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Abstract 
 

 Secretory vesicles have low pH and have been classically identified as those 

labelled by a series of acidic fluorescent dyes such as acridine orange or neutral red, 

which accumulate into the vesicles according to the pH gradient. More recently, several 

fusion proteins containing enhanced green fluorescent protein (EGFP) and targeted to 

the secretory vesicles have been engineered. Both targeted fluorescent proteins and 

acidic dyes have been used, separately or combined, to monitor the dynamics of 

secretory vesicle movements and their fusion with the plasma membrane. We have now 

investigated in detail the degree of colocalization of both types of probes using several 

fusion proteins targeted to the vesicles (synaptobrevin2-EGFP, Cromogranin A-EGFP 

and neuropeptide Y-EGFP) and several acidic dyes (acridine orange, neutral red and 

lysotracker red) in chromaffin cells, PC12 cells and GH3 cells. We find that all the 

acidic dyes labelled the same population of vesicles. However, that population was 

largely different from the one labelled by the targeted proteins, with very little 

colocalization among them, in all the cell types studied. Our data show that the vesicles 

containing the proteins more characteristic of the secretory vesicles are not labelled by 

the acidic dyes, and vice-versa. Peptide glycyl-L-phenylalanine 2-naphthylamide (GPN) 

produced a rapid and selective disruption of the vesicles labelled by acidic dyes, 

suggesting that they could be mainly lysosomes. Therefore, these labelling techniques 

distinguish two clearly different sets of acidic vesicles in neuroendocrine cells. This 

finding should be taken into account whenever vesicle dynamics is studied using these 

techniques.  

key words: confocal microscopy, colocalization, secretory granules, chromaffin cells, 
acidic dyes, synaptobrevin 2, EGFP. 
 
Abbreviations: EGFP, enhanced green fluorescent protein; NPY, neuropeptide Y; 
VAMP, vesicle-associated membrane protein; FCCP, carbonyl cyanide 4-
(trifluoromethoxy)phenylhydrazone; GPN, glycyl-L-phenylalanine 2-naphthylamide.  
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1. Introduction 

 

 Secretory vesicles have low pH, around 5.5, a property that share with other 

vesicular organelles such as the lysosomes. The low pH of all these vesicles should 

allow them to accumulate lypofilic compounds of acidic nature and, in fact, compounds 

with these characteristics such as acridine orange or neutral red label a vesicular 

population in neurons and neuroendocrine cells that has been classically assumed to 

correspond largely to the secretory vesicles (Kuijpers et al., 1989; Steyer et al., 1997; 

Steyer and Almers, 1999; Straub et al., 2000; Oheim and Stühmer, 2000). Thus, the 

dynamics of the vesicles labelled with acridine orange has been extensively investigated 

to monitor vesicle motion, fusion with the plasma membrane and other characteristics of 

the latter steps before fusion (Steyer et al., 1997; Steyer and Almers, 1999; Oheim and 

Stühmer, 2000; Li et al., 2004).  

 

 More recently, several chimeric proteins targeted to the secretory vesicles and 

containing EGFP have been engineered and expressed in different cells (Lang et al., 

1997; Tsuboi et al., 2000; Ohara-Imaizumi et al. 2002, Bezzi et al., 2004; Allersma et 

al., 2004, 2006), and used also to investigate the dynamics of the secretory vesicles. In 

some cases, cells expressing one of these constructs were also labelled with acridine 

orange to monitor at the same time the dynamics of the vesicles, using the specifically 

targeted EGFP marker, and the event of fusion, by following the disappearance of the 

loaded dye (Tsuboi et al., 2000; Bezzi et al., 2004). These papers showed an extensive 

colocalization among the two types of probe. However, it has been reported more 

recently that acridine orange metachromasie, that results in the concomitant emission of 

green and red fluorescence from acridine orange, generates systematic colocalization 
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errors between acridine orange and EGFP in vesicular organelles (Nadrigny et al., 

2007). According to this work, the green emission from acridine orange overlaps with 

that of EGFP and produces a false apparent colocalization on dual-color images.  

