
 1

 

   
 
 
 
Absolute Requirement of GDNF for Adult 
Catecholaminergic Neuron Survival  
 
 
Alberto Pascual1,2,3, María Hidalgo-Figueroa1,3, José I. Piruat1,2, C. Oscar 
Pintado1, Raquel Gómez-Díaz1,2 and José López-Barneo1,2* 
 
 

1Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/ 
CSIC/Universidad de Sevilla. Sevilla, Spain. 
2Centro de Investigación Biomédica en Red sobre Enfermedades 
Neurodegenerativas (CIBERNED), Spain  
3These authors contributed equally to this work.  
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
* Correspondence: 
Dr. José López-Barneo 
Instituto de Biomedicina de Sevilla 
Hospital Universitario Virgen del Rocío 
Avenida Manuel Siurot s/n 
41013-Sevilla 
SPAIN 
Phone: +34 955012648 
Fax: +34 954617301 
Email: lbarneo@us.es 
 



 2

SUMMARY 

GDNF is a potent neurotrophic factor that protects catecholaminergic neurons from 

toxic damage and induces fiber outgrowth. However, the actual role of 

endogenous GDNF in the normal adult brain is unknown, despite GDNF-based 

therapies are considered promising for neurodegenerative disorders. We have 

generated a conditional GDNF-null mouse to suppress GDNF expression in 

adulthood, hence avoiding the developmental compensatory modifications 

masking its true physiologic action. After GDNF ablation animals showed a 

progressive hypokinesia and a selective decrease of brain tyrosine hydroxylase 

(TH) mRNA, accompanied of pronounced catecholaminergic cell death, affecting 

most notoriously the locus coeruleus (LC), which practically disappears, the 

substantia nigra (SN) and the ventral tegmental area (VTA). These data 

unequivocally demonstrate that GDNF is indispensable for adult catecholaminergic 

neuron survival, and also show that in physiologic conditions down-regulation of a 

single trophic factor can produce massive neuronal death. 
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INTRODUCTION 

In recent years, neurotrophic factors have emerged as promising therapeutic 

tools for neurodegenerative diseases due to their effects on the promotion of 

survival, differentiation and phenotype of neurons. Among these agents, the 

dopaminotrophic glial cell line-derived neurotrophic factor (GDNF)1, has raised 

special attention because of its possible usefulness in the treatment of 

Parkinson’s disease (PD)2. In rodent and primate models, GDNF has been 

shown to protect dopaminergic nigrostriatal neurons from neurotoxins and to 

induce fiber outgrowth when administered directly into the brain3–8. GDNF also 

preserves other neurons from neurotoxic damage; particularly noradrenergic 

cells in the locus coeruleus (LC), which are affected in early stages of PD as 

well as in Alzheimer’s disease and other brain disorders9.  The therapeutic 

effects of intrastriatal GDNF infusion on PD patients have been evaluated in two 

open-label clinical trials with encouraging clinical and neurochemical results10,11. 

However, a randomized, placebo-controlled trial performed on PD patients was 

halted due to safety concern12. GDNF-based therapies are still considered to be 

promising for PD and other neurodegenerative diseases13; although 

improvement of their effectiveness requires an understanding of the actual 

physiologic role of GDNF in the maintenance of catecholaminergic neurons in 

adult life, a fact that remains essentially unknown.  

 GDNF mRNA is found in several regions of the adult rodent brain9,14 and, 

within the peripheral nervous system, GDNF is highly concentrated in the adult 

carotid body (CB)15,16, a dopaminergic organ used for autotransplantation 

studies in PD17–19. Research on genetically modified animal models in which the 

GDNF signalling pathway is disrupted have thus far failed to provide definitive 
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information on the physiological neuroprotective action of GDNF in adult life. 

Homozygous GDNF knockout animals die during the early postnatal period due 

to agenesis of the kidneys and myenteric plexus. At birth, GDNF–/– animals 

show normal numbers of catecholaminergic neurons in the substantia nigra 

(SN) and LC, thus suggesting that compensatory neuroprotective mechanisms 

may be activated during development20-22. Heterozygous (GDNF+/–) animals are 

fertile and develop normally, although they manifest an accelerated decline in 

spontaneous motor activity and coordination with age23. Nevertheless, this 

embryonic GDNF deficit seems to have little impact in the adult as, at twenty 

months of age, the animals show only a 15% decrease of tyrosine hydroxylase 

(TH) positive SN neurons and no differences in striatal TH+ fiber density with 

respect to controls23. GDNF+/– mice, however, appear to exhibit a higher 

susceptibility to neurotoxin-induced long-term degeneration of monoaminergic 

neurons than wild type littermates24. Region-specific genetic deletion (driven by 

the dopamine transporter promoter) of Ret, a component of the GDNF receptor 

complex, in dopaminergic neurons has provided conflicting results regarding the 

role of this pathway in maintenance of adult neurons. A comparative 

morphometric and biochemical analysis of dopaminergic nigrostriatal neurons in 

adult Ret-null mice versus controls showed no differences25. Another group has 

reported that embryonic deletion of Ret in catecholaminergic neurons resulted 

in a significant decrease of TH+ SN neurons and striatal nerve terminals at two 

years of age, although, surprisingly, neurons in the ventral tegmental area 

(VTA) and LC remained unaffected26.  

