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Abstract 1 

 An extended explanation of the hypothesis and equations traditionally used to 2 

transform between four-beam ADCP radial beam velocities and current velocity 3 

components is presented. This explanation includes a dissertation about the meaning of 4 

the RD Instrument error velocity and the description of the standard beam to current 5 

components transformation as a least squares solution. Afterwards, the variance-6 

covariance matrix associated with the least squares solution is found. Then, a robust 7 

solution for transforming radial beam velocities into current components is derived 8 

under the formality of a weighted least squares approach. The associated variance-9 

covariance matrix is also formulated and theoretically proves that the modulus of its 10 

elements will be generally lower than the corresponding modulus of the variance-11 

covariance matrix associated with the standard least squares solution. Finally, we 12 

present a comparison between the results obtained using the standard least squares 13 

solution, with the results of the weighted least squares method, using a high-resolution 14 

ADCP dataset. The results show that, in this case, the weighted least squares solution 15 

provides variance estimations that are 4% lower over the entire record period (8 days) 16 

and 7% lower during a shorter more energetic period (12 hours).  17 

 18 

 19 

 20 

 21 

 22 

 23 
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1. Introduction 1 

 The observation of current velocities in the ocean and coastal seas has been 2 

greatly improved with the aid of Acoustic Doppler Current Profilers (ADCP). The 3 

ADCP is a sonar (Acoustic) instrument that uses sound to sense current velocities at set 4 

distances away from its transducer head, creating a profile of the currents throughout the 5 

water column.  6 

 There are several companies manufacturing ADCPs, producing several models 7 

and types of ADCPs: self contained ADCP, vessel mounted ADCP, horizontal ADCPs, 8 

ADCPs with three, four or five transducers, ADCPs are even available with phase 9 

arrayed transducers and with different working frequencies. Depending on the 10 

application, some ADCPs are capable of using different ways of transmitting and 11 

processing the sound signals (pulse-to-pulse incoherent, pulse-to-pulse coherent and 12 

broadband). They have their own devoted literature the scope of which ranges from 13 

technical papers regarding the internal signal processing methods and performance of 14 

ADCPs (Chereskin and Harding, 1993; Lhermitte and Serafin, 1984) to papers about 15 

mooring vibration induced errors (Hamilton et al., 1997), the difficult task of processing 16 

vessel mounted ADCP data (New, 1992) and the errors introduced by the vertical diel 17 

migration of zooplankton (Ott, 2005). Furthermore, ADCPs can be used for turbulence 18 

estimation (Gargett, 1994, Stacey et al., 1999), observations of sea surface conditions 19 

(van Haren, 2001; Visbeck and Fischer, 1995) and many more field and laboratory 20 

applications. 21 

 However, and despite all the articles focusing on ADCP data processing 22 

techniques already cited, it has not been established a procedure to estimate the velocity 23 

error of the velocity components of the currents yet. Beyond the obvious benefits of 24 

having velocity current measurements accompanied with their corresponding error 25 
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estimates there are several ADCP applications that certainly would improve their 1 

performance. First, the errors would help in the screening of the ADCP recorded data, it 2 

is easy and intuitive to reject values with higher error than a certain a priori established 3 

limit. Secondly, the inverse methods used to process LADCP (Lowered ADCP) data 4 

(Visbeck, 2002) and the calculus of Reynolds stresses with ADCPs (Stacey et al., 1999; 5 

Williams and Simpson, 2004) will take advantage of the error estimations. 6 

We will center the present work on one of the commonest ADCPs, the four 7 

beam broadband unit (four transducers with broadband signal processing techniques), 8 

and in the transformation of its radial beam velocities into current velocity components. 9 

Since the current velocity vector is composed by three orthogonal components the 10 

existence of four or more transducers oriented in different directions will provide 11 

additional estimates for the velocity components. On the other hand, the broadband 12 

signal processing techniques allows the independent estimation, for each beam and cell 13 

in the profile, of the radial velocities variances generated by the Doppler noise. These 14 

two characteristics of the broadband four-beams ADCPs can be combined to transform 15 

the radial beam velocities into current velocity components through weighted least 16 

squares (WLS) methods, which will generate robust estimates of the velocity currents 17 

and estimates of their associated errors. Thus, the aim of this article is to show a new 18 

processing technique of raw Broadband ADCP data, which generates more robust 19 

velocity estimates than the standard processing technique and allows the estimation of 20 

the corresponding velocity errors. 21 

 22 

2. Posing the problem 23 

 An ADCP needs one transducer for every velocity component we want to 24 

measure and, obviously, each transducer must be oriented in a different direction. 25 
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Usually, the ADCPs have four transducers distributed in two pairs, each pair drawing a 1 