 

 We have now made a detailed study of the colocalization of several EGFP-

probes targeted to the secretory vesicles and several acidic dyes. Our results show that 

both kinds of labelling methods produce a clear vesicular pattern, but surprisingly there 

was little coincidence among the vesicular patterns generated using EGFP-probes and 

those obtained with acidic dyes.  
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2. Materials and Methods 

 

2.1. Preparation and culture of chromaffin cells, PC12 cells and GH3 cells.  

Ethical approval for this study was granted from the investigation committee and 

the animal experimentation committee of the Faculty of Medicine, University of 

Valladolid. Cow adrenal glands were kindly supplied by the veterinaries of the 

slaughterhouse Justino Gutiérrez of Laguna de Duero (Valladolid). Bovine adrenal 

medulla chromaffin cells were isolated as described previously (Moro et al., 1990), 

plated on 12 mm glass polilysine-coated coverslips (0.25 x 106 cells per 1ml medium) 

and cultured in high-glucose (4,5g/l) Dulbecco’s modified Eagle medium (DMEM) 

supplemented with 10% fetal bovine serum, 50iu·ml-1 penicillin and 50iu·ml-1 

streptomycin. Cultures were maintained at 37ºC in a humidified atmosphere of 5% CO2. 

PC12 rat pheochromocytoma cells were grown in high-glucose (4,5g/l) Dulbecco's 

modified Eagle's medium supplemented with 7,5% fetal calf serum, 7,5% horse serum 

and 2 mM glutamine. GH3 adenohypophyseal cells were grown in RPMI 1640 culture 

medium supplemented with 2.5% fetal bovine serum, 15% horse serum, 2mM 

glutamine, 100 iu·ml-1 penicillin and 100 iu·ml-1 streptomycin at 37ºC in a humidified 

atmosphere of 5% CO2. Cells were seeded over glass bottom Petry dishes coated with 

poly-L-lisine (0.01 mg/ml). 

 

2.2. Preparation and expression of the EGFP targeted probes.  

The VAMP-enhanced green fluorescent protein (EGFP) construct has been 

described previously (SantoDomingo et al., 2008). For construction of adenoviral 

vectors, full-length cDNA encoding these constructs was subcloned into the pShuttle 

vector and then used for construction of the corresponding adenoviral vector by using 
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an AdenoX adenovirus construction kit (Clontech). Cells were infected with an 

adenovirus for expression of this construct. Infection was carried out the day after cell 

isolation and Ca2+ measurements were performed 48-72h after infection. Efficiency of 

infection of chromaffin cells with the adenovirus carrying the VAMP-EGFP chimera 

was estimated to be about 60%.  

 

The chromogranin A-EGFP and neuropeptide Y-EGFP constructs were kindly 

provided by Dr. J.D. Machado, University of La Laguna, Spain. Transfections of these 

constructs were carried out using Metafectene (Biontex, Germany).  

 

2.3. Confocal studies.  

Cells were imaged at room temperature on a Leica TCS SP2 confocal 

spectrophotometer using a 63x oil immersion objective. EGFP-containing constructs 

and acridine orange were excited with the 488nm line of the Argon laser, and the 

fluorescence emitted between 500 and 530nm was collected. Fluorescence from 

lysotracker red or neutral red dyes was excited with the 543nm line of the green He-Ne 

laser and the fluorescence emitted between 600 and 700nm was collected. The above 

settings were carefully chosen to assure that there was no interference from the green 

fluorochrome in the red channel, or viceversa. Lack of bleed-through between the two 

channels can be clearly appreciated in many of the figures. Images for each 

fluorochrome at every confocal plane were recorded sequentially frame by frame at a 

rate of 0,8 frames per second. No significant movement of the granules was observed 

when consecutive images of the same fluorophore were taken at this rate. For loading 

with the acidic dyes, cells were incubated for 1-5 min with either 100nM acridine 
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orange, 50nM lysotracker red or 1µM neutral red, added directly to the cell chamber in 

the stage of the microscope.  

