation by regulating the induction of PPAR-� co-
activator 1 (PGC)-1�-PPAR�-target genes (16). Lipin 1
induces PPAR� gene expression and forms a complex with
PPAR� and PGC-1� leading to the induction of genes
involved in fatty acid oxidation, including Cpt1a and
Mcad (medium chain acyl-coA dehydrogenase) (16).

Here we examined the effects of the PPAR�/� activator
GW501516 on the hypertriglyceridemia induced by a
high-fat diet (HFD) and on the hepatic fatty acid oxidation
pathway. Exposure to HFD caused hypertriglyceridemia
accompanied by reduced hepatic phospho-AMPK levels
and increased activity of ERK1/2. Interestingly, drug treat-
ment reduced hypertriglyceridemia, restored hepatic
phosphorylated levels of AMPK and ERK1/2, and induced
liver fatty acid oxidation through a mechanism involving
increased activation of the lipin 1/PGC-1�-PPAR� signal-
ing system. The findings of this study indicate a new mech-
anism of action by which PPAR�/� may contribute to the
reversal of hypertriglyceridemia caused by HFD and point
to hepatic AMPK, PGC-1�, and lipin 1 as pharmacolog-
ical targets to prevent this dyslipidemia.

Materials and Methods

Materials
GW501516 was provided by Alexis Biochemicals (Lausen,

Switzerland). [�-32P]dATP (3000 Ci/mmol) was purchased from
Amersham Biosciences (Pisacataway, NJ). All other chemicals
were from Sigma-Aldrich (St. Louis, MO).

Animals
Mice aged 5 wk were maintained under standard conditions

of illumination (12 h light, 12 h dark cycle) and temperature
(21 � 1 C). They were fed a standard diet (Harlan, Barcelona,
Spain) for 5 d before the study began. The animals were then
randomly distributed into three experimental groups (n � 12
each): those fed the standard diet; those fed a Western-type HFD
(35% fat by weight, 58% kcal from fat; Harlan Ibérica S.A.,
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Barcelona, Spain) plus one daily oral gavage of vehicle [0.5%
(wt/vol) carboxymethylcellullose medium viscosity]; and those
fed a HFD plus one daily oral dose of 3 mg/kg � d of the PPAR�/�
agonist GW501516 dissolved in the vehicle. Before the end of the
treatments, a glucose tolerance test was performed on mice
fasted for 4 h. Animals received 2 g/kg body weight of glucose by
ip injection, and blood was collected from the tail vein after 0, 20,
40, and 90 min. The body weight of the mice and the food intake
were checked regularly during the treatment period. After 3 wk
of treatment, mice were killed under isoflurane anesthesia. After
collecting blood, serum samples were analyzed for triglycerides,
glucose (Bayer Iberia, Sant Joan Despí, Spain), cholesterol, free
fatty acids (Wako, Neuss, Germany), insulin (Amersham), adi-
ponectin, and leptin (Linco, St. Charles, MO). The liver samples
were frozen in liquid nitrogen and then stored at �80 C. These
experiments conformed to the Guide for the Care and Use of
Laboratory Animals published by the U.S. National Institutes of
Health (NIH publication no. 85-23, revised 1996). All proce-
dures were approved by the University of Barcelona Bioethics
Committee, as stated in Law 5/21 July 1995 passed by the Gen-
eralitat de Catalunya (Autonomous Government of Catalonia).

Measurements of mRNA
Levels of mRNA were assessed by the RT-PCR as previously

described (17). The sequences of the sense and antisense primers
used for amplification were: lipin 1, 5�-CTGCAGACAGGTT-
GACGCCAA-3� and 5�-TCTGGTGGATGAGCAGTCCCC-3�;
Pgc-1�, 5�-CCCGTGGATGAAGACGGATTG-3� and 5�-
GTGGGTGTGGTTTGCTGCATG-3�; Ppar�, 5�-GGCTCG-
GAGGGCTCTGTCATC-3� and 5�-ACATGCACTGGCAG-
CAGTGGA-3�; Cpt1a, 5�-TATGTGAGGATGCTGCTT-3� and
5�-CTCGGAGAGCTAAGCTTG-3�, Mcad, 5�-TGGAAAGCG-
GCTCACAAGCAG-3� and 5�-CACCGCAGCTTTCCGGA-
ATGT-3�; cytosolic thioesterase (Cte) 5�-CAGCCACCCCGAGG-
TAAAAGG-3� and 5�-CCTTGAGGCCATCCTTGGTCA-3�;
cholineethanolamine phosphotransferase-1 (Cept1) 5�-GCTAG-
GTGAGCCGCTCAGTGC-3� and 5�-ATGGTGCCTCCTC-
CGTGACTG-3�; Vldl receptor (Vldl-r) 5�-GTTCAAGTGCA-
GAAGCGGGGA-3� and 5�-CCGGGTTTTGGCATTCATCAA-3�;
and adenosyl phosphoribosyl transferase (Aprt), 5�-AGCTTC-
CCGGACTTCCCCATC-3� and 5�-GACCACTTTCTGCCCCG-
GTTC-3�. Amplification of each gene yielded a single band of the
expected size (lipin 1: 225 bp; Pgc-1�: 228 bp; Ppar�: 654 bp;
Cpt-1a: 629 bp; Mcad: 216 bp; Cte: 244 bp; Cept1: 233 bp; Vldl-r:
227 bp; and Aprt: 329 bp). Preliminary experiments were carried
out with various amounts of cDNA to determine nonsaturating
conditions of PCR amplification for all the genes studied. There-
fore, under these conditions, relative quantification of mRNA was
assessed by the RT-PCR method used in this study (18). Radioac-
tive bands were quantified by videodensitometric scanning (Vilber
Lourmat Imaging, Marne-la-Vallée, France). The results for the
expression of specific mRNAs are presented relative to the expres-
sion of the control gene (Aprt).