Here, we report the successful generation of a conditional GDNF-null 

mouse in which GDNF expression was markedly reduced in adulthood, hence 
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avoiding the establishment of developmental compensatory modifications 

masking the true physiologic action of GDNF in the adult nervous system. 

These animals show selective and extensive catecholaminergic neuronal death, 

most notably in the LC, SN and VTA. Gabaergic and cholinergic pathways 

appear to be unaffected. The neurochemical and histological alterations in 

GDNF-deprived animals induce the progressive appearance of behavioral 

motor disturbances. These data unequivocally indicate that endogenous GDNF 

is absolutely required for trophic maintenance of catecholaminergic neurons in 

normal adult rodents.  
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RESULTS 

Neurochemical alterations in conditional GDNF KO mice 

Generation of the floxed GDNF allele (GDNFF) is shown schematically in Fig. 

1a. We designed a targeting construct containing the mouse GDNF exon 3 

flanked by loxP sites and neomycin resistance markers. Embryonic stem (ES) 

cells were electroporated with this construct and homologous recombination 

with the wild type locus resulted in the targeted (floxed) allele GDNFF. Positive 

clones of ES cells were selected by neomycin resistance and analyzed by 

Southern blotting for proper integration of the floxed allele (Fig. 1a and b). 

Routine genotyping of mice carrying the wild type and floxed alleles was done 

by PCR (Fig. 1a and c). GDNFF/+ animals were interbred with GDNF+/– mice 

carrying the Cre-Esr1 transgene27. In the resulting GDNFF/–, Cre (cGDNF) 

offspring the ubiquitously expressed Cre recombinase was activated at two 

months of age by administration of tamoxifen (TMX) to switch off GDNF 

expression. The appearance of the GDNF-null allele in the germ line of TM-

treated animals was experimentally tested (see Methods). Animals were 

sacrificed at one, three or seven months after TMX treatment for GDNF protein 

measurements (P), DNA and RNA analyses, and histological studies (H) (Fig. 

1d). Confirmation for the excision of the floxed allele in adulthood was done by 

PCR of striatal DNA using specific probes (Fig. 1a and e). The proportion of 

wild type GDNF alleles that remained in striatal neurons after TMX treatment 

was estimated by qPCR to be 18% of that in control animals (relative values, 

0.18 ± 0.06, n = 5 TMX+ mice versus 1 ± 0.22, n = 3 TMX– mice; p < 0.05). 

 GDNF mRNA expression in the various mouse strains studied was 

evaluated by quantitative RT-PCR performed on whole brain extracts (Fig. 1f). 
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Embryonic GDNF heterozygosity resulted in a mild, non-significant decrease of 

total brain GDNF mRNA that was similar in GDNF+/– and GDNFF/– strains thus 

indicating that the floxed and wild type GDNF alleles were transcribed with 

similar efficiency. In these two embryonic heterozygous animals, however, 

GDNF mRNA was 75% the amount seen in the wild type mice thus indicating 

compensatory activation by the remaining half normal alleles. Administration of 

TMX had no effect on wild type animals, but in cGDNF mice it induced a 

marked (~60% with respect to +/+ animals; p < 0.01) reduction of GDNF mRNA 

(Fig. 1f). Besides these mRNA measurements we also estimated the 

concentration of GDNF protein in striatal homogenates, a region of the adult 

rodent brain with high GDNF expression level9,16, using a highly sensitive ELISA 

assay. In fair agreement with the mRNA data, TMX induced an ~60% decrease 

of striatal GDNF content with respect to controls (Fig. 1g). These results 

suggest that although TMX treatment of cGDNF mice left only ~18% of alleles 

unaffected, the animals were able to produce up to ~40% of the normal amount 

of GDNF mRNA and protein. As explained above, this probably reflects 

compensatory transcriptional up-regulation of the functional GDNF allele in the 

embryonic GDNFF/– animals. GDNF depletion produced a selective decrease of 

brain TH mRNA content, leaving choline acetyltransferase (CHAT) and glutamic 

acid decarboxylase (GAD1) mRNA levels unaltered (Fig. 1h). The data 

demonstrated a substantial decrease of brain GDNF in the conditional GDNF 

knockout mouse and suggested the existence in these mice of 

catecholaminergic cell damage without affectation of cholinergic or gabaergic 

neurons. 
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Selective neuronal death in GDNF-depleted adult brain 