Janus configuration i.e. one transducer situated in front of the other and looking in 2 

opposite directions (Figure 1). So a four-beam ADCP has an extra radial beam velocity 3 

measurement than needed. The ADCPs divides each beam into vertical segments (bins 4 

or cells) and measures the average radial beam velocities of the scattering particles 5 

included in the volume enclosed by the beam in each bin. This results in an estimate of 6 

velocity profile throughout water column for each beam. Since the transducers are 7 

spread in different directions the bins of each beam are not located in the same 8 

geographical position, meaning the transducers are not sensing the same volume of 9 

water. For a particular bin, the radial beam velocity ( ib


) for each transducer (i=1-4) 10 

generated by the water flow in each beam ( iV


) may be expressed mathematically as 11 
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4 4, 4,
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sin cos

sin cos

sin cos
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X Z

Y Z
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b V V
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 
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 

   
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    

   

 (1) 12 

where Vi,X, Vi,Y and Vi,Z are the X, Y and Z velocity components of the current in each 13 

transducer beam (i) and  is the slant angle of the ADCP transducer ceramics (Fig. 1). 14 

The former velocity components of the current were expressed in the internal coordinate 15 

system of the ADCP (system XYZ) as depicted in Figure 1. The equations (1) are easily 16 

deduced from the trigonometric relations shown in Figure 1.  17 

With 8 velocity components of currents as unknowns but only with 4 different 18 

radial beam velocities as known information, the system of equations (1) is 19 

underdetermined. The best way to fix this issue is to recall the so called homogeneous 20 

velocity field hypothesis, i.e. to assume that the currents are homogeneous in the region 21 

illuminated by the four beams, meaning  22 
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and in East/North/Up (ENU) velocities (see Appendix A) 3 

 XYZ ENU

u

v

w

 
        
 
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b A V A M T V
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 (4) 4 

defining T=A·M, so the new ENU to beam transformation matrix T is also function of 5 

the attitude angles ( the heading,  the pitch, and  the roll, T=T(, , )). Thus, after 6 

calling the assumption (2) we obtain an overdetermined system of equations (eq. (3) or 7 

eq. (4) for XYZ or ENU velocities, respectively) with 3 unknowns and 4 equations.  8 

At this point, in what we are interested is in seeking the best way to solve the 9 

system of equations (3) regardless the homogeneous velocity field assumption. 10 

Therefore, first we will refresh the standard solution given to (3) and then, in the 11 

following sections, least squares techniques will be applied to find optimum solutions. 12 

 13 

3. Standard solution 14 

Following Lohrmann et al. (1990), and applying the homogeneous flow 15 

assumption by transducer pairs (V12,X=V1,X=V2,X, V12,Z=V1,Z=V2,Z, V34,Y=V3,Y=V4,Y and 16 

V34,Z=V3,Z=V4,Z) one may derive from eqs. (1), the following set of equations: 17 

 12, 1 2

1
·( )

2·sinXV b b


  , (5) 18 

 12, 1 2

1
·( )

2·cosZV b b


  , (6) 19 
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 34, 4 3

1
·( )

2·sinYV b b


  , (7) 1 

 34, 3 4

1
·( )

2·cosZV b b


  . (8) 2 

Giving one estimate for each component of the horizontal velocity (V12,X and V34,Y) and 3 

two estimates of the vertical component of the velocity field (V12,Z and V34,Z). The next 4 

best step is to average the vertical components to obtain a more robust estimation 5 

 1 2 3 4

1
·( )

4·cosZV b b b b


      (9) 6 

and calculate an “error velocity” with their difference 7 

 12, 34, 1 2 3 4

1
·( )

2·cosZV Z Ze V V b b b b


      . (10) 8 

The so called error velocity may be a good proxy to evaluate the validity of the 9 

homogeneous velocity field assumption (Lu and Lueck, 1999a), but it is not a 10 

quantitative measure of the error of the velocity current. A high value will indicate a 11 

deviation from homogeneous flow, whereas a low error velocity might confirm it (at 12 

least will confirm the existence of an homogeneous vertical velocity field when 0 and 13 