Isolation of nuclear extracts. Nuclear extracts were isolated
as previously described (17).

Electrophoretic mobility shift assay
EMSA was performed using double-stranded oligonucleo-

tides for the consensus binding site of PPAR [peroxisome pro-
liferator response element (PPRE) probe; 5�-CAAAACTAGGT-

CAAAGGTCA-3�; Santa Cruz Biotechnology, Santa Cruz, CA]
as previously described (19–21).

Immunoblotting
To obtain total protein, livers were homogenized in cold lysis

buffer [5 mM Tris-HCl (pH 7.4), 1 mM EDTA, 0.1 mM phenyl-
methylsulfonyl fluoride, 1 mM sodium orthovanadate, 5.4 �g/ml
aprotinin]. The homogenate was centrifuged at 16,700 � g for
30 min at 4 C. Protein concentration was measured by the Brad-
ford method. Protein extracts were resolved by SDS-PAGE on
10% separation gels and transferred to Immobilon polyvi-
nylidene diflouride membranes (Millipore, Bedford, MA). West-
ern blot analysis was performed using antibodies against total
AMPK, phospho-Thr172-AMPK, total ERK1/2, phospho-ERK1/2,
the catalytic subunit of protein phosphatase 2A (PP2A) (52F8)
(Cell Signaling, Danvers, MA), lipin 1, PPAR�, liver kinase B1,
lamin B (Santa Cruz Biotechnologies), PGC-1� (Chemicon, Bil-
lerica, MA), and �-actin (Sigma). Detection was achieved using
the EZ-ECL chemiluminescence kit (Amersham). Size of de-
tected proteins was estimated using protein molecular-mass
standards (Invitrogen, Barcelona, Spain).

Coimmunoprecipitation studies
Cell nuclear extracts were brought to a final volume of 250 �l

with buffer containing 10 mM PBS, 50 mM KCl, 0.05 mM EDTA,
2.5 mM MgCl2, 8.5% glycerol, 1 mM dithiothreitol, 0.1% Triton
X-100, BSA 2%, and 1 mg/ml nonfat milk for 18 h at 4 C and
incubated with 4 �g of antibody. Immunocomplex was captured
by incubating the samples with 50 �l protein A-agarose suspen-
sion for 6 h at 4 C. Agarose beads were collected by centrifuga-
tion and washed. After microcentrifugation, the pellet was re-
suspended with SDS-PAGE sample buffer and boiled for 5 min
at 100 C. The resulting supernatant was then subjected to elec-
trophoresis on 10% SDS-PAGE and immunoblot analysis.

Determination of ceramide levels
The content of ceramides in liver was determined by the di-

acylglycerol kinase method as previously described (22).

Analysis of 1-palmitoyl-2-oleyl-phosphatidilcholine
(16:0/18:1-PC)