To evaluate the impact of TMX treatment and subsequent GDNF depletion on 

neuronal viability we performed stereological cell counts in brain regions, such 

as the SN, VTA and LC, containing catecholaminergic neurons whose 

vulnerability to neurotoxins is prevented by GDNF3,8,9,24. The most 

representative data obtained from these experiments are illustrated in Figs. 2 

and 3 and a quantitative summary is given in Table 1. Embryonic GDNF 

heterozygous animals (GDNFF/– strain) showed no effect regarding the number 

of TH+ neurons in the SN, VTA and LC compared with controls (GDNF+/F strain, 

Table 1). Deletion of the floxed GDNF allele with TMX gave rise, however, to a 

progressive reduction in the number of TH+ cells in SN and VTA. On average, 

the decrease in TH+ neurons was small and statistically non-significant at one 

month after TH treatment but was very pronounced (~60-70% of TH+ cell 

reduction) at seven months after GDNF gene deletion (Fig. 2a–d and Table 1). 

In parallel with the reduction in TH+ cell number we observed a clear and 

significant decrease in the total number of neurons both in the SN and VTA 

(Fig. 2e–h and Table 1). These observations indicated that the decrease of 

TH+ cells in GDNF knockout animals does not simply reflect down-regulation of 

TH gene expression. The disappearance of mesencephalic TH+ neurons was 

accompanied by diminishment of TH+ striatal nerve terminal density, particularly 

in the ventral region (Table 1). Progressive neuronal death in GDNF-deprived 

animals was particularly dramatic in the LC since evidence of TH+ neurons in 

this nucleus almost disappeared in cGDNF at seven months after TMX 

treatment and the total number of Nissl+ neurons in the nucleus decreased 

markedly (Fig. 3a–f and Table 1). The death of mesencephalic 
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catecholaminergic neurons in GDNF-deprived animals was paralleled by a 

decrease of TH+ cell numbers in structures of the peripheral nervous system, 

such as the carotid body (CB; Fig. 4a,b and Table 1) or the superior cervical 

ganglion (SCG; Table 1). 

 Neuronal loss observed in cGDNF mice was not general but restricted to 

the aforementioned brain areas. For example, the number of TH+ cells in the 

arcuate nucleus (AN), a component of the hypothalamic dopaminergic system, 

was unchanged (Fig. 4c–e and Table 1) and no apparent gross histological 

alterations were observed in the hippocampus or in neocortical regions 

(Supplementary Fig. 1). TMX treatment did not elicit macroscopic anatomical 

modifications in gut or kidney in animals studied up to 8 months after TMX 

treatment. Similarly, we did not observe changes in weight of TMX-treated 

cGDNF mice, which was maintained unaltered during the first 3–4 months 

despite the ongoing neurodegenerative process (respectively, 22.3 ± 1 g, n = 3 

versus 22.6 ± 0.4, n = 4 wild type and GDNF-depleted animals studied 134 days 

after TMX treatment). Although not studied in detail yet, animal weight did, 

however, appear to decrease in older (> 200 days after TMX treatment) GDNF 

knockout animals. 

 Given the striking dependence on GDNF of mesencephalic dopaminergic 

and noradrenergic neuronal survival, we searched for the location of putative 

targets constitutively expressing high levels of GDNF and therefore critical for 

the trophic maintenance of the cells. To this end we used the heterozygous 

GDNFLacZ mice, a tool that allowed us to identify cells with high levels of GDNF 

expression by the characteristic blue X-gal staining16,22. After systematic 

analysis of the brain we consistently found X-gal+ deposits in cells distributed 
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throughout the striatum, in the anteroventral (particularly the ventrolateral 

region) and anteromedial nuclei of the thalamus as well as in the septum 

(mainly in the mediolateral region) (Supplementary Fig. 2a–e). These 

structures are innervated by projections from catecholaminergic neurons of the 

SN, VTA and LC28,29. Surprisingly, a high level of GDNF expression was also 

observed in the subcommissural organ (SCO; Supplementary Fig. 2f and g), 

an ependymal secretory gland located in the roof of the third ventricle that 

participates in cerebrospinal fluid homeostasis30.  

 

Behavioral motor abnormalities in GDNF-depleted mice  

To assess the motor performance of the conditional GDNF knockout mice, 

animals were subjected to open field tests31-34. We analyzed the horizontal and 

vertical locomotor activity, with estimation of the distance traveled and time 

spent walking, as well as the number and duration of rearings. These are well-

established behavioral tests used to characterize animals with deficit in the 

dopaminergic nigrostriatal pathway31–34. 

