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Abstract. In this study we investigated an approach to the calculation of a Standardized Streamflow 

Index (SSI) that allows accurate spatial and temporal comparison of the hydrological conditions of a 

stream or set of streams. For this purpose the capability of six three-parameter distributions (log-

normal, Pearson type III, log-logistic, General Extreme Value, Generalized Pareto and Weibull) and 

two different approaches to select the most suitable distribution: the Best Monthly Fit (BMF) and the 

Minimum orthogonal Distance (MD), was tested using a monthly streamflow dataset for the Ebro 

basin (Spain). This large Mediterranean basin is characterized by high variability in the magnitude of 

streamflows and in seasonal regimes. The results show that the most commonly used probability 

distributions for flow frequency analysis provided good fits to the streamflow series. Thus, visual 

inspection of the L-moment diagrams and the results of the Kolmogorov-Smirnov test did not enable 

selection of a single optimum probability distribution. However, no single probability distribution 

for all the series was suitable for obtaining a robust standardized streamflow series, as each of the 

distributions had one or more limitations. The BMF and MD approaches provided improved results 

in terms of the expected average, standard deviation and frequencies of extreme events of the SSI 



series in relation to the selection of a unique distribution for each station. The BMF and MD 

approaches involved using different probability distributions for each gauging station and month of 

the year to calculate the SSI. Both approaches are easy to apply and they provide very similar results 

in terms of the quality of the obtained hydrological drought indices. The proposed procedures are 

very flexible for analyses involving contrasting hydrological regimes and flow characteristics. 

 

Keywords: hydrological drought, river flows, Standardized Streamflow Index, Standardized 

Precipitation Index, low flows, runoff index, flow index 

 

1. Introduction 

 

Drought is one of the greatest natural hazards, with effects on many sectors and systems, and major 

impacts on agriculture, water resources and natural ecosystems. Droughts affect many people 

worldwide, are responsible for famine, epidemics and land degradation in developing countries 

(Obasi, 1994; Nicholson, 2001), and cause large economic losses in developed regions (Meehl et al., 

2000; Fink et al., 2004; UN, 2008). 

Drought is a natural phenomenon that occurs when water availability is significantly below normal 

levels over a long period, and cannot meet demand (Havens, 1954; Redmond, 2002). Drought 

conditions are much more difficult to identify than other natural hazards because drought is 

commonly the result of a number of factors that are only apparent after a long period of precipitation 

deficit. Consequently, it is very difficult to determine the onset, extent and end of droughts (Wilhite, 

1993). In contrast to other natural hazards including floods, which are typically restricted to small 

regions and occur over well defined temporal intervals, drought is difficult to pinpoint in time and 

space because it affects wide areas over long time periods. Moreover, it is very difficult to 



objectively quantify drought severity, which is a combination of the duration, magnitude and spatial 

extent of a drought (Dracup et al., 1980). 

Much effort has been devoted to developing robust approaches to the calculation of climate drought 

indices (see review in Heim, 2002), as they provide the potential to accurately quantify the severity 

of droughts in terms of magnitude, duration and spatial extent. A key feature of drought indices is 

that they must enable the severity of droughts in different locations to be compared independently of 

the local climatic characteristics. Thus, the procedures for quantifying climate drought conditions are 

commonly based on the calculation of standardized series (z-scores, with an average = 0 and a 

standard deviation = 1) from the magnitudes of hydroclimatic variables of interest, which include 

precipitation and water balances. This enables the relative severity of water deficits to be determined 

independently of the seasonal and spatial characteristics of the variable. 

Following this approach, a climate drought index can be obtained from long time series using the 

cumulative distribution function corresponding to each value it of the hydroclimatic variable of 

interest. This is commonly obtained using the probability distribution that shows the best fit to the 

data. For example, calculation of the Standardized Precipitation Index (SPI; McKee et al., 1993), 

which is one of the most commonly used climate drought indices, is based on the Gamma (McKee et 

al., 1993) or the Pearson type III distribution (Guttman, 1999; Vicente-Serrano, 2006), while 

calculation of the Standardized Precipitation Evapotranspiration Index (SPEI) is based on the log-

logistic distribution (Vicente-Serrano et al., 2010). Several studies have shown the ability of these 

distributions to fit time series of precipitation and water balance over a wide range of climate regions 

(Guttman, 1999; Vicente-Serrano et al., 2010b). 

Hydrological drought refers to a decrease in surface or ground water resources, commonly river 

flows, reservoir storages and aquifers (Tallaksen and Van Lanen, 2004). Hydrological droughts can 

have widespread impacts by reducing or eliminating water supplies, deteriorating water quality, 

restricting water for irrigation and causing crop failure, reducing power generation, disturbing 



riparian habitats, limiting recreation activities, and affecting a diversity of economic and social 

activities (Mishra and Singh, 2010). Although the origin of hydrological droughts is commonly 

climate droughts (Zaidman et al., 2001; Hisdal and Tallaksen, 2003; Beersma and Buishand, 2004; 

Vasiliades and Loukas, 2009; Edossa et al., 2010; Hannaford et al., 2010; Lorenzo-Lacruz et al., 

2010; Vidal et al., 2010), the quantification of hydrological droughts as independent phenomena has 

also received much attention in the scientific community. This is because there are not usually direct 

spatial or temporal relationships between the occurrence of climate and hydrological droughts 

(Vicente-Serrano and López-Moreno, 2005; Tallaksen et al., 2009; Hannaford et al., 2010; Lorenzo-

Lacruz et al., 2010; Vidal et al., 2010). Moreover, analysis of hydrological droughts allows direct 

quantification of the deficits in usable water sources. 