Total lipids of liver homogenates were extracted according to
Bligh and Dyer (23), evaporated, and redissolved in methanol-
water (9:1). Total lipid separation, identification, and quantifi-
cation was carried out by liquid chromatography/mass spec-
trometry using a Hitachi LaChrom Elite L-2130 binary pump
and a Hitachi autosampler L-2200 (Merck, Darmstadt, Ger-
many) coupled to a Bruker esquire6000 ion-trap mass spectrom-
eter (24, 25). The effluent was split, entering 0.2 ml/min to the
electrospray interface of the mass spectrometer. The nebulizer
was set to 30 �, the dry gas to 8 l/min, and the dry temperature
to 350 C. The column used was a Supelcosil LC-18 of 5 �m
particle size, 250 � 2.1 mm (Sigma-Aldrich) protected with a
Supelguard LC-18 20- � 2.1-mm guard cartridge column (Sig-
ma-Aldrich). The mobile phase used was a gradient of solvent A
[methanol/water/hexane/ammonium hydroxide, 87.5:10.5:1.5:
0.5 (vol/vol/vol/vol], solvent B [(methanol/hexane/ammonium
hydroxide, 87.5:12:0.5 vol/vol/vol], and solvent C [methanol/
water, 9:1 (vol/vol)]. The gradient started at 100% A, decreased
linearly to 50% A (50% B) in 17.5 min, and to 0% A (100% B)
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in 12.5 min, mantained at 100% B for 5 min, and then changed
to 100% C in 3 min, maintained 9 min, and changed to 100% B
in 3 min. The flow rate was 0.5 ml/min and the injection volume
was 80 �l. Data acquisition was carried out in full scan and
positive mode, detecting PC species as [M�H]� ions with the
capillary current set at �4000 V. The PC (16:0/18:1) species
were characterized by tandem mass spectrometry in multiple
reaction monitoring and negative mode, with a postcolumn ad-
dition of acetic acid for [M � CH3CO2]-adduct formation (100
�l/h). 1,2-Dinonadecanoyl-sn-glycero-3-phosphocoline (m/z �
818.6) was used as internal standard and also in a calibration
curve for quantitation.

HPLC measurement of ATP, ADP, and AMP
Adenine nucleotides were separated by HPLC using an X-

Bridge column with a 3.5-�m outer diameter (100 � 4.6 cm).
Elution was done with 0.1 mM potassium dihydrogen phosphate
(pH 6), containing 4 mM tetrabutylammonium hydrogen sulfate
and 15% (vol/vol) methanol. The conditions were as follows: 20
�l sample injection, column at room temperature, flow rate of
0.6 ml/min�1 and UV monitoring at 260 nm.

Statistical analyses
Results are expressed as means � SD. Significant differences

were established by one-way ANOVA using the GraphPad Instat
program (GraphPad Software version 2.03; GraphPad Soft-
wware Inc., San Diego, CA). When significant variations were
found, the Tukey-Kramer multiple comparisons test was ap-
plied. Differences were considered significant at P � 0.05.

Results

Effects of GW501516 treatment on plasma lipid
levels, liver triglyceride content, and glucose
tolerance test in mice fed the HFD

Most of the studies performed using PPAR�/� agonists
were based on long-term drug treatment, leading to a sig-
nificant reduction in weight loss and fat mass (26, 27),
which affect both lipid metabolism and insulin sensitivity.
To prevent the interference of weight loss in the parame-
ters analyzed, mice were treated with the PPAR�/� agonist
for 3 wk. After this period, mice receiving the HFD or the
HFD plus the drug showed no significant differences in
body weight compared with control mice (control: 30.4 �
2.8 g; HFD: 30.0 � 2.5 g; and HFD�GW501516: 31.4 �
2.7 g), and the amount of food consumed was similar in all
three groups (data not shown). In addition, mice fed the
HFD or HFD plus GW501516 showed no significant
changes in the levels of plasma total cholesterol, glucose,
insulin, adiponectin, leptin, or nonesterified fatty acids
compared with controls (data not shown). In contrast,
mice fed the HFD had enhanced plasma triglyceride levels
compared with controls (55 � 2.5 vs. 123 � 29 mg/dl,
2.2-fold induction, P � 0.05), whereas this increase was
abolished by GW501516 treatment (69 � 16 mg/dl, P �

0.01 vs. HFD-fed mice) (Fig. 1A). The HFD also enhanced
the liver triglyceride content (4.5-fold induction, P � 0.05)
(Fig. 1B). However, the drug treatment did not affect this
parameter, which is in line with a previous study (9). When
subjected to a glucose tolerance test, which evaluates the
ability of the body to adjust glucose levels after an acute
glucose injection, glucose levels of control mice peaked at
30 min and returned to the basal level (Fig. 1C). As ex-
pected, mice fed with the HFD were glucose intolerant, as
demonstrated by the significant increase in the area under
the curve (AUC). In contrast, mice fed with the HFD and
treated with GW501516 showed an improved response to
the glucose challenge, and the AUC of their glucose-tol-
erance test was similar to that of controls.

FIG. 1. GW501516 treatment prevents hypertriglyceridemia and
glucose intolerance in mice fed a HFD. Mice were fed a standard chow
or HFD with or without GW501516 (3 mg/kg � d). After 3 wk of
treatment, blood samples and livers were obtained. A, Plasma
triglyceride levels. B, Hepatic triglyceride content. C, Glucose tolerance
test and AUC (right panel). Data are expressed as means � SD (six mice
per group). GW, GW501516. *, P � 0.05 vs. control mice; #, P � 0.05
vs. HFD-fed mice.