0) and justify the set of equations (5), (7) and (9) as the sought solution for (3). This 14 

set of equations configures the standard solution and matches the one shown by one of 15 

the most renowned ADCP´s manufactures, RD Instruments (RDI), in its manual of 16 

formulas and calculations for a convex upward looking ADCP (R. D. Instruments, 17 

1997). 18 

A tacit extension of the homogeneous flow field supposition from pairs of beams 19 

to the whole set of beams has been made when including eq. (9) in the standard 20 

solution. In any case, the extension is mandatory if the objective is to reconstruct the 21 

three dimensional (3D) velocity field or we would have just a horizontal component of 22 
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the velocity (namely, V12,X) in the region illuminated by one pair, the other horizontal 1 

component (V34,Y) in the region of the other pair and two vertical components (V12,Z and 2 

V34,Z), one for each beam pair.  3 

It is worth noting that the RDI Company does not use eq. (10) to calculate what 4 

we have called the RDI error velocity (eRDI) although in page 14 of Gordon (1996) they 5 

define it as “the difference between the two estimates of vertical velocity”. The formula 6 

used by the RDI’s ADCPs to calculate eRDI  is (page 10 in R. D. Instruments (1997)) 7 

 1 2 3 4

1
·( )

2·2·sin
RDIe b b b b


     (11) 8 

There is a factor (eq. (12)) between the RDI and the standard velocity error (eq. (10)) 9 

that makes the former quotation misleading. In fact, some researchers have found 10 

unclear what the RDI error velocity actually measures (Ott, 2005). Put it simple, it is not 11 

a real error estimate of the current velocity, it is a kind of proxy. 12 

 
2·cos

·
2·2·sin ZRDI Ve e




  (12) 13 

4. Four-beam standard least squares solution 14 

 The derivation of the standard solution, carried out in the latter section, made 15 

clear that it is compulsory to recall the homogeneity flow assumption in order to 16 

estimate the 3D velocity vector from the measurements taken with a four beam ADCP. 17 

Hence, in the following we will pragmatically accept it as part of the solution. Then we 18 

will drop the beam/transducers subscripts in the current velocity components, although 19 

we will retain them in the radial beam velocities (BEAM coordinates). 20 

It should be possible to get more information from the ADCP and maybe 21 

improve in some (statistical) degree the transformation from BEAM to XYZ velocities. 22 

Let us begin with the system of equations (3) that transform the XYZ velocity field into 23 
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radial beam velocities, under the assumption of horizontal homogeneity and in the 1 

presence of noise ( e


) 2 

 

1 1

2 2
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4 4
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·

0 sin cos
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·
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 (13) 3 

We can seek a least squares solution to the system (13), following the matrix methods 4 

described in chapter 3 of Wunsch (1996). The optimal estimation  ˆ
XYZV  for XYZV


 is 5 

then given by the so called normal equations: 6 

 7 

   1ˆ · · ·T T
XYZ


V A A A b


 (14) 8 
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 (15) 9 

i.e. we recover exactly the standard solution for the velocity components (eqs. (5), (7) 10 

and (9)), thus it will be called standard least squares (SLS) solution. On the other hand, 11 

if we consider that only the instrumental noise is working against our velocity optimal 12 

estimation (eq. (15)) and if we know the variance-covariance matrix  eeC  of the beam 13 

radial velocities  14 
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(only instrumental noise, so the covariances are null) we will be able to obtain the 1 

variance-covariance matrix  ˆ ˆ
XYZVV

C  of the estimation ˆ( )XYZV  2 

    
2
ˆ ˆ ˆ ˆ ˆ

1 12
ˆ ˆ ˆ ˆ ˆ ˆ ˆ
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ˆ ˆ ˆ ˆ ˆ

· · · · · ·
X X Y X Z

XYZ Y X Y Y Z

Z X Z Y Z

V V V V V

T T T

V V V V V

V V V V V

  

  

  

 

 
 
  
 
 
 

eeVV
C A A A C A A A  (17) 3 
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where, for a broadband ADCP, the variance of the radial velocities due to instrumental 5 

noise can be estimated with (Brumley et al., 1991; Pinkel and Smith, 1992; R. D. 6 

Instruments, 1996): 7 

 
,

2
2

2
0 ,

1.5· · ·cos 1
· · 1

2· ·i j

a
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i j

V Cyc C
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
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 (19) 8 

In the last equation Ri,j is the correlation of the beam i in the cell j where the calculations 9 

are being done (it is an output of the RDI ADCP), D is the depth cell length (m), Cyc is 10 

the number of carrier cycles per pulse code element (4 or 16 when the ADCP is setup 11 

with WB0 or WB1 commands, respectively), C is the speed of the sound (m/s), F0 is the 12 

working frequency of the ADCP (Hz) and Va is the ambiguity velocity calculated as 13 

 
2

0

·cos

8· ·a
RDI

C
V

F L


  (20) 14 

Following the Appendix A of Hummon and Firing (2003), where LRDI is the lag (in m/s 15 

to obtain Va in the same units) scaled by RDI from time to vertical distance and stored 16 

for each measured profile in the RDI raw data files. 17 



Robust ADCP velocity estimates  Gilcoto et al. 