 

 For colocalization analysis we have used the toolbox JACoP (Bolte and 

Cordelières, 2006) under ImageJ software (public domain image processing program 

developed by Wayne Rasband at the National Institutes of Health, Bethesda, U.S.A.) to 

obtain the Pearson’s correlation coefficients (Manders et al., 1992) from deconvolved 

images of each channel. When this coefficient, that can vary between -1 and +1, is 

applied to image colocalization, values close to +1 indicate colocalization, while values 

close to 0 indicate lack of correlation. The values obtained in each case are given in the 

Figure Legends. In Fig. 1A, the composite images showing the colocalized pixels were 

obtained with the Colocalization Finder plugin from the ImageJ software.  

 

2.4. Fluorescence microscopy measurements. 

Cells expressing VAMP-EGFP were mounted in a cell chamber in the stage of a 

Zeiss Axiovert 200 microscope under continuous perfusion. Single cell fluorescence 

was excited at 480 nm using a Cairn monochromator (200ms excitation every 2s, 10nm 

bandwidth) and images of the emitted fluorescence obtained with a 40x Fluar objective 

were collected using a 495DCLP dichroic mirror and a E515LPV2 emission filter (both 

from Chroma Technology) and recorded by a Hamamatsu ORCA-ER camera. Single 

cell fluorescence records were analyzed using the Metafluor program (Universal 

Imaging).  Experiments were performed at room temperature.  
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3. Results 

 

3.1. Subcellular dual-color localization of VAMP-EGFP and acidic dyes: 

lysotracker red and neutral red.  

 Given that VAMP-EGFP and acridine orange fluorescences cannot be well 

distinguished, we have used other two acidic dyes having a fluorescence spectrum that 

can be easily separated from that of EGFP by choosing the appropriate emission 

windows, as described in Methods: lysotracker red and neutral red. Figure 1A and 1B 

show a series of confocal images of two chromaffin cells expressing VAMP-EGFP and 

then stained with lysotracker red. It can be observed that both VAMP-EGFP and 

lysotracker red generated a vesicular pattern. In addition, VAMP-EGFP also labelled 

the plasma membrane. This was expected, as it is an integral protein of the vesicle 

membrane and remains in the plasma membrane after fusion. However, the vesicular 

patterns observed with both probes were clearly different and mostly non-coincident. 

Because yellow pixels are sometimes difficult to see over the red and green background, 

a series of images showing in bright white the few coincident pixels has been included 

in Fig. 1A to make clear that the coincidence is marginal. Accordingly, Pearson´s 

correlation coefficients were also close to 0 (see legend). In addition to the lack of 

colocalization, vesicle distribution and size was very different in both groups: vesicles 

stained with lysotracker red were less in number and generally bigger than those 

labelled by VAMP-EGFP.  

 

 Similar findings were observed in PC12 and GH3 cells. Fig. 2 shows confocal 

planes of each of these cells expressing VAMP-EGFP and then stained with lysotracker 

red. Although it is difficult to exclude some small degree of colocalization, in part due 
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to the large density of vesicles labelled by VAMP-EGFP, it is clear that the vesicular 

patterns in both cases are completely different, and this is confirmed by the very small 

Pearson´s correlation coefficients obtained.  

 

 Fig. 3 shows a confocal image of a chromaffin cell expressing VAMP-EGFP and 

then stained with a different acidic dye, neutral red. The images are very similar to those 

obtained previously in cells labelled with both VAMP-EGFP and lysotracker red. 

Neutral red also labelled here a smaller number of large-size vesicles, which were little 

coincident with those expressing VAMP-EGFP.  

 

3.2. Colocalization of acridine orange with other acidic dyes.  

 As mentioned above, colocalization of VAMP-EGFP and acridine orange is 

difficult to study. However, the fluorescence of acridine orange can be easily separated 

from that of lysotracker red or neutral red. Given that we know that these dyes do not 

colocalize with VAMP-EGFP, studying the colocalization of acridine orange with these 

dyes can provide us clues on the colocalization of acridine orange and VAMP-EGFP. 

Fig. 4A shows a confocal image of a PC12 cell stained with both acridine orange and 

lysotracker red, and it can be seen that both fluorescences colocalize extensively. The 

same happens when the cells are stained with both acridine orange and neutral red, as 

shown in Fig. 4B. In both cases, Pearson´s coefficients were close to the unity (see the 

legend), confirming the colocalization of both signals. Therefore, acridine orange labels 

the same vesicular compartment labelled by lysotracker red or neutral red.  