Endocrinology, May 2011, 152(5):1848–1859 endo.endojournals.org 1851



GW501516 treatment restores PGC-1� expression
and increases nuclear lipin 1 in liver of mice fed
the HFD

To gain further understanding of the effects of
GW501516 on the fate of fatty acids, either incorpo-
rated into triglycerides or oxidized, we analyzed the
levels of lipin 1, which has been reported to be under the
control of AMPK (28). The HFD strongly reduced the
hepatic mRNA levels of lipin 1 compared with mice fed
a standard diet, and this reduction was prevented in
mice treated with the PPAR�/� activator (Fig. 2A). The
cytosolic protein levels of lipin 1 were not significantly
affected by the HFD or the drug treatment (Fig. 2B). In
contrast, GW501516 increased the protein levels of li-
pin 1 in the nucleus (Fig. 2C), in which it acts as a
transcriptional coactivator linked to fatty acid oxida-

tion (16). Likewise, the expression of
the transcriptional coactivator PGC-
1�, involved in fatty acid oxidation,
was markedly reduced by HFD in
liver, and this reduction was pre-
vented by GW501516 (Fig. 2C).

GW501516 treatment increases
PPAR� expression and activity
and fatty acid oxidation in liver
of mice fed the HFD

Because it has been reported that he-
patic lipin 1 overexpression results in
enhanced expression of Ppar� gene
and its target genes, such as Cpt1a and
Mcad (16), we assessed whether the in-
crease in nuclear lipin 1 protein levels
caused by GW501516 treatment led to
these changes. GW501516 increased
the mRNA and the nuclear protein lev-
els of PPAR� (Fig. 3, A and B). In ad-
dition, given that it has been demon-
strated that lipin 1 activates the
transcription of PPAR� in cooperation
with PGC-1� (16), we evaluated the ef-
fect of drug treatment on PPAR�

DNA-binding activity by performing
EMSA. The PPRE probe formed two
main complexes (I and II) with hepatic
nuclear proteins (Fig. 3C). The speci-
ficity of these two DNA-binding com-
plexes was assessed in competition
experiments by adding an excess of un-
labeled PPRE oligonucleotide. PPAR�

DNA-binding activity was higher in
mice fed HFD plus GW501516 than in
control and HFD-fed mice. Addition of

antibody against PPAR� supershifted complex II, thereby
indicating that this complex contained PPAR�. In con-
trast, no supershift was observed with an antibody against
PPAR�. In line with the increase in the expression of
PPAR� and its DNA-binding activity, GW501516
treatment increased the expression of the PPAR-target
genes Mcad, Cte, and Cpt1a compared with control and
HFD-fed mice (Fig. 3, D–F). Consistent with the in-
crease in the expression of PPAR�-target genes involved
in hepatic fatty acid oxidation, levels of plasma �-hy-
droxybutyrate, a product of ketogenesis used as a marker
of hepatic fatty acid oxidation, were significantly ele-
vated in mice receiving the HFD plus GW501516 (Fig.
3G). Collectively, these findings indicate that GW501516,
similarly to overexpression of Lipin 1 (16), amplifies the

FIG. 2. GW501516 treatment increases nuclear lipin 1 in liver of mice fed a HFD. A, Effects of
GW501516 on the mRNA levels of Lipin 1. Total RNA was isolated and analyzed by RT-PCR. A
representative autoradiogram and the quantification normalized to the Aprt mRNA levels are
shown. Data are expressed as means � SD (five mice per group). Analysis of lipin 1 protein
levels by immunoblotting of cytosolic (C.E.) (B) and nuclear (N.E.) (C) protein extracts from
livers. To show equal loading of protein, the �-actin (total protein) or lamin B (nuclear protein)
signal from the same blot is included. D, Effects of GW501516 on the mRNA levels of Pgc-1�;
CT, control; GW, GW501516. **, P � 0.01, and ***, P � 0.001 vs. control mice; #, P � 0.05,
##, P � 0.01 vs. HFD-fed mice.
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PPAR�-PGC-1� pathway and thus increases hepatic
fatty acid oxidation.

GW501516 treatment increases the levels of the
hepatic endogenous PPAR� ligand 16:0/18:1-PC in
mice fed the HFD

The increase in the PPAR� pathway after GW501516
treatment was higher than that expected on the basis of the
increase in Lipin 1. This led us to speculate that additional
mechanisms might contribute to the effects observed after
GW501516 treatment. We focused on the possibility that
GW501516 might increase the levels of an endogenous
ligand of PPAR�. An endogenous ligand for PPAR� in
liver has recently been reported, 16:0/18:1-PC (29). The
synthesis of this ligand involves the enzymatic activity of
CEPT1, and overexpression of Cept1 in hepatoma cells
increases the expression of PPAR�-target genes, such as
Cpt1a (29). First, we determined whether GW501516 af-
fected the expression of Cept1. Both, HFD and HFD plus
GW501516 increased Cept1 expression, but the increase
attributable to GW501516 was significantly higher than
that caused by HFD alone (Fig. 4A). Interestingly, when
we analyzed the levels of 16:0/18:1-PC, only those mice
receiving the GW501516 showed increased levels of this
PPAR� endogenous ligand (Fig. 4B).