10 

 The analytical expressions in East/North/Up (ENU) coordinates corresponding 1 

to the SLS solution for eqs. (4) are quite complicated, though they can be inferred from 2 

the ENU to XYZ matrices M and N presented in Appendix A. In order to simplify the 3 

notation, and taking advantage of the analytical formulas already shown in the 4 

paragraphs above, the SLS ENU solutions in matrix form are: 5 

 ˆ ˆ
ENU XYZ V N V  (21) 6 

 ˆ ˆ ˆ ˆ ˆ ˆ
ENU XYZ XYZ

T     
VV VV VV

C N C M M C M  (22) 7 

with ˆ
XYZV  and ˆ ˆ

XYZVV
C given by (15) and (18), respectively. 8 

 Hence, applying the least squares optimum solution one may recover exactly the 9 

standard solution (section 3) plus an estimation of the error based on the variance-10 

covariance matrix of the solution. 11 

 12 

5. Weighted least squares solution 13 

 In the case of a malfunctioning transducer, one will obtain huge errors when 14 

using the SLS solution (eqs. (15) and (18)). In order to manage the errors, solve three-15 

beam problems without loosing error estimates and improve the robustness of the four-16 

beam velocity estimations we propose a weighted least square (WLS) solution (eq. (23)) 17 

as the general-case optimum solution: 18 

  11 1· · · · ·
X

T T
Y

Z

V

V

V

 

 
   
 
 

ee eeA C A A C b





 (23) 19 

and its associated variance-covariance matrix (eq. (24)) due to instrumental noise as 20 

error estimate: 21 
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 (24) 1 

The explicit expressions resulting from the matrix operations given in equations (23) 2 

and (24) are shown in Appendix B. The variance-covariance matrix is symmetric and 3 

positive definite too. Its diagonal elements are positive and have the largest modulus. 4 

On the other hand, it is not difficult to prove mathematically (see Appendix C) that the 5 

diagonal elements of (24) ( 2

XV
  , 2

YV
   and 2

ZV
  ), the variances, are smaller or equal than 6 

those of the covariance matrix (18) ( 2
ˆ
XV

 , 2

ŶV
  and 2

ẐV
 ), that in turn have the largest 7 

modulus in that matrix. Hence, in general, it is expected that the WLS solution provide 8 

more robust estimates (lower variances and covariances) than the SLS solution. 9 

 Again the analytical formulae for expressing the weighted least squares solution 10 

of  (4) are unmanageable and it is preferable to use matrix expressions based on the 11 

XYZ equations: 12 

 ENU XYZ V N V   (25) 13 

 
ENU XYZ XYZ

T     
VV VV VV

C N C M M C M       (26) 14 

with XYZV  and 
XYZVV

C   given by (23) and (24), respectively. 15 

 16 

6. Results: processing an ADCP dataset 17 

 On July 2007 Flinders University of South Australia and the South Australian 18 

Research and Development Institute (SARDI) deployed an upward looking RDI 19 

300kHz WorkHorse (broadband) ADCP off Port Lincoln, South Australia (Figure 2). 20 

The mooring was part of the observational work done for the Aquafin CRC: Risk and 21 
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Response project. The region offshore of Port Lincoln is used for intensive tuna 1 