 GDNF-depleted animals showed a clear hypokinetic syndrome, 

progressively aggravated with time after TMX treatment. In fair agreement with 

the histological data (see Figs. 2–4 and Table 1), open field impairments were 

mild during the first weeks after TMX treatment but became quite obvious after 

three to four months of GDNF deprivation (Fig. 5). Although the number of 

cases studied to date is still small, the data available strongly suggest that the 

motor deficits continue to progress as TMX treated cGDNF animals get older. 
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DISCUSSION 

The results demonstrate that endogenous GDNF exerts an indispensable 

neurotrophic effect on catecholaminergic neurons of the adult mouse nervous 

system, particularly with respect to the ventral mesencephalic dopaminergic 

neurons in the SN and VTA as well as the noradrenergic cells in the LC.  The 

dependence of neuronal survival on GDNF is observed despite, on average, the 

trophic factor is down-regulated to only 40% of its content in normal adult brain. 

It had previously been shown that intracerebral administration of exogenous 

GDNF can protect catecholaminergic neurons from toxic damage, and that 

striatal over-expression of GDNF induces sprouting of dopaminergic fibers3,4,6–9. 

It had also been reported that postnatal survival and phenotypic expression of 

ventral mesencephalic dopaminergic neurons in tissue explants is favored by 

GDNF35. However, the actual physiologic role of GDNF in preserving adult brain 

catecholaminergic cells in vivo has, until now, been unknown. Our results 

contrast with the practically absence of neuronal damage in GDNF 

heterozygous or in animals without canonical GDNF (Ret) receptors20,23,25,26. 

Hence, it seem highly likely that embryonic gene disruption of the GDNF 

signaling pathway induces developmental compensatory mechanisms involving 

other neurotrophic factors and/or GDNF receptors. The existence of Ret-

independent GDNF receptors in adult mammalian brain is well documented14,36 

and, additionally, it has been shown that both in vitro and in vivo effects of 

GDNF on midbrain dopaminergic neurons can be antagonized with anti-NCAM 

function blocking antibodies37.  Thus, our findings support the idea that GDNF 

receptors other than Ret could play a significant physiologic role in adult brain.     
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 The strict dependence of adult catecholaminergic neuronal survival on 

endogenous GDNF prompted us to search for brain areas with high GDNF 

expression levels. Using a genetic marker16,22, we have demonstrated that 

besides in the striatum, GDNF is highly expressed in the septum as well as in 

the anteroventral/anteromedial thalamus, preferential targets of projections from 

catecholaminergic neurons of the SN, VTA and LC28,29. These same brain areas 

had been shown before to express high GDNF mRNA levels using Northern 

analysis and in situ hybridization techniques9,14. Interestingly, we have also 

seen a previously unnoticed robust GDNF expression in the SCO, an enigmatic 

glial-derived secretory gland in the third ventricle that participates in 

cerebrospinal fluid homeostasis30,38. The actual physiologic role of GDNF in 

SCO cells is an open, and quite appealing, question that must be addressed in 

future experimental work.  

The striking reliance of adult mammalian mesencephalic 

catecholaminergic neurons on the continuous supply of GDNF further supports 

its potential use as a therapeutic agent in Parkinson’s disease (PD), and 

possibly other neuronal disorders2. In this regard, GDNF delivery to multiple 

targets (striatum, thalamus and septum) rather than solely to the striatum, 

mimicking the physiologic trophic activation of catecholaminergic cells, may 

improve the efficacy of current clinical protocols. On the other hand, the pattern 

of cell death induced by GDNF down-regulation in adult brain recapitulates 

many of the neuropathological hallmarks of PD. Besides progressive 

dopaminergic cell death in SN and VTA, this phenotype is particularly evident in 

the LC, a region known to contribute to the pathophysiology of PD that 

degenerates early in the progression of the disease9,39. Interestingly, 
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dopaminergic neurons in the hypothalamic arcuate nucleus, unaffected in PD40, 

are also preserved in GDNF-null adult animals. In parallel with the histological 

modifications, GDNF-depleted animals progressively develop a hypokinetic 

phenotype, similar to that reported in mice with toxic damage of the nigrostriatal 

pathway and LC31–33,41, which is fully compatible with the behavioral changes 

seen in PD. Hence, the conditional GDNF knockout mice model should facilitate 

the understanding of neuroprotective pathways induced by GDNF, the study of 

PD pathogenesis, as well as the development of novel therapeutic tools to fight 

neurodegeneration. 

 

METHODS 

Generation of animal models. Animals were housed under temperature-

controlled conditions (22 °C) in a 12 h light/dark cycle. All experiments were 

performed in accordance with institutional guidelines approved by the ethics 

committee of the “Hospital Universitario Virgen del Rocio”. To generate the 

conditional GDNF animals, we engineered a targeting construct that could be 

homologously recombined into the third coding exon of the GDNF locus. The 

targeting construct contained GDNF exon3 (E3) flanked by loxP sites (GDNFF) 

and the neomycin resistance marker. For homologous recombination, we used 

129Sv-derived R1 ES cells. Southern blotting using a DNA 3’ probe was used to 

identify the recombined allele. GDNFF mice were further propagated and used 

for experiments on a mixed genetic background (129/SvJ:C57BL/6). Routine 

genotyping to detect the wild-type or floxed allele was performed using PCR. 