 

 We wanted to test also if the colocalization among acridine orange and 

lysotracker red could be also seen in cells expressing VAMP-EGFP. That was the case. 
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Fig. 5A shows PC12 cells expressing VAMP-EGFP and then stained with lysotracker 

red. As shown above, the overlap shows that there was little colocalization among both 

fluorescences. Accordingly, Pearson´s coefficient was very small, 0,122. Then, Fig. 5B 

shows the result of labelling the same cells of Fig. 5A with acridine orange. Now the 

left image (green) shows the fluorescences of both VAMP-EGFP and acridine orange 

observed together in the same channel. The middle image (red) shows the fluorescence 

of lysotracker red, and the right image shows the superimposition. The images of 

lysotracker red slightly differ among panels A and B because of vesicle movement or 

changes in focus during the time required for acridine orange loading. As expected, 

there was an increase in the degree of colocalization of red and green fluorescences. 

Pearson´s coefficient increased to 0,313. Of course, colocalization is not complete 

because of the lack of red counterpart for the VAMP-EGFP fluorescence.  

 

3.3. Colocalization of lysotracker red with either chromogranin A-EGFP or NPY-

EGFP.  

 We have then tested if the same findings obtained with VAMP-EGFP could also 

be obtained using other methods to target EGFP to the vesicles. Fig. 6 shows confocal 

images of PC12 cells expressing either chromogranin A-EGFP (panel A) or NPY-EGFP 

(panel B) and then stained with lysotracker red. We can see essentially the same 

findings obtained previously with VAMP-EGFP. Again, the EGFP fluorescence shows 

a large number of small vesicles (now there is no fluorescence in the plasma membrane, 

as EGFP is fused to soluble proteins). Instead, lysotracker red labels a smaller number 

of vesicles with a larger size, that show little colocalization with those labelled by the 

EGFP-targeted constructs.  
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3.4. Absence of colocalization of VAMP-EGFP and lysotracker red after prolonged 

expression of VAMP-EGFP.  

 It could be argued that the transient expression of any of the targeted EGFP-

containing proteins after transfection or infection could lead to only a partial labelling of 

the vesicular compartment, due to the time required for vesicle maturation. To avoid 

this problem, we have generated PC12 cells expressing VAMP-EGFP for prolonged 

periods (up to 15 days). These cells are continuously producing the protein, so that it 

should be able to label the vesicles in all the states of maturation. Fig. 7 shows the 

fluorescence of VAMP-EGFP in these cells, together with that of lysotracker red and 

the superposition. Again here, both types of labelling showed a very different vesicular 

pattern, as observed before, and Pearson´s coefficients remain low, 0,171.  

 

 In conclusion, our data show that all the acidic dyes, including lysotracker red, 

neutral red and acridine orange, labelled in several neuroendocrine cells a vesicular 

compartment that was largely different from the one labelled with the targeted proteins. 

The reason was not that VAMP-EGFP was in a non-acidic vesicular compartment. Fig. 

8 shows that, as has been reported before (Camacho et al., 2006), vesicle alkalinization 

with the protonophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) 

induced a large increase in VAMP-EGFP fluorescence, showing that VAMP-EGFP is 

actually present in an acidic compartment. Regarding the nature of the compartment 

labelled by acidic dyes, it could probably be assigned to lysosomes or endosomes. To 

investigate this hypothesis, we have tested the effect of the peptide glycyl-L-

phenylalanine 2-naphthylamide (GPN) on cells doubly-stained with VAMP-EGFP and 

lysotracker red. This peptide has been reported to selectively permeabilized lysosomes 

(Jadot et al., 1990; Haller et al., 1996), although effects on other subcellular organelles 
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have also been described (Duman et al., 2006). In agreement with our hypothesis, the 

peptide induced a fast disappearance of the lysotracker red fluorescence. Fig. 9 shows 

the confocal images of EGFP-VAMP and lysotracker red fluorescences before and 2 

minutes after the addition of 0,5mM GPN. It can be observed that GPN induced a fast 

and nearly complete disappearance of the lysotracker red fluorescence, while the green 