In contrast to climate droughts, the quantification of hydrological droughts is not usually based on 

indices, but on the theory of runs (Yevjevich, 1967). A drought event is defined as the period during 

which the hydrological variable is below a predetermined truncation level. Following this approach, 

the duration of drought is the time when with streamflow is below the truncation level, and drought 

severity is the cumulative deviation below the truncation level during that period. Therefore, 

selection of the truncation level is critical in defining a drought, and can be based on the average of a 

series (Dracup et al., 1980), a percentile (Zelenhasic and Salvai, 1987), or relative values with 

respect to the average (Clausen and Pearson, 1995). Some studies have improved the identification 

of droughts by considering the mutual dependence among drought events (Tallaksen et al., 1997; 

Fleig et al., 2006). This approach has the advantage of considering the real low-flow periods, during 

which the availability of water is unable to meet demand, with consequent environmental and 

socioeconomic impacts (Smakhtin, 2001). Nevertheless, given the contrasting river regimes and flow 

magnitudes that can occur among neighboring basins, the spatial comparison of drought severity and 

the development of drought maps are not possible using the method of runs. This is because the 

same drought magnitude may have different implications, according to the basin. In addition, the 



seasonality of river flows must be taken into account in quantifying hydrological droughts. In rivers 

with high seasonality, the low flow periods usually correspond to reduced water availability in 

summer. Nevertheless, a reduction in discharges during high flow periods can also have negative 

impacts on natural systems adapted to a particular river regime. Thus, relatively low flows during 

high flow periods can reduce reservoir storages downstream, affecting the availability of water 

resources for certain uses some months later. For these reasons, in addition to low-flow analysis 

based on the run theory (see reviews in: Smakhtin, 2001; Tallaksen and Van Lanen, 2004), it would 

be advantageous to develop a standardized hydrological drought indicator that allows comparisons 

of drought severity across time and space, including in basins with different characteristics in terms 

of regimes, flow variability and the magnitude of flows. Such an indicator could be implemented 

following the same theoretical approach used for the calculation of climate drought indices. 

Stahl (2001) developed the Regional Deficiency Index (RDI) to characterize hydrological droughts. 

The RDI is based on daily flow data, and removes the influence of streamflow seasonality on 

droughts. Nevertheless, the index does not indicate the magnitude of a drought (it only quantifies the 

duration from a binary time series), and drought severity is quantified in terms of the surface 

affected, which makes comparisons of hydrological droughts at different stations impossible. 

Two hydrological drought indices have recently been developed following the approach commonly 

used for climate drought indices: these are the Streamflow Drought Index (Nabaltis and Tsakiris, 

2009) and the Standardized Runoff Index (Shukla and Wood, 2008). These indices have the same 

theoretical background because they derive the hydrological drought index by transformation of 

monthly streamflows into z-scores. The problem in this approach is that selection of the most 

suitable probability distribution to calculate the index, and the consequences of the selection on the 

final series have not been tested in depth. In development of the SPI, various probability 

distributions were carefully tested to select the most suitable (McKee et al., 1993; Guttman, 1999). 

The same approach was followed in development of the SPEI (Vicente-Serrano et al., 2010). These 



studies provided evidence about the suitability of the Pearson type III and log-logistic distributions 

to fit precipitation and water balance series, respectively, across a wide range of climate regimes and 

time scales. 

Streamflow commonly shows greater spatial variability than the climatic variables used to derive 

drought indicators. This is because of the influence of a number of factors including topography, 

lithology, vegetation and human management, but also as a consequence of the spatial aggregation 

of the flows, which changes the statistical properties of the series downstream (Mudelsee, 2007). 

Therefore, a high degree of spatial variability occurs in the probability distributions that best fit the 

monthly streamflow data (Riggs, 1973; Kroll and Vogel, 2002; Yue and Wang, 2004; Yue and Pilon, 

2005; McMahon et al., 2007; Yue and Hashino, 2007), which makes it difficult to select the most 

appropriate distribution to calculate a streamflow drought index over a wide area. 

In this study we tested the performance of several probability distributions, assuming that each 

month may fit to different probability distributions, for use in calculating a Standardized Streamflow 

Index (SSI). This has enabled us to propose an accurate procedure for obtaining a hydrological 

drought index that is useful for making spatial and temporal comparisons over a wide variety of river 

regimes and flow characteristics. 

 

2. Methods 

 

2.1. Data set 

 

We used the Ebro River basin (northeast Spain) for calculating and testing the performance of the 

SSI. This basin is characterized by large spatial variability in the river regimes and flow magnitudes. 

The Ebro basin is the largest in Spain (surface area 85,362 Km2) and covers 17.3% of the country. 