GW501516 treatment increases the mRNA levels of
hepatic Vldl-r in mice fed the HFD

The increase in hepatic fatty acid oxidation after
GW501516 treatment seemed to be inconsistent with the
lack of effect of this drug on hepatic triglyceride content.
Although this has been reported to be the result of the in-
crease in glucose flux through the pentose phosphate path-
wayandenhancedfattyacidsynthesiscausedbyGW501516
(9), we explored additional mechanisms by studying the ef-
fectsof thisdrugon theVldl-r,whichmaybeanovelPPAR�/
�-target gene (30), and its expression may be increased by
AMPK (31). This receptor is expressed abundantly in heart,
skeletal muscle, and adipose tissue but only in trace amounts
in the liver (32). In addition, in vitro studies have shown that
the VLDL receptor binds and internalizes triglyceride-rich
lipoproteins, including VLDL, in adipose tissue and skeletal
muscle, thus reducing plasma triglyceride levels (33). In line
with this, expression of the Vldl-r was high in skeletal muscle
(Fig. 5A) and absent in liver (Fig. 5B) of control mice. Inter-
estingly, GW501516 did not affect Vldl-r expression in skel-
etal muscle, although it increased it in liver (Fig. 5). These
findings may contribute in explaining both the reduction in
plasma triglycerides and the lack of reduction in the content
of liver triglyceridesafterGW501516 treatmentasa resultof
increased liver triglyceride uptake from the plasma.

FIG. 3. GW501516 treatment increases PPAR� expression and its DNA-binding activity and fatty acid oxidation in liver of mice fed HFD. A, mRNA
levels of Ppar� in the livers of mice fed a standard chow or HFD with or without GW501516. Total RNA was isolated and analyzed by RT-PCR. A
representative autoradiogram and the quantification normalized to the Aprt mRNA levels are shown. B, Analysis of PPAR� protein levels by
immunoblotting of nuclear protein extracts from livers. To show equal loading of protein, the lamin B signal is included from the same blot. C,
Autoradiograph of EMSA performed with a 32P-labeled PPRE nucleotide and nuclear protein extract (NE). Two specific complexes (I and II), based
on competition with a molar excess of unlabeled probe are shown. A supershift analysis was performed by incubating NE with an antibody
directed against PPAR�, PPAR�, and Oct-1. IC, Immunocomplex; CT, control; GW, GW501516. Effects of GW501516 on the mRNA levels of Mcad
(D), Cte (E), and Cpt-1a (F). G, Plasma �-hydroxybutyrate levels in mice fed a standard chow or HFD with or without GW501516. Data are
expressed as means � SD (five mice per group). *, P � 0.05, **, P � 0.01 and ***, P � 0.001 vs. control mice; #, P � 0.05 vs. HFD-fed mice;
##, P � 0.01 vs. HFD-fed mice.
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GW501516 treatment restores phospho-AMPK and
increases AMP to ATP ratio in liver of mice fed the HFD

Given the prominent role of AMPK in liver fatty acid
oxidation (13) and the fact that this kinase up-regulates
the expression of Lipin 1 (28), the Vldl-r (31) and Pgc-1�

(34), we analyzed the hepatic levels of total and phosphor-

ylated AMPK. In agreement with pre-
vious studies (35), HFD reduced phos-
pho-AMPK� levels in liver (Fig. 6A).
Interestingly, GW501516 treatment
blunted this reduction. Because inhib-
itory cross talk between AMPK and
ERK1/2 has been reported (36) and
because AMPK inhibition increases
ERK1/2 phosphorylation in liver (37),
we examined the phosphorylation sta-
tus of this kinase. The reduction in
phospho-AMPK� observed in mice fed
the HFD was accompanied by an in-
crease in phospho-ERK1/2 levels,
whereas this increase was attenuated
by GW501516 treatment (Fig. 6B). Be-
cause the prevention of the reduction in
phospho-AMPK levels after GW501516
treatment may be responsible for the
increase in the lipin 1/PPAR�-PGC-1�

signaling system, we explored the po-
tential mechanisms involved. The con-
trol of AMPK is complex and its phos-
phorylation status is regulated by both
phosphatases and kinases (13). First,
we evaluated whether the reduction in

phospho-AMPK caused by the HFD was dependent on
activation of PP2A activation via ceramide accumulation,
as previously reported (38). When we analyzed the content
of ceramide and the abundance of the PP2A catalytic sub-
unit, we did not detect significant changes in the different

groups of study, suggesting that this
pathway was not involved in the
changes observed (Fig. 7, A and B).
AMPK is activated by upstream ki-
nases: a Ca2�-dependent pathway me-
diated by Ca2�/calmodulin-depen-
dent protein kinase kinase-�, the
pathway mediated by TGF�-activated
kinase-1 and especially by the AMP-
dependent pathway mediated by LKB1
(the tumor suppressor kinase) (13). In-
terestingly, LKB1 deacetylation is reg-
ulated by silent information regulator
T1 (SIRT1) (39), influencing its ability
to activate AMPK, and it has been re-
cently reported that PPAR�/� increases
SIRT1 expression (40). Thus, we ex-
plored whether SIRT1 was involved in
the changes observed after GW501516
treatment. The protein levels of SIRT1
were higher in the liver of both mice fed