(southern bluefin tuna, Thunnus maccoyii) ranching activities.  2 

The ADCP was deployed in the Tuna Ranching Zone at a depth of 22m (Figure 3 

2), the primary goal was to estimate wave parameters with the aim of studying the 4 

effects of wave induced sediment resuspension. Such events, have in the past, lead to 5 

high mortality rates in the farmed tuna. Consequently, it was setup to sample at the 6 

fastest rate possible (2Hz) in BEAM coordinates. The ADCP recorded data 7 

continuously from July 12th at 12:00:00 (UTC) to July 19th at 02:29:08 (UTC) summing 8 

up 4x1141107 radial beam velocity profiles. The ADCP was not tripod mounted, rather 9 

it was simply attached to a stainless-steel plate, 0.5m2 and 0.5cm thick, ballasted with 10 

lead bars. This configuration created a low center of mass and permitted velocity 11 

measurements closer to the seafloor. The bin (cell) size specified in the configuration 12 

was 1 meter, the blank after transmit distance was 1.74m and the center of the first bin 13 

was located 3.21m above the sea bottom. In order to reduce the rejected raw data, the 14 

screening parameters were configured with loose values: correlation threshold 255 15 

counts, RDI error velocity 5m/s and minimum percent good 0. 16 

The SLS ( ˆ ˆ ˆ, and u v w , black lines) and WLS ( , and u v w   , grey lines) solutions are 17 

presented in Figure 3, using ENU coordinates calculated from the 4x1141107 beam 18 

radial velocities sensed by the current meter at 12.21m (bin number 9) above the 19 

seafloor. The bin level has been chosen arbitrary, there is not much vertical velocity 20 

shear neither we have considered any other dynamic constraint for this selection, we 21 

have simply taken a middle depth as an example. For this transformation from BEAM 22 

to ENU coordinates, the heading, pitch and roll angles time series measured by the 23 

internal attitude sensors of the instrument were used. Interestingly, the ADCP remained 24 

practically level, both pitch and roll were quite low and stable with mean values of -25 
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0.11º and -0.63º and standard deviations of  0.032º and 0.067º, respectively. The mean 1 

heading during the deployment was 200.52º with a standard deviation of 0.252º. 2 

The time series of Figure 3 corresponds to unfiltered data, the whole record has 3 

been plotted. In addition to the evident diurnal/semidiurnal tidal modulations in the 4 

current, there are spikes of velocity (with values well above 150-200 cm·s-1) distributed 5 

along the record, as it was expected from the loose values configured in the screening 6 

parameters. Also, it seems that the weighted least squares solutions present fewer and 7 

lower spikes, more evident in the energetic phases of the tide. We can focus on the 8 

histograms of Figure 4 and on the evolution of the black line. They represent the 9 

frequency (number of cases) of velocity classes (every 5cm/s) for the ENU WLS 10 

solutions and their difference with the corresponding ENU SLS solution frequencies, 11 

respectively. From the frequency differences, it is observed that the WLS solution has 12 

more cases (negative difference) in the lower velocity classes and fewer cases (positive 13 

difference) in the higher velocity cases, reducing the tails of the histograms. Although 14 

these time series are not normally distributed, we will resort to means and standard 15 

deviations as statistics to characterize them. In that regard, the means for each solution 16 

method are quite similar among velocity components while the standard deviations are 17 

slightly lower using the WLS solution (Table 1).  18 

The advantage of the least squares approximation (section 4) over the standard 19 

solution (section 3), is the addition of variance and covariance estimates. On the other 20 

hand, we have seen (section 5) that, theoretically, the WLS method should provide 21 

lower variance and covariance estimates than the SLS method. In Figure 5 are shown 22 

the histograms, in absolute frequencies (number of cases), for the variances and 23 

covariances estimated with eq. (26) that corresponds to the ENU WLS solutions of 24 

Figure 4 (i.e. to the 4x1141107 beam radial velocities recorded by the current meter at 25 
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12.21m). The frequency difference (difference in the number of cases for each 1 

variance/covariance class) with the SLS solutions is also displayed as a black line over 2 

the histograms. As it was theoretically predicted, the inspection of this graphics 3 

confirms that the variances and covariances produced by the WLS method are generally 4 

lower than those calculated with the SLS. The mean variances for the whole time series 5 

of WLS solutions and their corresponding standard deviations are approximately a 4% 6 

and a 31%, respectively, lower than the SLS ones (Table 2). If instead of calculating the 7 

means and standard deviations of the variances for the whole time series (8 days) we 8 

chose a smaller and more energetic period (from Jul 13 18:00 to Jul 14 06:00, twelve 9 

hours) the reduction will rise to a 7% and a 40% (data not shown in Table 2), 10 

respectively. 11 

 12 

7. A short discussion: WLS solution utility 13 

The main drawback in the measurements of 3D currents with an ADCP is the 14 

adoption of the homogeneous field assumption since it is ineluctable. Thus, the best way 15 

to deal with it, is to somehow verify the assumption with the information provided by 16 

the ADCP as, for example, Lu and Lueck (1999a) have done. The logical progression in 17 

the ADCP data processing, will be the screening of the raw data using parameters such 18 

as: echo intensity maximum threshold to implement the “fish rejection”, minimum 19 

threshold for the percent good, minimum threshold for the correlation and a minimum 20 

threshold for the RDI error velocity. 21 

This screening process will certainly increase the quality of the data and should 22 

always be done. Another correction techniques, as the bin mapping (Ott, 2002), also 23 

should be taken into account. However, when there is an opportunity to estimate an 24 

error for each component of the current velocity, it should be calculated and used. The 25 
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existence of an error velocity estimate could improve and make much more intuitive for 1 