The Ebro River flows from the Cantabrian Range to the Mediterranean Sea; it is the main river in the 



Ebro basin, with a total length of 910 km. The basin is bounded to the north by the Cantabrian Range 

and the Pyrenees, which have maximum altitudes of more than 3000 m asl, and the Iberian 

Mountains (maximum altitudes 2000−2300 m asl) enclose the Ebro basin to the south. The 

heterogeneous topography and contrasting Atlantic and Mediterranean influences generate a 

complex spatial distribution of climate parameters, and large variations in precipitation and 

evapotranspiration throughout the region (Cuadrat et al., 2007; Vicente-Serrano et al., 2007). Thus, 

the annual precipitation varies from 307 to 2451 mm yr–1; most falls in autumn and spring (Cuadrat 

et al., 2007), although in some areas the maximum precipitation occurs in winter and summer 

(Beguería et al., 2009). The average annual temperature varies from 0.8 to 16.2°C. 

The marked differences in topographic and climatic conditions explain the high variability of river 

flows and regimes. In the headwaters in the Pyrenees and the Iberian Range the rivers are snow-fed, 

with flow regimes characterized by marked seasonality. The mid courses of the rivers are also 

subject to large seasonal variability that is driven by dry summers, and high flow episodes are 

common in winter and autumn in response to extreme precipitation events (Ollero et al., 2004). The 

basin is highly regulated, with 126 reservoirs currently active; these manage the water resources for  

hydropower production, irrigation and urban consumption. Most of the dams were built between the 

1950s and the 1980s, and their construction increased the storage capacity from 500 to 6500 Hm3, 

which represents 50% of the average annual outflow to the Mediterranean Sea (1945−2005 average: 

12208 Hm3). 

The hydrological records used in this study were provided by the Ebro Water Management Agency 

(Confederación Hidrográfica del Ebro). We used monthly streamflow data from 98 of 420 gauging 

stations located across the basin; the data covered the period 1945−2005. Selection of the data series 

was based on the criterion that gaps resulting from missing data should not represent more than 10% 

of the total length of the series. Gaps were filled by multiple linear regression using highly correlated 

stations located on the same river or in very close proximity (Hirsch, 1982; Vogel and Stedinger, 



1985). Thus, the objective series had a Pearson’s correlation coefficient of at least R = 0.8. Figure 1 

shows the spatial distribution of the selected stations. 

 

2.2. Calculation of the SSI 

 

Various probability distributions have been used to obtain hydrological drought indices. A unique 

probability distribution is usually selected to fit all the available series and/or variables. For example, 

Zaidman et al. (2001) used the log-normal distribution to fit river flow series for the period 

1960−1995 for 2781 stations from sites in the UK, Ireland, France, Germany, the Netherlands, 

Belgium, Denmark, Switzerland, Austria and the Czech Republic. The same distribution was used 

by Nalbantis and Tsakiris (2009) in the Evinos basin (Greece). Other authors have assessed the 

performance of various distributions used to derive hydrological drought indices. López-Moreno et 

al. (2009) and Lorenzo-Lacruz et al. (2001) used the Pearson type III distribution to fit monthly 

streamflow series in the central Iberian Peninsula. The same distribution was used by Mo (2008) to 

obtain standardized runoff series in the USA. However, Shukla and Wood (2008) noted the role of 

varying hydroclimatic regimes in the USA in relation to selection of the best probability distribution 

for adjusting the data, and reported that the 2-parameter Gamma and log-normal distributions 

generally performed well, but also showed that the 3-parameter log-normal and the Generalized 

Extreme Value distributions were also applicable. 

Some studies have shown that the regionalization of river flows can be established according to a 

particular probability distribution, with the potential to apply common parameters to the various 

runoff series (Hosking and Wallis, 1993; Bobee et al., 1996; Burn, 1997; Yue and Wang, 2004; 

Modarres and Sarhadi, 2010; Shi et al., 2010). Nevertheless, the use of a unique probability 

distribution function for different river sectors and months requires high spatial homogeneity among 

the series, which is unlikely to be found in rivers with physical characteristics, climatic, hydrological 



regimes and hierarchy that differ, even over very short distances. Therefore, it can be assumed that 

the most suitable probability distribution to fit individual streamflow series will vary. Similarly, 

large seasonal variations in streamflow characteristics can cause differences in the twelve monthly 

series at a single station. For example, Figure 2 shows the frequency histograms of the streamflow 

series for January, March and May at the Sástago station in the Ebro River. The theoretical 

probability distributions that show the best fit to the data are also indicated in Figure 2. This example 

illustrates how the fitting of monthly runoff series from the same location to different distributions 

can affect the procedure for calculating hydrological drought indices. 

In this study we applied two approaches to the use of probability distributions to obtain a 

Standardized Streamflow Index. 

 

2.2.1. Using a unique distribution of probability 

In the first approach we used a unique probability distribution to fit the monthly streamflow series 

with independent fitted parameters at each site and month. We selected six 3-parameter distributions 

widely used in hydrological analysis (Chow et al., 1988; Bobée and Ashkar, 1991; Vogel et al., 

1993; Rao and Hamed, 2000): the General Extreme Value (GEV), Pearson type III (PIII), log-

logistic, log-normal, Generalized Pareto and Weibull distributions. For example, Figure 3 shows the 

May series for the Sástago station (Ebro River) with the six theoretical distributions that fit the data. 