Floxed PCR was performed with the primers loxP15 (5’-

TCACGTGTCTATGTGCTAAA-3’) and loxP13 (5’-

AATGATCATTTCGGGCAGTC-3’). To obtain the experimental model used in 

this study, GDNFLacZ animals (GDNF+/–)22 were mated with Cre-Esr1/+27 mice to 

obtain a F1 GDNF+/–; Cre/+ progeny. F1 animals were mated with GDNFF/+ 

mice to generate control (GDNF+/F; +/+) and experimental littermates (GDNFF/–; 

Cre/ or cGDNF). Two-month-old animals were intraperitoneally injected with 
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TMX (Sigma; 0.2 mg/g/day) for four consecutive days. TMX was prepared and 

used as previously described42. cGDNF mice without TMX treatment were used 

as control when indicated. To test for the successful conditional deletion of 

GDNF in vivo, excised PCR was used with the primers loxP15 and loxP23 (5’-

GAACTCCAGGTAAATAATCC-3’). To verify the effect of TMX and the proper 

excision at the GDNFF locus, GDNF+/F; Cre-Esr1/+ mice treated with TMX were 

mated with wild-type animals. Heterozygous GDNF-null mice in the progeny 

were crossed and, as expected, the resulting offspring carrying the two excised 

alleles died during the first postnatal day due to renal agenesis.  

 

DNA extraction from brain paraffin slices. Striatal paraffin-embedded slices 

20 µm thick were deparaffined twice with xylene and hydrated by washing with 

solutions containing decreasing concentrations of ethanol. Four slices were 

digested for 2 hours at 55ºC in 200 µl of directPCR reagent (Viagen) containing 

proteinase K (15 µg/ml). Proteinase K was inactivated by heating samples at 

85ºC for 2 hours. 1 µl from the resulting DNA solution was used for PCR 

analysis. 

 

Quantitative RT-PCR. To determine GDNF, TH, Chat, and Gad1 mRNA levels, 

brain RNA was extracted using TRIzol reagent (Invitrogen) in a homogenizer 

(Omni 2000). RNA samples (5 μg) were treated with DNase-RNase free (GE 

Healthcare) and copied to cDNA using SuperScriptII reverse transcriptase 

(Invitrogen) in a final volume of 20 μl. Real time PCR was performed in an ABI 

Prism 7500 Sequence Detection System (Applied-Biosystems) using SYBR 

Green PCR Master mix (Applied-Biosystems) and the thermocycler conditions 

recommended by the manufacturer. PCR reactions were performed in 

duplicates in a total volume of 25 μl containing 1 μl of the RT reaction. In each 

sample, Actb and Ppia RNA levels were estimated to normalize for RNA input 

amounts. Relative quantifications using both housekeeping genes produced 

similar results. To normalize mRNA levels in knockout mice to those in control 

samples, an average Ct of the control samples was calculated and all the 

samples in the experiment were processed relative to this average Ct. To 

estimate DNA recombination at the GDNF locus qPCR was performed on DNA 
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samples extracted from striatal paraffin-embedded slices. The excision of the 

floxed allele was calculated estimating Neo gene dosage after TMX treatment. 

DNA amounts were normalized to beta glucuronidase (Gusb) levels. Primers 

used for qPCR appear online (Supplementary Methods).   

 

GDNF ELISA. Striatal GDNF protein content was estimated using a commercial 

ELISA kit (GDNF Emax Immunoassay System; Promega, WI). Brain was 

removed and immediately frozen in liquid nitrogen. Left and right striata were 

dissected out, placed in 200 µl of 20 mM Tris-HCl, pH = 7.6, 150 mM NaCl, 

0.05% (v/v) NP-40 and proteinase inhibitor cocktail (SIGMA), and sonicated 

with a Branson-150 sonifier for 10 s (output 2–3). Samples were centrifuged at 

4ºC for 10 min at maximal speed in a microcentrifuge and supernatant were 

removed and frozen. Protein concentration was performed with Bio-Rad protein 

quantification kit and 100 µg of protein were used in the assay. ELISA was 

performed following the manufacturer’s protocol. Neonatal (P1) protein extracts 

of forebrains from wild-type and GDNF–/– animals were used as positive and 

negative controls. Absorbance from GDNF–/– extracts was subtracted to each 

individual measurement. GDNF content was estimated in left and right striata 

and an average per animal was used to perform comparative analysis. 