ADCP´s end users the identification and rejection of erroneous data. But most 2 

importantly, the background reasoning is clear and it is as simple. It is difficult, as it 3 

always has been in science, to: provide observations, measures, and estimations and 4 

their corresponding measuring errors. The obvious weak point in all this derivation is 5 

the quality of the radial beam velocity variances provided by eq. (19) and based on the 6 

correlation values recorded by the ADCP. The error estimated by the SLS and the WLS 7 

is as good as the quality of the radial beam velocity variances. In that regard, the correct 8 

evaluation of eq. (19) is far from the field of knowledge of the authors and, therefore, 9 

out of the article scope.  10 

As an example of the utility of the least squares proposed solutions, we have 11 

screened the time series of the SLS ( ˆ ˆ ˆ, ,u v w ) and WLS ( , ,u v w   ) current velocities 12 

introduced in the former section with the following thresholds: 13 

1
ˆ ˆ, , , 20cm su u v v        and 1

ˆ 6cm sw w     . Every SLS or WLS record with a 14 

standard deviation value, of any of the three velocity components, above any of the 15 

former thresholds was rejected. After the filter was applied there were 128298 rejections 16 

(11.25%) in the SLS time series and 71351 (6.25%) in the WLS. By observing the last 17 

two rows of Table 1 and Table 2 it is noted that the differences in the means and 18 

standard deviations between the unfiltered and filtered WLS solutions are always lower 19 

than differences for the SLS filtered and unfiltered solutions. That is, one needs to purge 20 

fewer data points using the WLS than with the SLS solutions, 50% less in this case with 21 

the selected thresholds. 22 

In addition, to facilitate the data screening process, the estimation of errors 23 

should play an important role in the improvement of the methods to analyze, process 24 

and map Lowered ADCP (LADCP) (Fischer and Visbeck, 1993; Visbeck, 2002; 25 
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Yoshinari et al., 2004) and Vessel Mounted ADCP (Pérez et al., 2003) data. It will also 1 

facilitate the estimations of errors for the currents provided by these instruments and, 2 

since their output is currently being used in oceanic inverse box models (Joyce et al., 3 

2001; Lherminier et al., 2007), will resort in better oceanic transports and associated 4 

errors estimates. 5 

Another type of applications that may gain an advantage with the WLS solutions 6 

is the measurement of Reynolds stresses with ADCPs and the variance method 7 

(Lhermitte and Lemmin, 1994; Lohrmann et al., 1990; Lu and Lueck, 1999b; Rippeth et 8 

al., 2002; Stacey et al., 1999; Williams and Simpson, 2004). In order to obtain the 9 

Reynolds stresses from ADCP recordings it is necessary to have an estimate of the noise 10 

base level (Stacey et al., 1999; Williams and Simpson, 2004). This means that having a 11 

more robust way, as the WLS, to estimate velocities and their variances/covariances will 12 

greatly improve the quality of the Reynolds stress calculus. But, the exploitation of this 13 

idea has enough entity to be the topic of another article and we will not give more 14 

details here.   15 

 16 

8. Conclusions 17 

 Although the beam to current velocity components standard solution has been, 18 

and will keep, working very well for many years we have tried to find an improvement 19 

relying on least squares techniques. We have shown that the four beam standard 20 

solution, is the same as the least square solution presented in section 4. While the 21 

standard solution gives an indication (the RDI error velocity) of the horizontal 22 

homogeneity assumption (and transducer malfunction), the least squares solution 23 

provides us with a variance-covariance matrix of the velocity estimates and, at the same 24 
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time, does not preclude the calculation of the error velocity for evaluating the quality of 1 

the recorded data.  2 

 Finally a weighted least square solution has been presented. The WLS solution is 3 

a more general and robust solution than the standard solution. It is more general 4 

because, despite we have presented it with a specific weighting matrix, there is no 5 

reason to use other weighting matrix that, for example, takes into account the echo 6 