The flexibility of having a wide range of distributional shapes given the three-parameters of the 

distributions allows a good fit to the observed frequencies. Therefore, for each streamflow series we 

calculated six SSI series, corresponding to each of the six probability distributions used. 

Table 1 shows F(x) (the cumulative distribution function) for each of the six selected distributions. 

The calculation of F(x) is essential to obtaining the SSI. The table includes the equations used to 

calculate the parameters of the six probability distributions; these were based on the L-moment 



method (see below). Once F(x) is calculated the SSI (in z-scores) can easily be determined following 

(for example) the classical approximation of Abramowitz and Stegun (1965): 
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P is the probability of exceeding a determined x value, and P =1−F(x). If P > 0.5, P is replaced by 

1−P and the sign of the resultant SSI is reversed. The constants are: C0 = 2.515517, C1 = 0.802853, 

C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, d3 = 0.001308. If the probability distribution is 

suitable for fitting the monthly streamflow series, the average value of the SSI and the standard 

deviation must equal 0 and 1, respectively. The SSI is a standardized variable, and can therefore be 

compared with other SSI values across time and space. 

 

2.2.2. Using different distributions for each monthly series  

The second approach was based on selection of the most suitable probability distribution for each 

monthly streamflow series. Using this approach a SSI was created for each monthly streamflow 

series, whereby the twelve monthly streamflow series could be fitted by different probability 

distributions. To select the most suitable distribution for each series we tested the capability of two 

different approaches: 

1. The selection of the most suitable distribution according to L-moment ratio diagrams (Hosking, 

1990; Peel et al., 2001), which gives a visual indication of how well the probability distributions fits 

the data.  

The L-moment ratios τ3 and τ4 are calculated as follows: 
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where λ2, λ3 and λ4 are the L-moments of the river flow or reservoir storage series, obtained from 

probability-weighted moments (PWMs) using the formulae: 
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Figure 4 shows the L-moment ratio diagrams for the runoff monthly series. The symbols group the 

monthly series in seasons (winter, spring, summer and autumn), which enables visual assessment. 

The diagram shows that the majority of the runoff monthly series had positive skew. However, no 

clear patterns were evident in relation to the most suitable probability distribution to fit the series, 

suggesting that it was not possible to select a unique probability distribution based on a visual 

inspection. Kroll and Vogel (2002) used a quantitative approach to select the most suitable 

distribution to fit low flow series according to the orthogonal distance between the sample L-

moments at site i and the L-moment relationship for a specific distribution. They indicated that the 

closer the sample L-moment ratios are to a probability distribution’s L-moment ratio relationship the 

choice of distribution is better for describing the series. We have followed this approach to select the 

most suitable distribution for each monthly streamflow series, by means of the calculation of the 



orthogonal distance between the sample L-moments at site i and the L-moment relationship for the 

six distributions described above. We always selected the distribution that showed the minimum 

orthogonal distance to the sample to obtain the F(x) for each monthly streamflow series. This 

method is known as the Minimum Orthogonal Distance (MD). 

2. The second approach is known as the Best Monthly Fit approach (BMF), which is based on the 

Kolmogorov-Smirnov (KS) test (Siegel and Castelan, 1988). This test was used to compare a 

streamflow series with a reference probability distribution. It is based on the difference between the 

empirical distribution function, ECDF(X), and the cumulative distribution function, CDF(X), 

following a given probability distribution. On the basis of the KS test a D statistic was obtained, 

which is the maximum vertical difference between the empirical and the cumulative distribution 

functions: 
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where r is the rank of the observation i in ascending order. 

If the runoff series comes from a given cumulative distribution function, then D converges to 0. In 

other words, smaller values of D imply a better fit of the streamflow series to the probability 

distribution. Therefore, to obtain the F(x) for each monthly streamflow series we selected the 

probability distribution that showed the smallest D statistic. The distribution was rejected if D was 

greater than the critical value (α = 0.05). 

For the results obtained from each approach we compared the statistical properties of the constructed 

SSI series in terms of the average, standard deviation, and expected frequencies of the most extreme 

values. 

 

3. Results 



Figure 5 shows twelve boxplots of the KS D statistic for the monthly streamflow series of the 98 

stations. Based on the critical level (α = 0.05) the six analyzed distributions provided an adequate fit 

to the streamflow series, as the D values were in most cases below the critical value of D = 0.169. 

From Figure 5 it is very difficult to determine which probability distribution provides the best fit to 

the series, as there are marked differences among the various months of the year. Figure 6 shows 

twelve box-plots with the orthogonal distance between the sample L-moments and the L-moment 

relationship for each one of the distributions. There are some seasonal contrasts (e.g., higher 

orthogonal distances in summer than in winter months) but the main pattern is the large differences 

between the distributions with low distances for each monthly series. 

Moreover, Figures 7 and 8 indicates that there was no clear spatial pattern in the probability 

distributions that showed the best fit and the minimum distance to the monthly streamflow series, 

respectively. Thus, the probability distribution providing the best fit for gauging stations along the 

same river course often changed. Moreover, in addition to the large spatial variability there was high 

seasonal variability, and the most common situation was to find a different probability distribution 

that shows the best fit to the streamflow series of each month. There was no probability distribution 

that showed a better overall fit for a particular region or month.  