EGFP-VAMP one remained intact or became even slightly more intense.   
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4. Discussion 

 

 We have used several EGFP probes targeted to the secretory vesicles and several 

acidic dyes to investigate the degree of colocalization among both types of probes. Our 

data show that all of these probes label a vesicle population in several neuroendocrine 

cells, but the populations labelled by the targeted proteins and the dyes were largely 

different. Although protein overexpression may sometimes alter their pattern of 

intracellular distribution, this is probably not the case here because this phenomenon 

would normally increase the degree of colocalization. In addition, images taken in cells 

with different levels of EGFP-targeted proteins expression (see Figs. 2, 5 or 6) showed 

also a similar lack of colocalization with the acidic dyes.  

 

 Our data contrast with previous data of several authors showing colocalization of 

EGFP targeted probes with either acridine orange (Tsuboi et al., 2000; Bezzi et al., 

2004) or lysotracker red (Duncan et al. 2003). Regarding the colocalization with 

acridine orange, it has been reported more recently the presence of systematic 

colocalization errors in vesicular organelles due to the presence of both red and green 

emission from acridine orange (Nadrigny et al., 2007), that could explain the 

discrepancy. Regarding the colocalization of EGFP-atrial natriuretic factor with 

lysotracker red reported by Duncan et al. (2003), the origin of the discrepancy is more 

difficult to find. In that paper the EGFP-targeted probe was reported to colocalize 96% 

with lysotracker red, while only 1% of lysotracker red colocalized with the green EGFP 

fluorescence. This implies that there should be 100-fold more vesicles labelled with 

lysotracker red than with the EGFP-targeted probe. Our data and also data from other 

authors using acridine orange are not consistent with such a larger amount of vesicles 
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labelled with the acidic dye with respect to those labelled with the EGFP-targeted 

probe.  

 

 The selective and nearly complete disruption by GPN of the vesicles labelled by 

acidic dyes suggests that these vesicles correspond mainly to lysosomes. The reason by 

which the acidic dyes do not label also most of the secretory granules expressing the 

specific targeting proteins is obscure. They have low pH, about 5,5, and therefore their 

pH is not very different from that of lysosomes or endosomes. We can only speculate on 

the high viscosity of the granule matrix of the large dense-core vesicles, which could 

quench the fluorescence or perhaps even reduce loading. Whatever may be the reason, 

our data indicate that EGFP-targeted probes are much more adequate to study the 

behaviour of the secretory vesicles than acidic dyes.  

 

5. Conclusions.  

 

 Our data show that there are two types of acidic vesicles in neuroendocrine cells 

which can be easily distinguished by confocal microscopy. Those containing the 

proteins more characteristic of the secretory granules, such as VAMP, chromogranin A 

or NPY, were labelled using EGFP-containing targeted chimeric proteins (VAMP-

EGFP, chromogranin A-EGFP or NPY-EGFP) but not with acidic dyes. Instead, the 

vesicles labelled with acidic dyes showed little labelling with the targeted chimeras.  
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Figure Legends 

 

Fig. 1. Confocal colocalization study of VAMP-EGFP and lysotracker red 

fluorescence in bovine chromaffin cells. Panel A shows images obtained in 6 different 

planes of a single bovine chromaffin cell and panel B shows images obtained in 3 

different planes of another cell. The green images show in both panels the fluorescence 

obtained in cells expressing VAMP-EGFP using the 488nm excitation line of the Ar 

laser and monitoring the fluorescence emitted between 500 and 530nm. The red images 

show the fluorescence emitted by the same cells in the same confocal plane between 

600 and 700nm after loading with 50nM lysotracker red for 1 min and using the 543nm 

excitation line of the green He-Ne laser. The overlap images show the superimposition 

of both fluorescences. The coincidence images in panel A have been obtained with the 

Colocalization Finder plugin from the ImageJ software and show in bright white the 

colocalized pixels. Pearson´s coefficients corresponding to all the colocalizations ranged 

between 0,028 and 0,110. Data are representative of about 100 similar cells studied.  

