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Abstract North American oak species, with their characteristic strong episodic seasonal 

shoot growth, are highly problematic for clonal micropropagation, resulting in the 

inability to achieve a stabilized shoot multiplication stage. The potential for initiating 

and proliferating shoot cultures derived from Quercus alba, Q. bicolor and Q. rubra 

explants was investigated, and a micropropagation method for these species was 

developed. Branch segments from 6 to 7-year-old trees were forced-flushed and the 

forced shoots were used as source of explants for culture initiation. A consistent shoot 

multiplication stage was achieved, in 13 of the 15 genotypes established in vitro, 

although marked differences occurred in explants from different genotypes/species. The 

control of efficient shoot multiplication involved the culture of decapitated shoots in a 

stressful horizontal position on cytokinin-containing medium with a sequence of 

transfers within a 6-week subculture cycle, which was beneficial to overcoming the 

episodic character of shoot growth. During each subculture cycle, the horizontally 

placed explants were cultured on media containing 0.2 mg l-1 benzyladenine (BA) for 2 

weeks with two successive transfers (2 weeks each) to fresh medium with 0.1 mg l-1BA, 

giving a 6-week subculture cycle. The general appearance and vigour of Q. alba and Q. 

bicolor shoot cultures were improved by the inclusion of both 0.1 mg l-1 BA and 0.5 mg 

l-1 zeatin in the medium used for the second transfer within the 6-week subculture cycle. 

Addition of AgNO3 (3 mg l-1) to the shoot proliferation medium of Q. rubra had a 

significant positive effect on shoot development pattern by reducing deleterious 

symptoms, including shoot tip necrosis and early senescence of leaves. The three 

species showed acceptable in vitro rooting rates by culturing microcuttings in medium 

containing 25 mg l-1 indolebutyric acid for 48 h with subsequent transfer to auxin-free 

medium supplemented with 0.4% activated charcoal. Although an initial five-day dark 
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period generally improved the rooting response, it was detrimental to the quality of 

regenerated plantlets. However, activated charcoal stimulated not only the rooting 

frequencies, but it also enhanced plant quality, as evidenced by root, shoot and leaf 

growth.  

Keywords Charcoal · Ethylene inhibitors · Northern red oak · Micropropagation · 
Swamp white oak · White oak 

Abbreviations 

BA 6-Benzylaminopurine 

GD Gresshoff and Doy (1972) medium 

IBA Indole-3- butyric acid 

WPM Woody Plant Medium (Lloyd and McCown 1980) 

 

Introduction 

The genus Quercus contains some of the most commercially important hardwood 

species in the world. Examples include Q. robur, Q. petraea and Q. suber in Europe 

(Savill and Kanowski 1993), and Q. rubra (northern red oak) and Q. alba (white oak) in 

North America (Schwarz and Schlarbaum 1993). For these and other oak species seed 

production may be inadequate for operational requirements as good harvests are 

possible only every 2 to 5 years and seed storage is difficult (Vengadesan and Pijut, 

2009). Vegetative propagation is desirable in order to satisfy production demands, as 

well as being essential for the propagation of genetically superior material obtained by 

means of genetic improvement programmes (Kleinschmit and Meier-Dinkel 1990). 

However, Quercus species become difficult to propagate vegetatively as consequence of 

ontogenetic maturation. As regards macropropagation, for example, Q. robur, Q. rubra, 

Q. bicolor and Q. macrocarpa (Chalupa 2000; Fishel et al. 2003; Amissah and Bassuk 

2007), have shown little amenability to clonal propagation by rooting of cuttings; while 

in vitro micropropagation techniques have been of limited scope. The micropropagation 

systems developed for Q. petraea (Chalupa 1993), Q. robur (Puddephat et al. 1999), 

Himalayan oaks (Purohit et al. 2002; Tampta et al. 2008) and endangered oak species 

such as Q. euboica (Kartsonas and Papafotiou 2007) are all based on the proliferation of 

axillary shoots from juvenile seedling material (Meier-Dinkel et al. 1993). 
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Micropropagation of adult oak trees has in general likewise relied on obtaining initial 

explants from material retaining a high degree of juvenility (stump sprouts, or epicormic 

shoots collected from the basal zone of the trunk), and has been reported for Q. robur 