In addition, there are noticeable differences in the selected distributions according to the BMF or 

MD approaches. Table 2 shows the frequency with which each distribution was selected for each 

month according to the two different approaches. The numbers represent the percentage of the 

monthly streamflow series in which the minimum D statistic of the KS test or the MD is obtained for 

each distribution.  For the BMF, the Generalized Pareto distribution showed the best fit for 22% of 

the series. The log-normal and log-logistic distributions showed the best fit for 18% of the series, 

and the Weibull was best in 17%. The two least suitable were the GEV and the PIII distributions, 

which showed the best fit in 13% and 12% of series, respectively. There were some seasonal 

differences; for example, the Generalized Pareto distribution showed the best fit in the highest 



percentage of stations in spring (23-30%), but in late autumn and early winter the log-normal 

distribution showed the best fit in the highest percentage of stations (28-32%), and in summer and 

autumn it was the log-logistic distribution (28-36%). The other six distributions did not show any 

seasonal dominance. The pattern is similar for the MD approach, since the Generalized Pareto 

showed the minimum orthogonal distance for the 23% of the cases and the seasonal percentages are 

very close to those obtained using the BMF. However, although the percentages are comparable, in 

the 52% of the cases (611 of the 1176 monthly series) the selected distribution was different between 

the BMF and the MD approaches. 

The reasons of why certain distributions fit better than others for different months can be driven by 

physical or climatic factors. For example, late spring and early summer are characterised by high 

flows but also by high inter-annual differences given the large climate variability that characterises 

the region. This could explain that during these months the Generalized Pareto distribution showed 

the best fit in a high percentage of the cases since this is an extreme value distribution widely used 

for modelling excesses over high thresholds. On the contrary, during late fall and early winter the 

precipitation events commonly have a frontal origin; they are not very extreme in terms of their 

intensity over short periods, and flashy high flows are more rare. This behaviour could explain why 

log-logistic or log-normal distributions showed the best fit in several stations. In any case, the 

variability found was very high, and given the high spatial variability showed in Figures 7 and 8, it is 

very difficult to identify patterns of dominant distributions to fit the data in some months and areas. 

Based on the findings of high spatial and seasonal differences in the statistical characteristics of the 

streamflow series, and large variability in the probability distributions that provided the best fit to the 

data, it does not seem feasible to select a single probability distribution for the entire dataset, or for 

specific regions or months. An alternative approach was to seek the most suitable probability 

distribution for each station and monthly series. Figures 9 and 10 show representative examples of 

the evolution of the SSI at two stations with very different characteristics: the Ebro River at the 



Sástago station (in the middle course of the main river, with an average annual flow of 7549 

Hm3/year) and the Segre River at the Puigcerdá station (in the headwaters of a mountain river, with 

an average annual flow of 126 Hm3/year). The figures represent 7 SSI series for each station, 

corresponding to the six probability distributions and the BMF and MD approaches, and show that 

irrespective of the probability distribution or BMF/MD approach used, the major dry and moist 

episodes were clearly identified. At the Sástago station the main droughts were recorded in 

1948−1949, 1955 and the decades of 1980, 1990 and 2000. There was some agreement with the 

drought episodes recorded at the Puigcerdá station, mainly in the decades of 1940 and 2000. Based 

on visual inspection it was very difficult to distinguish among the series calculated using the various 

probability distributions or the BMF/MD approaches. Nevertheless, some common features were 

evident: i) the PIII distribution tended to overestimate the magnitude of the negative anomalies; ii) 

the Generalized Pareto distribution tended to generate higher values than the other distributions; iii) 

The Generalized Pareto and the Weibull distributions did not show solution for some low/high 

streamflow values (as the values of the index tend to ∞−  or ∞+  given the shape of the probability 

density functions). In these cases the values had to be truncated to the corresponding probability of 1 

in 100 years to have a value in the index. This explains why some contiguous months had the same 

negative value. The SSI obtained from the log-normal, GEV and log-logistic distributions and the 

BMF and MD approaches showed similar characteristics in terms of the magnitude of the most 

extreme values, highlighting the difficulty of selecting the most appropriate distribution by visual 

inspection alone. 

As we could not reject for the majority of the stations the hypothesis that the twelve monthly series 

came from at least one of the six analyzed distributions (Table 3), we made a statistical comparison 

based on the expected statistical properties of the SSI. As the SSI is a standardized variate, it is 

expected that the long-term average of the index will equal 0, and its standard deviation will equal 1. 

Figure 11 shows two boxplots of the average and standard deviation of the SSI using the six 



probability distributions and the BMF and MD approaches. The indices based on some distributions 

were deficient in terms of the expected average and standard deviation. For example, the mean of the 

average values was negative for the log-normal and the PIII distributions, whereas for the other 

distributions and the BMF and MD approaches the mean of the average SSI was close to 0. The 

range of average values among the stations was very high for the log-normal and PIII distributions, 

which introduced a substantial limitation in the SSI series obtained from these distributions. As some 

of the series were biased, it was difficult to establish reliable spatial comparisons, as a value of 0 

would not represent normal conditions in all cases. The GEV and log-logistic distributions and the 

BMF approach provided SSI series with averages closest to 0, and low variability among the 

stations. The standard deviations of the SSI series also showed marked differences among the eight 

approaches. Thus, the log-normal and the PIII distributions generated average values much greater 

than 1, which suggests against their use for the SSI calculation. The other distributions generated 

values around 1, and the standard deviation for the BMF and MD approaches was closest to 1. 