 

Fig. 2. Confocal colocalization study of VAMP-EGFP and lysotracker red 

fluorescence in PC12 (upper panel) and GH3 (lower panel) cells. The left images 

(green) show in both panels the fluorescence emitted between 500 and 530nm in cells 

expressing VAMP-EGFP under 488nm excitation. The middle images (red) show the 

fluorescence emitted by the same cells in the same confocal plane between 600 and 

700nm after loading with 50nM lysotracker red for 1 min and under 543nm excitation. 

The right images show the superimposition of both fluorescences. Pearson´s coefficients 

were 0,044 for the PC12 images and 0,086 for the GH3 images. Data are representative 

of 90 PC12 cells and 10 GH3 cells studied.  
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Fig. 3. Confocal colocalization study of VAMP-EGFP and neutral red fluorescence 

in bovine chromaffin cells. The left image (green) shows the fluorescence emitted 

between 500 and 530nm in a cell expressing VAMP-EGFP under 488nm excitation. 

The middle image (red) shows the fluorescence emitted by the same cell in the same 

confocal plane between 600 and 700nm after loading with 1µM neutral red added 

immediately before taking the images and under 543nm excitation. The right image 

shows the superimposition of both fluorescences. Pearson´s coefficient was 0,030. Data 

are representative of 12 similar cells studied.  

 

Fig. 4. Confocal colocalization study of acridine orange fluorescence with either 

lysotracker red (panel A) or neutral red (panel B) fluorescence in PC12 cells. In 

panel A, the images show a single cell loaded with 50nM lysotracker red for 1 min and 

then with 100nM acridine orange immediately before taking the images in the same 

confocal plane. The left image (green) shows the fluorescence emitted by acridine 

orange between 500 and 530nm under 488nm excitation. The middle image (red) shows 

the fluorescence emitted by lysotracker red between 600 and 700nm under 543nm 

excitation. The right image shows the superimposition of both fluorescences. Pearson´s 

coefficient was 0,942. Data are representative of 12 similar cells studied. In panel B, the 

images show a group of cells loaded with 1µM neutral red for 1 min and then with 

100nM acridine orange immediately before taking the images in the same confocal 

plane. The left image (green) shows the fluorescence emitted by acridine orange 

between 500 and 530nm under 488nm excitation. The middle image (red) shows the 

fluorescence emitted by neutral red between 600 and 700nm under 543nm excitation. 
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The right image shows the superimposition of both fluorescences. Pearson´s coefficient 

was 0,764.  Data are representative of 8 similar cells studied.  

 

Fig. 5. Confocal colocalization study of VAMP-EGFP, acridine orange and 

lysotracker red fluorescence in PC12 cells. In panel A, cells expressing VAMP-EGFP 

were loaded with 50nM lysotracker red for 1 min immediately before taking the images 

in the same confocal plane. The left image (green) shows the fluorescence emitted by 

VAMP-EGFP between 500 and 530nm under 488nm excitation. The middle image 

(red) shows the fluorescence emitted by lysotracker red between 600 and 700nm and 

under 543nm excitation. The right image shows the superimposition of both 

fluorescences. Pearson´s coefficient was 0,122.  In panel B, the same cells were also 

loaded with 100nM acridine orange immediately before taking the images. The left 

image (green) shows the fluorescence emitted by both VAMP-EGFP and acridine 

orange between 500 and 530nm under 488nm excitation. The middle image (red) shows 

the fluorescence emitted by lysotracker red between 600 and 700nm and under 543nm 

excitation. The right image shows the superimposition of both fluorescences. Pearson´s 

coefficient was 0,313. Data are representative of 12 similar cells studied. 

 

Fig. 6. Confocal colocalization study of lysotracker red fluorescence with either 

chromogranin A-EGFP (CgA-EGFP) or neuropeptide Y-EGFP (NPY-EGFP) 

fluorescence in PC12 cells. Cells expressing chromogranin A-EGFP (panel A) or 

neuropeptide Y-EGFP (panel B) were loaded with 50nM lysotracker red for 1min 

immediately before taking the images in the same confocal plane. The left images 

(green) show the fluorescence emitted by either chromogranin A-EGFP (panel A) or 

neuropeptide Y-EGFP (panel B) between 500 and 530nm under 488nm excitation. The 
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middle images (red) show the fluorescence emitted by lysotracker red between 600 and 

700nm and under 543nm excitation. The right images show the superimposition of both 

fluorescences. Pearson´s coefficients were 0,090 for the images of panel A and 0,112 

for the images of panel B. Data are representative of 10 cells expressing chromogranin-

EGFP and 15 cells expressing neuropeptide Y-EGFP studied.  