FIG. 4. GW501516 treatment increases the levels of the hepatic endogenous PPAR� ligand
16:0/18:1-PC in mice fed HFD. A, mRNA levels of Cept-1 in the livers of mice fed a standard
chow or HFD with or without GW501516. Total RNA was isolated and analyzed by RT-PCR. A
representative autoradiogram and the quantification normalized to the Aprt mRNA levels are
shown. B, Quantification of 16:0/18:1-PC in nuclear extracts from livers of mice fed a standard
chow or HFD with or without GW501516. Data are expressed as means � SD (five mice per
group). CT, Control; GW, GW501516. *, P � 0.05 and **, P � 0.01 vs. control mice; #, P �
0.05 vs. HFD-fed mice.

FIG. 5. GW501516 treatment increases the mRNA levels of hepatic VLDL receptor in mice fed
HFD. Vldl-r mRNA levels in skeletal muscle (A) and liver (B) of mice fed a standard chow or
HFD with or without GW501516. Total RNA was isolated and analyzed by RT-PCR. A
representative autoradiogram and the quantification normalized to the Aprt mRNA levels are
shown. Data are expressed as means � SD (five mice per group). CT, Control; GW,
GW501516. ***, P � 0.001 vs. control mice; ###, P � 0.001 vs. HFD-fed mice.
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with HFD and mice fed with HFD plus GW501516 com-
pared with control mice (Fig. 7C). However, when we
examined the acetylation status of LKB1, we did not ob-
serve changes (Fig. 7D), suggesting that SIRT1 was not
involved in AMPK regulation by GW501516. Finally, be-
cause AMPK is activated by an increase in the AMP to ATP
ratio, we measured adenine nucleotide concentrations by
HPLC in liver to determine the hepatic ATP to ADP and
AMP to ATP ratios to further investigate the underlying
mechanism of GW501516 on AMPK activation. GW501516
significantly increased the AMP to ATP ratio (Fig. 7E) and
decreased the ATP to ADP ratio (Fig. 7F) compared with
control and HFD-diet fed mice. Overall, these findings
indicate that the increase in AMPK phosphorylation after
GW501516 treatment was caused by a reduction in he-
patocyte energy status.

Discussion

Excessive caloric intake can convert fatty acids into signal-
ing molecules that, in liver, accelerate the production of
glucose and lipoproteins, which contribute to the develop-
ment of human diseases, such as obesity, insulin resistance,
and metabolic syndrome. PPAR�/� agonists are promising
drugs for the treatment of these diseases. We followed a
pharmacological approach to examine the role of PPAR�/�
in regulating fatty acid oxidation in liver of mice fed an
HFD. Our findings demonstrate that treatment with the
PPAR�/� agonist GW501516 prevents the development of
hypertriglyceridemia caused by the HFD. They also show

that drug treatment prevents the reduc-
tion in hepatic phospho-AMPK levels
induced by HFD and increases hepatic
fatty acid oxidation by amplifying the
activity of the lipin 1-PPAR�-PGC-1�

pathway.
Hepatocytes are exposed to dietary

signals (from portal blood flow) and
systemic signals (from the arterial
blood supply). In contrast to other
studies using long-term exposures to
the HFD, mice were challenged with
HFD for a short period of 3 wk to ex-
amine the seminal changes involved in
the development of metabolic dysregu-
lation caused by this diet. Mice ex-
posed to HFD developed hypertriglyc-
eridemia and glucose intolerance, but
they did not show significant differ-
ences in plasma nonesterified fatty ac-
ids, leptin, or adiponectin, thus avoid-
ing the interfering effects of these

systemic adipocyte-derived signals on liver metabolism.
Exposure to HFD also led to a reduction in hepatic phospho-
AMPK levels that was prevented by GW501516. The main-
tenance of AMPK phosphorylation was accompanied by the
recovery in the expression levels of Lipin 1 and Pgc-1� and
the increase in the mRNA levels of the Vldl-r (Fig. 8). Al-
thoughwecannotruleoutdirect transcriptionalactivationof
these gene by PPAR�/�, because it has been suggested that
Lipin 1, the Vldl-r (30), and Pgc-1� (41) might be PPAR�/
�-target genes, most effects of GW501516 may be the result
of the increase in AMPK phosphorylation (14). In fact, it has
been reported that this kinase up-regulates the expression of
Lipin 1 (28), the Vldl-r (31), and Pgc-1� (34).