 

Tissue preparation and histochemistry. Animals were anesthetized and fixed 

with 4% paraformaldehyde. The brain and the carotid bifurcation were extracted 

and paraffin embedded. Coronal mouse brain sections (thickness 20 µm) were 

used for tyrosine hydroxylase (TH), NeuN-TH immunohistochemistry, or Nissl 

staining (0.1% cresyl violet) in quantitative and morphometric studies. The 

Envision+ kit (DAKO) was used for immunohistochemistry according to the 

recommended manufacturer’s protocol. Antibodies and the dilution factors used 

were as follows: anti-TH polyclonal antibody (Pel-Freez), 1:1000; anti-NeuN 

monoclonal antibody (Chemicon), 1:200. For double labeling with anti-TH and 

anti-NeuN antibodies we incubated the slices with antibodies against mouse 

antibodies and the signal was developed with DAB (DAKO). To increase 

contrast, a DAB enhancer (DAKO) was used. Antibodies against rabbit 

antibodies were added in a second step and the reaction developed with AEC 
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substrate (DAKO). ß-galactosidase staining of 50 µm-thick brain slices was 

performed as described previously16,22. 

 

Stereological cell counts. Counts of TH-, NeuN-immunoreactive, and Nissl-

positive neurons were performed on 20 µm-thick coronal microtome sections 

spaced 40 µm apart throughout the extent of the AN, SN, VTA and LC. We 

followed procedures similar to those previously used in our laboratory43. Striatal 

TH+ fiber density was quantified in a 20 µm-thick slice at Bregma 0.8644. The 

striatum was divided into dorsal and ventral areas and 10-20 random 3,565.2 

µm2 dissectors per hemisphere were counted using the C.A.S.T. Grid System. 

CB TH+ cell counting was performed across the entire CB parenchyma. SCG 

TH+ neurons were counted on 30 µm-thick coronal sections spaced 90 µm 

apart throughout the extent of the structure. Random dissectors of 5,347.7 µm2 

were used. 

 

Open field. We used N7 C57BL/6 animals in open field analysis. Behavioral 

assessment for motor dysfunction was performed in a box of 22.5 x 22.5 cm2 

floor and with 42-cm-high walls. Four boxes were monitored at the same time 

using an automatic tracking system (SMART, Panlab, Spain). Animals were 

recorded for 60 min and several horizontal motor parameters were calculated 

using the SMART software (v2.5.14). Vertical movements were estimated by 

visual inspection of the recorded videos using the specific tool provided by the 

software (SMART). 

 

Statistical analysis. Data were presented as mean ± s.e.m., and were 

analyzed with either Student’s t test or one-way ANOVA followed by Tukey test. 

p < 0.05 was considered statistically significant.  
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FIGURE LEGENDS 
 
Figure 1 Molecular characterization of the conditional GDNF knockout mice. (a) 

GDNF wild-type locus, targeting construct, floxed and excised alleles are 

shown. B, BamHI. Probe and genotyping PCRs are indicated. Gray rectangles 

represent Neo marker and triangles loxP sequences. (b) ES cell clone showing 

correct targeting at the GDNF locus by Southern blotting. BamHI-digested DNA 

was hybridized with the probe indicated in (a). An additional band is present in 

GDNF+/F ES cells (+/F). (c) Floxed PCR used for genotyping of GNDF+/+ (+/+), 

GDNF+/F (+/F), and GDNFF/F (F/F) mice are shown. The ES GDNF+/F cell line is 

showed as a control (+/F). (d) Experimental protocol used for analysis of TMX-

treated animals. Time points of TMX injection and brain harvesting for DNA, 

protein (P), RNA, and histological analyses (H) are indicated (m, months). (e) 

PCR used to demonstrate the presence of the excised GDNF allele in the 

striatum after TMX treatment. GDNFF/–; Cre-Esr1 animals without (–TMX) and 

with (+TMX) TMX treatment are shown. (f) Relative levels of GDNF mRNA 

determined by qRT-PCR. (+/+: GDNFF/+; +. +/–: GDNF+/–; Cre-Esr1. F/–: 

GDNFF/–; Cre-Esr1). (g) Levels of striatal GDNF protein determined by ELISA. 

(+/+: GDNFF/+; +. F/–: GDNFF/–; Cre-Esr1). (h) Relative levels of tyrosine 

hydroxylase (TH), choline acetyltransferase (CHAT), and glutamic acid 

decarboxylase (GAD1) mRNA in whole brain extracts determined by qRT-PCR. 

GDNFF/–, Cre-Esr1 mice without (black bars) and with (gray bars) TMX 

treatment. Means ± s.e.m.; *, p < 0.05; **, p < 0.01 (Student t-test). n = 3–6 

samples per group. 

 
Figure 2 Mesencephalic dopaminergic neuronal death after GDNF ablation in 

adult mouse. (a,b) Mesencephalic brain slices stained with an antibody against 

TH. SN, substantia nigra; VTA, ventral tegmental area. GDNFF/–, Cre-Esr1 mice 

without (a) and with (b) TMX treatment. (c,d) Unbiased stereological cell counts 

of SN (c) and VTA (d) TH immunoreactive neurons at 30 days (30 d) and 210 

days (210 d) after TMX treatment. GDNF+/+ treated with TMX (black bars), 

GDNFF/–, Cre-Esr1 mice without (dark gray bars) and with (light gray bars) TMX 

treatment. (e,f) Double immunostaining of mesencephalic brain slices with 

antibodies against NeuN (nuclear) and TH (cytoplasmic). The stippled lines 
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surround the SN and VTA. Inset in (e) represents a magnification of the 

indicated zone. GDNFF/–, Cre-Esr1 mice without (e) and with (f) TMX treatment. 