 

Fig. 7. Confocal colocalization study of VAMP-EGFP and lysotracker red 

fluorescence in a PC12 cell after prolonged expression of VAMP-EGFP. Cells were 

transfected with the VAMP-EGFP plasmid. Then, after 24 h, 0,8mg/ml of the antibiotic 

G418 was added to the culture medium to select cells expressing the construct. Cells 

were then cultured in the presence of G418 for 15 days before the experiment. The left 

image (green) shows the fluorescence emitted by VAMP-EGFP between 500 and 

530nm and under 488nm excitation. The middle image (red) shows the fluorescence 

emitted in the same confocal plane between 600 and 700nm after loading with 50nM 

lysotracker red for 1 min and using the 543nm excitation line of the green He-Ne laser. 

The right image shows the superimposition of both fluorescences. Pearson´s coefficient 

was 0,171. Data are representative of 10 similar cells studied.  

 

Fig. 8. Effect of the protonophore FCCP on the fluorescence of PC12 cells 

expressing VAMP-EGFP. The figure shows three fluorescence images taken before 

FCCP addition (a), during FCCP addition (b) and after wash of the protonophore (c). 

The trace corresponds to the fluorescence record with time of the cell marked by the 

arrow in the images. Data are representative of 4 similar experiments.  
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Fig. 9. Effect of the peptide GPN on VAMP-EGFP and lysotracker red 

fluorescence in PC12 cells. The figure shows confocal images taken before (panels A, 

B and C) and 2 min after (panels D, E and F) the addition of 0,5mM GPN. The upper 

images (A and D) show the fluorescence emitted between 500 and 530nm in cells 

expressing VAMP-EGFP under 488nm excitation. The middle images (B and E) show 

the fluorescence emitted between 600 and 700nm by the same cells, in the same 

confocal plane, after loading with 50nM lysotracker red for 5 min and under 543nm 

excitation. The lower images (C and F) show the superimposition of both fluorescences. 

Pearson´s coefficients were 0,125 for the left image and 0,020 for the right image. Data 

are representative of 15 cells studied.  

 



ACCEPTED MANUSCRIPT 

5�mVamp-EGFP lysotracker red

overlap coincidence

A

Moreno et al., Fig. 1A



ACCEPTED MANUSCRIPT 

Moreno et al., Fig. 1B

VAMP-EGFP

lysotracker red

overlap

B



ACCEPTED MANUSCRIPT 

Moreno et al., Fig. 2

PC12

GH3

VAMP-EGFP lysotracker red overlap

VAMP-EGFP lysotracker red overlap

5�m

5�m



ACCEPTED MANUSCRIPT 

Moreno et al., Fig. 3

VAMP-EGFP neutral red Overlap



ACCEPTED MANUSCRIPT 

Moreno et al., Fig. 4

A

B

acridine orange lysotracker red overlap

acridine orange neutral red overlap

5�m

10�m



ACCEPTED MANUSCRIPT 

Moreno et al., Fig. 5

A

B
VAMP-EGFP Lysotracker red Overlap

VAMP-EGFP
+ acridine orange Lysotracker red Overlap



ACCEPTED MANUSCRIPT 

Moreno et al., Fig. 6

CgA-EGFP

NPY-EGFP

Lysotracker red Overlap

Lysotracker red Overlap

A

B



ACCEPTED MANUSCRIPT 

Moreno et al., Fig. 7

VAMP-EGFP Lysotracker red Overlap



ACCEPTED MANUSCRIPT 

FCCP 2�M

a

b

c

1200

1600

2000

2400

2800

3200

V
A

M
P

-E
G

FP
flu

or
es

ce
nc

e 
(a

.u
.)

2 min

Moreno et al., Fig. 8



ACCEPTED MANUSCRIPT 

A

B

C

D

E

F

Moreno et al., Fig. 9