The increase in AMPK phosphorylation after
GW501516 treatment might involve several mechanisms.
Because inhibitory cross talk between ERK1/2 and AMPK
has been reported (36), the increase in phospho-AMPK
levels could be the result of the inhibition by GW501516
of the phosphorylation of ERK1/2 induced by the HFD,
which is in agreement with our previous study reporting
that GW501516 prevents lipopolysaccharide-induced
ERK1/2 phosphorylation in adipocytes (42). It is impor-
tant to note that a previous study found that obesity leads
to increased hepatic ERK1/2 activity and that caloric re-
striction blunts this increase and improves insulin sen-
sitivity (43). In the present study, the improvement in
glucose tolerance caused by GW501516 was also ac-
companied by the reduction in phospho-ERK1/2 levels.
An additional mechanism could involve SIRT1 because it
has recently been reported that pharmacological PPAR�/�

FIG. 6. GW501516 treatment prevents the reduction in phospho-AMPK and PGC-1� in liver of
mice fed a HFD. Analysis of protein levels of phospho-AMPK (A) and phospho-ERK1/2 (B) in the
livers of mice fed a standard chow or HFD with or without GW501516. Autoradiograph data are
representative of three separate experiments. CT, Control; GW, GW501516. *, P � 0.05, **, P �
0.01, and ***, P � 0.001 vs. control mice; #, P � 0.05; ##, P � 0.01 vs. HFD-fed mice; ###, P �
0.001 vs. HFD-fed mice.
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activation increases the expression of SIRT1
(40), a deacetylase that regulates AMPK ac-
tivity (44) through LKB1 acetylation (39)
and might be essential to the regulatory loop
involving PPAR�, PGC-1� and lipin 1 (45).
However, our findings make this possibility
unlikely, given that the increase in SIRT1
levels induced by GW501516 did not mod-
ify the acetylation status of LKB1. Interest-
ingly, here we show that GW501516 in-
creases the AMP to ATP ratio in liver,
indicating that, in line with a previous study
in skeletal muscle cells (14), the underlying
mechanism responsible for the increase in
AMPK phosphorylation induced by this
drug could be a modification of cellular en-
ergy status. Previous studies have suggested
that the reduction in ATP levels caused by
GW501516 can be the result of a specific
inhibition of one or more complexes of the
respiratory chain, an effect on the ATP syn-
thase system, or to mitochondrial uncou-
pling (14). These potential changes would
reduce the yield of ATP synthesis by the mi-
tochondria, leading to AMPK activation.

In agreement with the reported regula-
tion of PGC-1� (34, 46, 47) and lipin 1 (28)
by AMPK, exposure to the HFD reduced
both Pgc-1� and Lipin 1 expression. The
reduction in lipin 1 is likely to be the result
of the decrease of PGC-1� because it has
been reported that genetic reduction of he-
patic PGC-1� decreases the expression of
Lipin 1 (48). In addition, it has been shown
that physiological stimuli that increase mi-
tochondrial fatty acid oxidation induce
Pgc-1� gene expression, which in turn acti-
vates the expression of Lipin 1 (16). Inter-
estingly, it has been reported that up-regu-
lation of lipin 1 in liver increases PPAR�

activity by two mechanisms: transcriptional
activation of the Ppar� gene and direct co-
activation of PPAR� in cooperation with
PGC-1� (16). Thus, lipin 1 is considered to
be an inducible booster that amplifies path-
ways downstream PGC-1�-PPAR�, mainly
mitochondrial fatty acid oxidation (16). In
agreement with this, GW501516 treatment
prevented the reduction in PGC-1�, in-
creased the nuclear protein levels of lipin 1,
and amplified the PGC-1�-PPAR� path-
way, as demonstrated by the increase in the