intensity in order to reduce the fish effects. And it is more robust because the weighting 7 

matrix is a way of use more information to select the optimum solution and estimate the 8 

variance-covariance matrix with smaller variances and covariances than the SLS. This 9 

has resulted in the rejection of 50% less data than using the standard solution. And in an 10 

application such as a lowered ADCP would result in a more robust estimate of the 3D 11 

current field. 12 
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 1 

Appendix A 2 

The transformation matrix needed to convert the velocities from the instrument 3 

coordinate system (XYZ,  , ,XYZ X Y ZV V VV


) to the East/North/Up system (ENU) 4 

relays on the tilt angles between the XYZ axis and the ENU ones (  , ,ENU u v wV


). For 5 

an upward looking RDI ADCP this matrix N is (R. D. Instruments, 1997): 6 

 7 

 ENU XYZ V N V
 

 (A1) 8 

 

cos cos sin sin sin sin cos sin sin cos cos sin

sin cos cos sin sin cos cos cos sin cos sin sin

cos sin sin cos cos

           
           

    

          
           
    

N9 

 (A2) 10 

where  is the heading (rotational angle about Z-axis) given by the ADCP compass,  is 11 

the roll (rotational angle about Y-axis) recorded by the ADCP-roll internal sensor,  is 12 

the true pitch (rotational angle about X-axis) calculated with the ADCP-pitch internal 13 

sensor  and the roll through the expression  arctan tan cos    . The inverse 14 

transformation, from ENU velocities to XYZ velocities, is given by M the inverse of N: 15 

 1
XYZ ENU ENU

   V N V M V
  

 (A3) 16 

cos cos sin sin sin sin cos cos sin sin cos sin

sin cos cos cos sin

sin sin cos cos sin cos sin cos sin sin cos cos

           
    

           

          
    
           

M17 

 (A4) 18 
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Appendix B 1 
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Appendix C 1 

 One way to proof that the WLS variances are always lower or equal to those 2 

obtained with the SLS solution is simply to take their corresponding expressions from 3 

equations (24) and (18), respectively, and show that their differences (SLS minus WLS) 4 

are always positive or null: 5 

 1 2

2
2 2
ˆ 4

2 2

1

( )
0

sin ·4·
XX

i

b b

VV

b
i
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Figure 1 Side (left) and plan (right) views of a four-beam ADCP. The transducer 
ceramics are labeled from T1 to T4. The instrument XYZ coordinate system is drawn 
over the ADCP head in both views. Two actual current velocities 4V


 and 3V


 to be 

observed by T4 and T3 instrument beams, respectively, at a certain level above the 
bottom will be sensed as radial beam velocities (projections of the current velocities 
along the corresponding beam) 4 3and b b

 
, respectively. Also, 4V


 and 3V


 are 

decomposed in the corresponding XYZ components according to the transducers’ slant 
angle . 
 
Figure 2 Map of the South of Spencer Gulf, South Australia, where Port Lincoln is 
located (South West). The RDI 300kHz Workhorse ADCP was deployed in the Port 
Lincoln tuna farm region, Northeastward of Boston I. (open diamond). 
 
Figure 3 Time series of the SLS (black lines) and WLS (grey lines) ENU estimations of 
the East (top), North (middle) and vertical (bottom) components of the currents obtained 
from the radial beam velocities measured with the ADCP deployment off Port Lincoln. 
 
Figure 4 Velocity histograms, in absolute frequencies (left Y-axis, number of cases), of 
the ENU-WLS North (top), East (middle) and vertical (bottom) velocity component 
estimations (eq. (25)) generated from the 1141107 four-beam ADCP measurements. 
The velocity classes were distributed every 5 cm/s. In every plot, the black line shows 
the frequency difference (right Y-axis, in number of cases) for each velocity class 
between the ENU-WLS histogram and the corresponding ENU-SLS histogram (not 
shown, velocity estimations made with (eq. (21))). 
 
Figure 5 Histograms, in absolute frequencies (left Y-axis, number of cases), of the 
ENU-WLS variances (plots a) 2

u  , b) 2
v  ,and c) 2

w  ) and covariances (plots d) 

uv vu     , e) uw wu     , and f) vw wv     ) estimations (eq. (26)) generated from the 

1141107 four-beam ADCP measurements. The variance and covariance classes were 
distributed every 20 cm2·s-2. In every plot, the black line shows the frequency difference 
(right Y-axis, in number of cases) for each variance/covariance class between the ENU-
WLS histogram and the corresponding ENU-SLS histogram (not shown, 
variance/covariance estimations made with (eq. (22))). 
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Table 1 Mean and standard deviations of the unfiltered (firs two rows) and filtered 
(third and fourth rows) WLS ( , and u v w   ) and SLS ( ˆ ˆ ˆ, and u v w ) velocity estimations. 
The last two rows are the differences between unfiltered and filtered values. 
 