(Vieitez et al. 1985; Chalupa 1988, 2000; San-José et al. 1988; Juncker and Favre 

1989), Q. petraea (San-José et al. 1990) and Q. suber (Romano et al. 1995). The only 

Quercus species for which the rejuvenation or reinvigoration of harvested mature 

material has hitherto been reported is Q. robur. In this case, the forced flushing of stem 

sections (Evers et al. 1993) or crown branch segments (Vieitez et al. 1994) of Q. robur 

produces shoots that are sufficiently rejuvenated or reinvigorated as to be usable as a 

source of initial explants for in vitro micropropagation (Sánchez et al. 1996; Ballester et 

al. 2009).  

As far as we know, all attempts to micropropagate Q. alba (Schwarz and 

Schlarbaum 1993) or the related species Q. bicolor (swamp white oak) have been 

unsuccessful (Gingas 1991). Schwarz and Schlarbaum (1993) reported that even 

uncontaminated shoot cultures initiated from terminal and lateral buds of young Q. alba 

seedlings died through gradual loss of vigour. These authors concluded that episodic 

growth in culture was a significant factor in the cultures’ demise. In the case of Q. 

rubra, difficulties were encountered even in micropropagation with juvenile seedling 

material (Rancillac et al. 1991; Vengadesan and Pijut 2007) where shoot tip necrosis, 

dormancy and decline of shoot growth were common problems described (McCown 

2000). Although the micropropagation from epicormic shoots of red oaks was also 

reported (Vieitez et al. 1993a; Sánchez et al. 1996), sustainable reliable results have 

been inconsistent for several genotypes indicating that genotypic effects need to be 

considered in terms of physiological requirements for maximum shoot proliferation. 

These three species are all typical of woody perennials characterized by strong episodic 

flushes during the growing season, and the difficulty of their in vitro culture is attributed 

to the inability to achieve the stabilization stage where uniform and continuous shoot 

growth is displayed. The highly episodic northern oaks, and specifically Q. bicolor, Q. 

alba and Q. rubra were pointed out as species that have only rarely been successfully 

microcultured as shoot cultures (McCown 2000). 

In view of the limited success of previous approaches to the in vitro culture of these 

Quercus species, and the interest in defining the optimal conditions for clonal 
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micropropagation, the main objectives of this work are: 1) To study the initiation and 

stabilization stages of shoot cultures derived from Q. alba, Q. bicolor and Q. rubra 

explants; 2) To optimize the shoot proliferation stage by evaluating the effect of 

different cytokinin treatments (Q. alba and Q. bicolor), and AgNO3 concentrations 

(Q. rubra);  3) To define the rooting stage of micropropagated shoots for plantlet 

regeneration of these species. 

Materials and Methods 

Plant material 

Source material consisted of branches collected in February 2006 and February 2007 

from trees of Quercus alba (8), Q. bicolor (4) and Q. rubra (3) aged 6-7 years growing 

in a selected field plant collection at Villanieva de Perales, Spain (see Table 1 for 

genotype codes). Segments 20-25 cm long were cut from proximal part of branches (1-2 

cm thick), set upright in moistened perlite, and forced to flush axillary or epicormic 

shoots in a growth chamber at 25º C and 80-90% relative humidity under a 16 h 

photoperiod (90-100 µmol m-2s-1 provided by cool-white fluorescent lamps). After 2-3 

weeks, newly sprouted shoots (Fig. 1A) were used as the source of initial explants for in 

vitro culture establishment. Flushed shoots 3-10 cm long were stripped of leaves and 

their surfaces were disinfected by immersion for 20 s in 70% ethanol followed by 8 min 

in a 0.6% solution of free chlorine (Millipore® chlorine tablets) containing 2-3 drops of 