The comparisons among the indices included the expected frequency of the most extreme SSI values 

as well as the average and standard deviations. Based on a normal standard distribution, it is 

expected to find one value lower than −1.65 or higher than 1.65 every 20 years, as these values 

represent 5% of the cumulative distribution function. Similarly, an SSI event exceeding ± 2.33 

corresponds to a return period of 100 years. Given the length of the series (61 years ×12 months) an 

average of 36.6 SSI events above (below) 1.65 (−1.65), or 7.3 events above (below) 2.33 (−2.33) 

would be expected. We compared the observed and expected frequency of the values above and 

below these thresholds, and summarized the results in a boxplot (Figure 12). The observed frequency 

of positive extreme values tended to follow the expected frequency independent of the approach 

used for the calculation. Nevertheless, the GEV and log-logistic distributions tended to show a 

higher frequency of values above 1.65 and a lower frequency of values above 2.33 than did the other 

distributions. They also showed the highest variability in the observed frequencies among the 



stations. Nevertheless, the most important differences were found for the low values. The GEV and 

log-logistic distributions tended to underestimate the expected frequency of values below −1.65. 

Moreover, the log-normal distribution showed high variability among the stations, in some cases 

yielding very high frequencies of low SSI values. The BMF and MD approaches showed the closest 

frequency to the expected values, and also the lowest variability among the 98 stations. The same 

pattern was observed for the frequency of values less than −2.33, in which the BMF provided the 

best result. 

Table 4 summarizes, the main limitations in the calculation of the SSI based on each of the six 

probability distributions and the BMF and the MD approaches. If a unique distribution of probability 

is selected to fit the twelve monthly streamflow series of a gauging station, the most suitable and 

flexible probability distributions were the GEV and the log-logistic. The Generalized Pareto and 

Weibull distributions showed no solution for some negative values, which is a critical limitation for 

calculation of the index, but they also showed very large differences among stations in the average 

values of the SSI, and underestimated the expected frequency of extreme negative SSI values. The 

PIII and log-normal distributions also showed large limitations, mainly in relation to the expected 

average and standard deviations of the SSI series, which made spatial comparisons of the SSI values 

difficult. In addition, the PIII distribution also showed an excessive frequency of extreme negative 

values. The results indicate that rather than using a unique probability distribution for calculation of 

the SSI over a range of streams with different flow magnitudes and regimes, it is better to select the 

most suitable distribution for each monthly series according to the BMF of MD approaches based on 

the probability distribution that shows the best fit to each of the twelve streamflow series at each 

station for the BMF or the MD approaches. Application of the BMF or MD approaches enabled the 

limitations of the two most suitable distributions (GEV and log-logistic) to be overcome, as no 

underestimation of the most negative SSI values, or overestimation of the extreme positive SSI 

values, was observed. 



 

5. Discussion and conclusions 

 

A key recommendation of this study is to assess and if necessary use different probability 

distributions for each gauging station and month of the year for calculating a SSI. We compared the 

performance of this calculation procedure by means of two different approaches (the BMF and the 

MD) with the use of a single probability distribution for an entire region over the twelve months of a 

year. The analysis was conducted in the Ebro River basin, an area that exhibits large variability 

among river regimes, the frequency characteristics of streamflows, and flow magnitudes. The BMF 

and the MD approaches showed the greatest flexibility in accounting for the variety of conditions 

found within the basin, and enabled the problems associated with the use of a single distribution to 

be overcome. Thus, both approaches provide a robust index that guarantees the spatial and temporal 

comparability of drought conditions. They provide very similar results in terms of the expected 

average, variance and the occurrence of extremes in the series of the drought indices.  

The procedure for obtaining the SSI was based on the conversion of the streamflow magnitudes to 

standardized anomalies (z-scores). For this purpose we fitted various probability distributions to the 

available streamflow data. Selection of the most suitable probability distribution to fit the empirical 

streamflow data is usually based on a visual inspection of L-moment diagrams (Hosking, 1990), or a 

goodness-of-fit test. We found that neither of these approaches provided a sufficient basis for 

choosing a single probability distribution for the dataset, even if the analyses were made by regions, 

streams or months. The visual inspection of the L-moment diagrams showed that none of the six 

probability distributions was best able to fit the streamflow series. Moreover, a goodness-of-fit test 

did not help in the identification of a unique probability distribution, as in the majority of cases the 

null hypothesis (that the series follows at least one of the six distributions) could not be rejected. 

Therefore, neither approach help select a single probability distribution for computing the SSI. 



Nevertheless, when the SSI series obtained were compared, they showed marked differences in their 

statistical properties (mean and standard deviation), and in the estimation of extreme quantiles. 