FIG. 7. GW501516 increases the AMP to ATP ratio in liver of mice treated with
GW501516. A, Measurement of ceramide levels in the livers of mice fed a standard
chow or HFD with or without GW501516. Lipid extracts from livers were prepared
and assayed for ceramides as detailed in experimental procedures. Phosphorimage
of phosphorylated ceramides, separated by thin-layer chromatography, is shown.
Analysis of PP2AC (total protein) (B) and SIRT1 (nuclear extracts) (C) by
immunoblotting is shown. The blot data are representative of four separate
experiments. D, Acetylated levels of LKB1. Immunoprecipitation was performed with
an antibody to LKB1 and immunoblotted with an acetyl-lysine antibody. The blot
data are representative of four separate experiments. AMP to ATP (E) and ATP to
ADP (F) ratios in the livers of mice fed a standard chow or HFD with or without
GW501516 are shown. Results are means � SD for data form six livers. CT, Control;
GW, GW501516. **, P � 0.01 vs. control mice; ***, P � 0.001 vs. control mice;
##, P � 0.01, ###, P � 0.001 vs. HFD-fed mice.
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transcriptional activation of Ppar� and the increase in
PPAR� transcriptional activity (shown by the EMSA
and enhanced PPAR�-target gene expression). These
effects subsequently enhanced hepatic fatty acid oxida-
tion, as shown by the increase in �-hydroxybutyrate
levels. The reduction in PGC-1� and lipin 1 lev-
els caused by the HFD and their restoration after
GW501516 treatment observed in this study may also
contribute to the changes of plasma triglyceride levels
because both proteins are involved in the control of
hepatic triglyceride secretion and fatty acid oxidation
(48 –50). Overall, these data implicate PGC-1� and li-
pin 1 in the hypotriglyceridemic effect of PPAR�/� and
complement the findings of a previous study reporting that
elevated plasma triglyceride levels in PPAR�/�-null mouse
wererelatedtoacombinationof increasedVLDLproduction
and decreased plasma triglyceride clearance (11).

The data reported here also demonstrate that PPAR�/�
activation by GW501516 can amplify the PPAR� path-
way by an additional mechanism. Previous studies had
demonstrated that hepatic fatty acid synthase (FAS) was
necessary for the normal activation of PPAR� target genes
but did not identify the ligand involved in this process (51).
Recently this endogenous PPAR� ligand was identified as
16:0/18:1-PC (29). The synthesis of this ligand requires

FAS activity, which yields palmitate
(16:0), whereas 16:0/18:1-PC is gener-
ated through the enzymatic activity of
CEPT1 (29). Subsequent binding of 16:
0/18:1-PC to PPAR� in the nucleus
turns on PPAR�-dependent genes and
affects hepatic lipid metabolism. Inter-
estingly, activation of PPAR�/� by
GW501516 induces FAS expression in
liver as a result of increased glycolysis
and the pentose phosphate shunt (9).
Our findings confirm that GW501516
also increases Cept1 expression and the
levels of 16:0/18:1-PC, contributing to
further amplification of the PPAR�

pathway.
The increase in fatty acid oxidation

caused by GW501516 is apparently in-
consistent with its lack of effects on he-
patic triglyceride levels. Several rea-
sons may account for this. First, similar
to the effects of GW501516, which re-
stores lipin 1 levels, hepatic Lipin 1
overexpression leads to increased liver
triglyceride content (16). This appar-
ently conflicts with the effects of lipin 1
on fatty acid oxidation, but it has been
explained by hepatic triglyceride se-

questration secondary to diminished triglyceride secre-
tion, increased fatty acid uptake, or the phosphatidic acid
phosphatase activity of lipin 1 (16). Second, in this study
we report an additional possibility, the increase caused by
GW501516 in the expression of the Vldl-r in liver. The
huge increase of this receptor observed in liver after
GW501516 treatment might also reduce plasma triglyc-
eride levels by increasing VLDL uptake by the liver. How-
ever, this can also lead to an increase in hepatic triglyceride
content. Third, it has been reported that GW501516 im-
proves hyperglycemia by increasing glucose flux through
the pentose phosphate pathway and enhancing fatty acid
synthesis in liver (9). In that study, GW501516 increased
liver triglyceride content, but the authors reported that
although this might raise concerns that long-term drug
treatment might cause hepatic steatosis, they did not
observe signs of fatty liver with treatment up to 6
months. In addition, long-term GW501516 treatment
has been shown to reduce body weight and levels of
circulating and liver triglycerides (26, 52).

In summary, our findings indicate that PPAR�/� acti-
vation by GW501516 amplifies the PPAR�-PGC-1� path-
way through the restoration of AMPK activity, contrib-
uting to the hypotriglyceridemic effect of this drug.

FIG. 8. A schematic of the potential effects of GW501516 (dashed lines) on liver metabolism is
shown. Drug treatment with the PPAR�/� agonist GW501516 prevents the reduction in phospho-
AMPK levels and the subsequent increase in phospho-ERK1/2 levels caused by the HFD. In
addition, GW501516 prevents the reduction in PGC-1� and increases lipin 1 protein levels in the
nucleus leading to amplification of the PPAR�-PGC-1� pathway, which subsequently induces
hepatic fatty acid oxidation. This pathway is additionally increased by GW501516 through the
enhanced synthesis of the hepatic PPAR� endogenous ligand 16:0/18:1-PC. As a result of the
increase in this pathway, the availability of fatty acids to be secreted as triglycerides might be
compromised. The increase in the hepatic levels of the VLDL receptor can also contribute to reduce
plasma triglyceride levels. TG, Triglyceride; P, phospho-protein.
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