(g,h) Unbiased stereological cell counts of SN (c) and VTA (d) NeuN 

immunoreactive neurons after 210 days of TMX treatment. GDNFF/–, Cre-Esr1 

mice without and GDNF+/+ with TMX treatment (black bars), and GDNFF/–, Cre-

Esr1 mice with TMX treatment (light gray bars). Means ± s.e.m.; *, p < 0.05; **, 

p < 0.01 (Student t-test). n = 6–8 samples per group. Scale bars, 100 µm. 

 
Figure 3. Locus coeruleus noradrenergic neuronal death after GDNF ablation in 

adult mouse. (a,b) Hindbrain slices stained with an antibody against TH. At the 

bottom panels, the respective right locus coeruleus (LC) are shown at higher 

magnification. (c,d) Nissl stainning of brain slices containing LC. GDNFF/–, Cre-

Esr1 mice without (a,c) and with (b,d) TMX treatment. The stippled lines 

highlight the LC. (e) Unbiased stereological cell counts of LC TH 

immunoreactive neurons at 30 days (30 d) and 210 days (210 d) after TMX 

treatment. GDNF+/+ treated with TMX (black bars), GDNFF/–, Cre-Esr1 mice 

without (dark gray bars) and with (light gray bars) TMX treatment. (f) Unbiased 

stereological cell counts of LC Nissl positive neurons after 210 days of TMX 

treatment. GDNFF/–, Cre-Esr1 mice without and GDNF+/+ with TMX treatment 

(black bars), and GDNFF/–, Cre-Esr1 mice with TMX treatment (gray bars). 

Means ± s.e.m.; *, p < 0.05; **, p < 0.01 (Student t-test). n = 5–8 samples per 

group. Scale bars are 100 µm in all panels except panels e,f (top) where they 

represent 500 µm. 

 
Figure 4 Peripheral and hypothalamic dopaminergic cell survival in conditional 

GDNF knockout mice. (a,b) Carotid body (CB) of GDNFF/–, Cre-Esr1 mice 

without (a) and with (b) TMX treatment as revealed by TH immunoreactivity. (c-
e) TH+ cells of the arcuate nucleus (AN). (c) Brain section immunostained for 

TH indicating the location of the arcuate nucleus (AN). The encircled zone 

represents the area shown in d and e. (d,e) TH+ cells of AN from GDNFF/–, Cre-

Esr1 mice without (d) and with (e) TMX treatment. Scale bars are100 µm in all 

panels except panel c where it represents 500 µm. 
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Figure 5. Behavioral analysis of adult GDNF-depleted mice. Spontaneous 

activity was measured in wild-type (black bars: GDNF+/+; + mice treated with 

TMX; n = 13) and GDNF depleted animals (gray bars: GDNFF/–; Cre-Esr1 mice 

treated with TMX; n = 7) 3 days before TMX injection and 37, 60, 100, and 126 

days after TMX injection. Animals were recorded during 60 min in an open field 

chamber. (a) Four traces from wild-type and GDNF-depleted animals are shown 

as representative of the time points 100 and 126 days after TMX injection. 

Activity trace during minutes 16 to 30 is presented. (b) Traveled distance (cm) 

was calculated by following the centre of gravity of the subject. (c) Resting time 

(s) was the time spent in resting state (with reference to the default velocity 

threshold of 2.57 cm/s). (d,e) Vertical movements quantified in three periods of 

five minutes from each animal and time point. Averaged number of rearings (N, 

d) and the accumulated time spent with both forepaws without contacting the 

floor (e) are shown. Each individual point represents 3–8 animals. Means ± 

s.e.m.; *, p < 0.05; **, p < 0.01 (Tukey test). 
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Table 1. Catecholaminergic cell death in adult conditional GDNF-null mice  

  GDNFF/+ (TMX+) GDNFF/–, Cre (TMX–) GDNFF/–, Cre (TMX+) 
SN TH+ 

(30 d) 
4,252 ± 336$ 

(n = 8) 
 3,440 ± 209 

(n = 6) 
 TH+ 

(210 d) 
4,787 ± 480 

(n = 8) 
4,931 ± 865 

(n = 6) 
2,029 ± 469**/* 

(n = 6) 
 NeuN+ 

(210 d) 
11,289 ± 510$ 

(n = 6) 
 8,356±720** 

(n = 6) 
VTA TH+ 

(30 d) 
2,763 ± 193$ 

(n = 8) 
 2,481 ± 150 

(n = 6) 
 TH+ 

(210 d) 
2,561 ± 427 

(n = 6) 
2,919 ± 238 

(n = 6) 
872 ± 381*/** 

(n = 6) 
 NeuN+ 

(210 d) 
5,855 ± 421$ 

(n = 6) 
 2,156 ± 586** 

(n = 6) 
LC TH+ 

(30 d) 
892 ± 138$ 

(n = 7) 
 785 ± 137 

(n = 6) 
 TH+ 

(210 d) 
873 ± 131 

(n = 5) 
850 ± 301 

(n = 5) 
5 ± 3**/** 
(n = 6) 