Previous attempts to calculate a SSI have been based on a unique probability distribution (Zaidman 

et al., 2001; López-Moreno et al., 2008; Mo, 2008; Nabaltis and Tsakiris, 2009; Lorenzo-Lacruz et 

al., 2010). Nevertheless, Shukla and Wood (2008) warned of the need to use different probability 

distributions to fit the streamflow series when calculating a SSI. Our results also provide evidence 

that the use of a unique probability distribution for each gauging station does not enable a reliable 

index to be obtained because of the large variability in the statistical properties of the monthly series. 

If a unique probability distribution is to be used to obtain the SSI, our results suggest that the GEV 

or the log-logistic distribution be selected, although both tended to underestimate the frequency of 

the most extreme negative values in our dataset. None of the other four distributions we tested are 

recommended for use in a single distribution approach to obtaining a SSI, as the derived indices 

were unsatisfactory. For example, the Generalized Pareto and Weibull distributions were not defined 

for some values, and the PIII and log-normal distributions did not generate reliable average and 

standard deviation values because they commonly diverged from 0 and 1, respectively. Moreover, 

large differences can occur among stations, making spatial comparability of the series very difficult. 

Thus, while some previous studies have recommended the use of the log-normal distribution to fit 

monthly streamflow data (Kroll and Vogel, 2002; Yue and Wang, 2004; Chen et al., 2006; 

McMahon et al., 2007) and to obtain standardized streamflows (Zaidman et al., 2001; Nabaltis and 

Tsakiris, 2009), we demonstrated that the use of this distribution is inappropriate in a region with 

high variability in the river regimes and streamflow characteristics. The PIII has also been widely 

used for flow frequency analyses (Bobee and Rasmussen, 1995; Saf, 2009). The results of the KS 

test for the streamflow series in our study indicate that in most cases (> 95% for each monthly series) 

the PIII distribution fitted the streamflow series well. Nevertheless, the SSI values obtained using 

this distribution showed similar problems to those found for the log-normal distribution (average SSI 



non equal to 0, High variance in the SSI averages, standard deviation <>1), and there was also an 

excessive frequency of negative values found. Many of these limitations could be avoided by using a 

combined approach like the BMF or the MD. We found large spatial variability and seasonal 

differences in the probability distributions that showed the best fit to the streamflow series. Thus, the 

maps obtained did not show any spatial pattern suggesting that a particular probability distribution 

fitted the data better for a region or a specific season. One of the main properties of a drought index 

is that it must enable spatial comparability, and most research into climate drought indicators has 

aimed to develop procedures that ensure that the drought conditions quantified by a drought index 

are comparable among different regions (Wells et al., 2004; Vicente-Serrano et al., 2010). The BMF 

or the MD approaches allow development of a reliable standardized index, with the expected 

averages, standard deviations and frequencies of extreme positive and negative values to be 

obtained. Thus, the SSI obtained using any of both approaches at a particular gauging station can be 

compared to the SSI obtained at another station. Moreover, in addition to the values of the index 

being spatially comparable, they are also temporally independent of the streamflow regimes. 

Using the SSI it is also possible to characterize the magnitude and duration of droughts, and to apply 

the widely used low-flow frequency analysis based on the run theory (Yevjevich, 1967; Smakhtin, 

2001). However, some advantages accrue with respect to other procedures, as the magnitude of the 

droughts identified can be compared spatially, and the truncation levels can be defined according to 

the theoretical return periods. Moreover, as the SSI is measured in the same units that are currently 

used for other climate drought indices, comparisons between hydrological and climate droughts are 

possible, thus aiding study of the complex interactions between the two phenomena. 

One of the main objectives of drought indices is their use for drought monitoring, early warning and 

to improve drought preparedness and mitigation (Svoboda et al., 2002 and 2004). Current drought 

monitoring systems are largely based on climate drought indices, with the inclusion of additional 

hydrological drought indices, such as the SSI, could improve the performance of these systems. The 



capacity of a SSI to add reliable and direct information about the spatial extent and severity of 

hydrological drought conditions will provide a convenient way to quantify the level of risk in a way 

that is accurate and easily understand by end-users. 
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Figure legends 

Figure 1. Location of the study area and spatial distribution of the gauging stations used in the study. 

Figure 2. Frequency histograms of the (i) January, (ii) March and (iii) May runoff series at the 

Sástago station (Ebro River). The theoretical curves of the log-logistic, Weibull and Pearson type III 

distributions are also shown. 

Figure 3. Frequency histogram of the May runoff series at the Sástago station (Ebro River), and the 

curves of the six theoretical distributions. 

Figure 4. L-moment ratio diagrams. The different symbols represent the statistics of various seasonal 

series. Black triangles: winter; white triangles: autumn; white circles: summer; black squares: spring. 

Figure 5. Boxplot of the KS D statistic obtained for the six probability distributions from the 

monthly series of the 98 stations. 

Figure 6. Boxplot of the orthogonal distance between the sample L-moments at site i and the L-

moment relationship for a specific distribution obtained for the six probability distributions from the 

monthly series of the 98 stations. 

Figure 7. Spatial pattern of the probability distribution showing the best fit to each monthly runoff 

series. 