Tween 80®, after which they were rinsed three times in sterile distilled water. Explants 

consisting of 5-8 mm shoot tips and nodal segments were cut from the shoots and 

placed upright in 30 × 150 mm culture tubes containing 16 ml of initial medium. This 

consisted of GD medium (Gresshoff and Doy1972) supplemented with 0.5 mg l-1 

benzyladenine (BA), 30 g l-1 sucrose and 6.5 g l-1 Vitroagar (Hispanlab S.A.), brought to 

pH 5.6, and autoclaved at 121ºC for 20 min. To avoid contact with excreted phenolics, 

each explant was moved to the opposite side of its culture tube 1 day after the initiation 

of culture; thereafter, the explants were transferred to fresh initial medium every 

2 weeks. After 4-7 weeks of culture, depending on species, the percentage of explants 

with sprouting buds (the response rate) and the percentage of explants with shoots 

≥ 10 mm in length were determined for each genotype.  
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 All cultures were kept in a growth chamber with a 16 h photoperiod (50-60 µmol 

m-2s-1 provided by cool-white fluorescent lamps) and temperatures of 25ºC (light) and 

20ºC (dark). 

Shoot multiplication stage 

New shoots longer than 1 cm produced by the initial cultures were excised from the 

original explants, their leaves and apical 2 mm were removed, and the decapitated 

shoots were placed horizontally in 500 ml glass jars (with glass lids fixed with plastic 

film) containing 70 ml of multiplication medium. In view of our previous experience 

with Quercus spp (Vieitez et al. 1985; San-José et al. 1990; Vieitez et al. 1993a), the 

multiplication media were based on GD medium for Q. alba and Q. bicolor, and Woody 

Plant Medium (WPM; Lloyd and McCown 1980) for Q. rubra. Both were supplemented 

with 30 g l-1 sucrose, 6.5 g l-1 Vitroagar, and BA, and the shoots were transferred to fresh 

medium every 2 weeks. On the basis of preliminary experiments using 0.5, 0.2 and 0.1 

mg l-1 BA (results not shown), the BA concentration was 0.2 mg l-1 for the first 2 weeks 

and 0.1 mg l-1 for the next 4 weeks, in a six-week multiplication cycle (hereinafter 

referred to as the standard multiplication cycle). At the end of this period, vigorous 

shoots longer than 10 mm that had developed from axillary buds were isolated and used 

for the next subculture. Subculture on the multiplication media was repeated until the 

number of shoots produced was sufficient to evaluate the modifications in media, 

conditions and procedure for improving shoot proliferation stage. 

Experiments with Q. alba and Q. bicolor  

Influence of mineral composition on Q. bicolor multiplication. The dependence of the 

multiplication rate of Q. bicolor on the mineral composition of the multiplication 

medium (GD or WPM) was evaluated using clones SWOQ-7, SWOQ-12 and SWOQ-

18, which were otherwise subcultured in accordance with the standard multiplication 

cycle procedure.  

Influence of cytokinin regime on the multiplication of Q. alba and Q. bicolor. In a three-

cycle experiment, the effect of cytokinin on the shoot multiplication of Q. alba and Q. 

bicolor was investigated by subculturing clones WOQ-1, WOQ-4, WOQ-23, SWOQ-7 
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and SWOQ-18 on GD-based multiplication medium in which the cytokinin treatment 

was changed from cycle to cycle, as follows: 

Cycle 1 - the standard multiplication cycle (0.2 mg l-1 BA for the first 2 weeks, with 

two successive transfers to fresh medium with 0.1 mg l-1 BA). 

Cycle 2 - in the second and third two-week periods of the cycle, the 0.1 mg l-1 BA 

supplement was replaced with 0.5 mg l-1 zeatin. 

Cycle 3 - in the third two-week period of the cycle, the medium was supplemented 

with 0.5 mg l-1 zeatin as well as with 0.1 mg l-1 BA. 

In all these experiments the following variables were determined at the end of the 

six-week multiplication cycle: the frequency of responsive explants, i.e. the percentage 

of explants forming shoots; the mean number of shoots 0.5-1.0 cm long among 

responsive explants; the mean number of shoots longer than 1 cm among responsive 

explants; the mean length of the longest shoot on responsive explants; and the 

percentage of shoots with at least two expanded leaves. 