 û  

(cm·s-1) 
u  

(cm·s-1) 
v̂  

(cm·s-1) 
v  

(cm·s-1) 
ŵ  

(cm·s-1) 
w  

(cm·s-1) 
Mean -0.116 -0.116 0.596 0.595 -0.174 -0.175
STD 17.365 17.076 18.760 18.506 4.634 4.567
Filt. Mean -0.247 -0.193 0.740 0.678 -0.151 -0.161
Filt. STD 16.477 16.675 17.951 18.120 4.408 4.462
Mean-Filt.  Mean 0.131 0.077 -0.144 -0.083 -0.022 -0.014
STD-Filt. STD 0.888 0.400 0.809 0.386 0.225 0.105
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Table 2 Mean and standard deviations of the unfiltered (firs two rows) and filtered 
(third and fourth rows) WLS ( , and u v w     ) and SLS ( ˆ ˆ ˆ, and u v w   ) velocity standard 

deviations estimations. The last two rows are the differences between unfiltered and 
filtered values. 
 
 

û  

(cm·s-1) 
u   

(cm·s-1) 
v̂  

(cm·s-1) 
v   

(cm·s-1) 
ŵ  

(cm·s-1) 
w   

(cm·s-1) 
Mean 15.530 14.929 15.510 14.921 4.019 3.860
STD 3.720 2.477 3.541 2.446 0.837 0.556
Filtered Mean 14.824 14.603 14.822 14.603 3.830 3.786
Filtered STD 1.916 1.920 1.911 1.913 0.398 0.435
Mean-Filt. Mean 0.706 0.326 0.688 0.318 0.190 0.074
STD-Filt. STD 1.804 0.558 1.630 0.533 0.439 0.121
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Figure 1 Side (left) and plan (right) views of a four-beam ADCP. The transducer 
ceramics are labeled from T1 to T4. The instrument XYZ coordinate system is drawn 
over the ADCP head in both views. Two actual current velocities 4V


 and 3V


 to be 

observed by T4 and T3 instrument beams, respectively, at a certain level above the 
bottom will be sensed as radial beam velocities (projections of the current velocities 
along the corresponding beam) 4 3and b b

 
, respectively. Also, 4V


 and 3V


 are 

decomposed in the corresponding XYZ components according to the transducers’ slant 
angle . 
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Figure 2 Map of the South of Spencer Gulf, South Australia, where Port Lincoln is 
located (South West). The RDI 300kHz Workhorse ADCP was deployed in the Port 
Lincoln tuna farm region, Northeastward of Boston I. (open diamond). 
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Figure 3 Time series of the SLS (black lines) and WLS (grey lines) ENU estimations of 
the East (top), North (middle) and vertical (bottom) components of the currents obtained 
from the radial beam velocities measured with the ADCP deployment off Port Lincoln. 
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Figure 4 Velocity histograms, in absolute frequencies (left Y-axis, number of cases), of 
the ENU-WLS North (top), East (middle) and vertical (bottom) velocity component 
estimations (eq. (25)) generated from the 1141107 four-beam ADCP measurements. 
The velocity classes were distributed every 5 cm/s. In every plot, the black line shows 
the frequency difference (right Y-axis, in number of cases) for each velocity class 
between the ENU-WLS histogram and the corresponding ENU-SLS histogram (not 
shown, velocity estimations made with (eq. (21))). 
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Figure 5 Histograms, in absolute frequencies (left Y-axis, number of cases), of the 
ENU-WLS variances (plots a) 2

u  , b) 2
v  ,and c) 2

w  ) and covariances (plots d) 

uv vu     , e) uw wu     , and f) vw wv     ) estimations (eq. (26)) generated from the 

1141107 four-beam ADCP measurements. The variance and covariance classes were 
distributed every 20 cm2·s-2. In every plot, the black line shows the frequency difference 
(right Y-axis, in number of cases) for each variance/covariance class between the ENU-
WLS histogram and the corresponding ENU-SLS histogram (not shown, 
variance/covariance estimations made with (eq. (22))). 