Figure 8. Spatial pattern of the probability distribution showing the minimum orthogonal distance to 

each monthly runoff series. 

Figure 9. Evolution of the SS I obtained using the six selected probability distributions and the BMF 

approach for the Sástago station in the Ebro River. 

Figure 10. Evolution of the SSI obtained using the six selected probability distributions and the BMF 

approach for the Puigcerdá station in the Segre River. 

Figure 11. Boxplot of the average and standard deviation values of the SSI at the 98 gauging 

stations. The plots show the lower quartile, median and upper quartile, and the mean (dashed). 

Whiskers represents the 90th (top) and 10th (bottom) percentiles: GEV: General Extreme Value; 



LN: log-normal; PIII: Pearson type III; G-PAR: Generalized Pareto; L-LOG: log-logistic; WEI: 

Weibull. 

Figure 12. Boxplot of the frequency of low (< −1.65 and < −2.33) and high values (> 1.65 and > 

2.33) of the SSI at the 98 gauging stations The plots show the lower quartile, median and upper 

quartile, and the mean (dashed). Whiskers represents the 90th (top) and 10th (bottom) percentiles: 

GEV: General Extreme Value; LN: log-normal; PIII: Pearson type III; G-PAR: Generalized Pareto; 

L-LOG: log-logistic; WEI: Weibull. 

 



Table captions 

Table 1. Cumulative distribution functions of the Generalized Pareto, log-logistic, log-normal, 

Pearson type III, General Extreme Value and Weibull distributions, and the equations used to obtain 

the distribution parameters according to the L-moment procedure.
 

Table 2. Percentage of the monthly series in which each probability distribution shows the best fit 

and the minimum orthogonal distance. 

Table 3. Percentage of cases in which the hypothesis that the monthly runoff series come from the 

corresponding probability distribution is rejected. 

Table 4. Main limitations in calculation of the SSI based on various probability distributions. Gray 

cells show that a particular distribution does not have this limitation. 
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Table 1.  



 

Table 2.  

Best Monthly Fit 

Distribution January February March April May June July August September October November December Annual 

GEV 7% 16% 6% 12% 6% 15% 13% 14% 17% 13% 17% 21% 13% 

PEARSON III 13% 15% 15% 9% 18% 5% 7% 12% 11% 10% 11% 11% 12% 

GEN. PARETO 27% 17% 23% 23% 30% 35% 20% 14% 14% 14% 23% 17% 22% 

LOGNORMAL 21% 19% 17% 11% 15% 13% 12% 9% 15% 23% 32% 28% 18% 

LOGLOGISTIC 12% 16% 16% 13% 13% 17% 20% 36% 28% 29% 7% 9% 18% 

WEIBULL 19% 15% 21% 31% 16% 14% 27% 14% 14% 10% 9% 13% 17% 

Minimum Distance 

GEV 10% 12% 7% 13% 12% 9% 10% 17% 16% 19% 9% 18% 13% 

PEARSON III 19% 14% 14% 19% 24% 21% 12% 16% 11% 8% 14% 13% 16% 

GEN. PARETO 25% 24% 28% 26% 25% 21% 22% 13% 19% 14% 32% 25% 23% 

LOGNORMAL 14% 30% 18% 14% 13% 15% 17% 9% 13% 24% 22% 27% 18% 

LOGLOGISTIC 5% 9% 9% 7% 10% 18% 18% 35% 30% 21% 8% 7% 15% 

WEIBULL 27% 11% 23% 20% 16% 14% 19% 9% 10% 13% 14% 10% 16% 



 

Distribution January February March April May June July August September October November December Annual 

GEV 3.1 4.1 1.0 2.0 1.0 2.0 3.1 2.0 3.1 5.1 3.1 4.1 2.8 

PEARSON III 3.1 5.1 3.1 2.0 1.0 2.0 4.1 2.0 3.1 5.1 3.1 4.1 3.1 

GEN. 

PARETO 2.0 2.0 1.0 1.0 5.1 2.0 7.1 11.2 5.1 1.0 2.0 4.1 3.7 

LOGNORMAL 2.0 3.1 1.0 2.0 1.0 0.0 4.1 6.1 2.0 1.0 3.1 3.1 2.4 

LOGLOGISTIC 6.1 4.1 3.1 3.1 2.0 2.0 3.1 10.2 6.1 3.1 9.2 5.1 4.8 

WEIBULL 5.1 3.1 2.0 2.0 2.0 1.0 3.1 5.1 3.1 3.1 7.1 4.1 3.4 

 

Table 3.  



 

LIMITATION BEST FIT MIN. DIST. GEV LN PIII G-PAR L-LOG WEI 

High frequency 

of negative 

values 
    a     

No solution for 

some negative 

values 
     a   a  

Average SSI <> 

0 
   a  a     

High variance in 

SRI averages 
   a  a  a   a  

Standard 

deviation SSI 

<> 1 
   a  a     

Underestimation 

of expected 

negative 

extreme SSI 
  a    a  a  a  

Overestimation 

of expected 

negative 

extreme SSI 
   a  a     

Overestimation 

of expected 

positive extreme 

SSI 
  a     a   

 

Table 4  
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Figure 8 
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Figure 9.  
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Figure 10.  
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Figure 11.  
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