 Nissl+ 
(210 d) 

2,489 ± 363$ 
(n = 7) 

 1,537 ± 169* 
(n = 6) 

AN TH+ 
(210 d) 

264 ± 99$ 
(n = 8) 

 268 ± 109 
(n = 6) 

dST TH+ 
(210 d) 

21.4 ± 1.6$ 
(n = 12) 

 15.4 ± 1.4* 
(n = 6) 

vST TH+ 
(210 d) 

26.9 ± 2.2$ 
(n = 9) 

 17.1 ± 1.7** 
(n = 6) 

CB TH+ 
(210 d) 

1,102.1 ± 67.2$ 
(n = 3) 

 418.1 ± 122.5** 
(n = 3) 

SCG TH+ 
(210 d) 

10,036 ± 1,105$

(n = 3) 
 4,736 ± 571** 

(n = 5) 
Data are given as cell numbers except in the case of striatum (ST, fiber 
density in fibers/μm2 x 1000). dST: dorsal striatum; vST: ventral striatum. 
Means ± s.e.m. 
 $ GDNFF/+ treated with TMX and GDNFF/–, Cre-Esr1 control samples were 
counted together. Asterisks indicate significant differences between 
GDNFF/–, Cre-Esr1 (TMX+) mice and GDNFF/+, + (TMX+) (*/); GDNFF/–, Cre-Esr1 
(TMX–) (/*), or pooled groups (*). 
 *: p < 0.05; **: p < 0.01. Cells counts are referred to single, unilateral, 
structures. Between parentheses are either the time (days, d) after TMX 
injection or the number of animals studied. 
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Supplementary Figure 1. Cortex and hippocampus in GDNF-depleted mice.

(a-d) Brain slices from GDNFF/–, Cre-Esr1 mice without (a,c) and with (b,d)

TMX treatment stained with an antibody against NeuN. (a,b) hippocampus

(Hip); (i,j) cortex (Ctx). Scale bar indicates 100 �m.
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Supplementary Figure 2. GDNF expression in catecholaminergic brain targets.

GDNF promoter activity as estimated by ß-galactosidase enzymatic detection in

brains from heterozygous GDNFLacZ mice (Sanchez et al., 1996; Villadiego et

al., 2005). (a-c) Coronal brain section demonstrating high GDNF expression in

the striatum (b, Str) and thalamus (c, Tha). The region encircled by the red line

(a) represents the area in thalamus with a high density of X-gal+ cells. (d-e)

Coronal brain section demonstrating high GDNF expression in the septum (e,

Sep). The region encircled by the red line (d) represents the septal area with a

high density of X-gal+ cells (f-g) GDNF expression in the subcommissural organ

(SCO). Scale bar indicates 500 �m in a and d; 10 μm in b, c, e and g; and 50

μm in f.
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Supplementary Methods

Primers used for quantitative RT-PCR

Primers were designed using Primer Express software (Applied-Biosystems).

The following primers were used:

ß-actin (Actb), 5’-GGCCCAGAGCAAGAGAGGTA-3’ and 5’-

CATGTCGTCCCAGTTGGTAACA-3�;

cyclophilin A (Ppia), 5�-ATGGCAAATGCTGGACCAAA-3� and 5�-

TGCCATCCAGCCATTCAGT-3�;

tyrosine hydroxylase (TH), 5�-GGCTTCTCTGACCAGGCGTAT-3� and 5�-

GCTCACCCTGCTTGTATTGGA-3�;

choline acetyltransferase (Chat), 5�-GGAGCGAATCGTTGGTATGAC-3� and 5�-

ATCTCGGCCCACCACAAA-3�;

glutamic acid decarboxylase (Gad1), 5�-ACTCCTCAACTATGTCCGCAAGA-3�

and 5�-TCCAAATTAAAGCCTTCCATGC-3’;

GDNF, 5�-GGATGGGATTCGGGCCACT-3� and 5�-

AGCCACGACATCCCATAACTTC-3�.

ß-glucuronidase (Gusb), 5’-CATTCAGTTCTGGATCAGAAACGTA-3’ and 5’-

CATGAAGTCGGCGAAATTCC-3�;

Neomycin (Neo), 5�- GGATGGAAGCCGGTCTTGT-3�and 5�-

CCTGATGCTCTTCGTCCAGATC-3�.
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