Influence of AgNO3 on the multiplication of Q. rubra 

To optimize shoot production and quality of Q. rubra cultures, the effect of adding 

AgNO3 to the multiplication medium was studied by culturing clones ROQ-8 and ROQ-

10 on WPM-based multiplication medium supplemented with 0, 1, 3 or 6 mg l-1AgNO3 

in accordance with the standard multiplication cycle procedure. The AgNO3 

concentration was maintained throughout the six-week multiplication cycle. The 

following variables were determined: the mean number of shoots 0.5-1.0 cm long; the 

mean number of shoots longer than 1 cm; the mean length of the longest shoot; the 

percentage of shoots exhibiting shoot tip necrosis; the percentage of shoots exhibiting 

leaf senescence and/or leaf abscission; and the percentage of shoots exhibiting 

anomalous development pattern (recumbent shoots with folding leaves appearance).  

In all shoot multiplication experiments carried out in the three species, there were 

six replicate jars per treatment and clone, with six shoot explants per jar. Each 

experiment was repeated at least twice. 
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Rooting experiments 

In a preliminary experiment, shoots 15-20 mm long were isolated from multiplication 

cultures of the Q. alba clone WOQ-1 and the Q. bicolor clone SWOQ-12, and were 

placed for 24 h in root induction medium consisting of GD basal medium with half-

strength macronutrients, 30 gl-1sucrose, 6.5 gl-1 Vitroagar and supplemented with 

25 mg l-1 indole-3-butyric acid (IBA), after which they were transferred to rooting 

medium of the same composition except for the absence of IBA (root expression 

medium) for the remainder of the 1-month rooting period.  

In the main experiment, in which the duration of the initial 25 mg l-1 IBA treatment 

was 48 h, 15-20 mm shoots from cultures of WOQ-1, SWOQ-12 and the Q. rubra 

clones ROQ-8 and ROQ-10 (for which GD with half-strength macronutrients was 

replaced by WPM with half-strength macronutrients) were rooted in accordance with a 

2 × 2 factorial design to evaluate the effects of an initial 5-day dark period (which 

included the 2-day root induction period) and the inclusion of activated charcoal at a 

concentration of 0.4% in the IBA-free root expression medium.  

In both sets of experiments, each treatment and clone was evaluated using four 

replicate 100 ml glass jars, each containing 30 ml of rooting medium and 5 or 6 shoots 

(20-24 shoots per treatment). All experiments were repeated three or four times, and the 

variables determined at the end of the 1 month rooting period were the percentage of 

shoots that had rooted, the mean number of roots per rooted shoot, and the production of 

surviving  shoots as the percentage of rooted shoots with no signs of apical necrosis and 

no leaf drop.  

Statistical analysis 

The influence of the main experimental factors was evaluated statistically by two-way 

analysis of variance (factorial design) in the following experiments: i) Cytokinin 

regimes in various genotypes of Q. alba and Q. bicolor (cycle treatment x genotype) 

within each of the two species studied (Table 2); ii) Effect of AgNO3 concentration in 

two genotypes of Q. rubra (AgNO3 x genotype; Table 3); iii) Rooting experiment 

(illumination x activated charcoal; Table 4).  
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The arcsine square root transformation was applied to proportional data prior to 

analysis; the data presented in the figures and tables are untransformed. 

 

Results 

Culture initiation 

After 2-3 weeks in the growth cabinet, flushing occurred in branch segments of all 

genotypes providing shoots 3-10 cm long (Fig. 1A) that had developed from lateral 

buds or from accessory buds associated with branch scars. That the contamination rates 

of the initial explants cut from these shoots were in general low (Table 1) is attributed to 

the shoots having been grown in a growth cabinet. Also, transfer of the explants to 

another area of the culture medium appears to have succeeded in limiting the negative 

effects of phenolics and other exudates. Explants with sprouting buds were obtained in 

all the genotypes tested, though with marked differences in their in vitro performance. 

Bud sprouting and shoot growth was slower in Q. alba (7 weeks after culture initiation) 

followed by Q. rubra (6 weeks) and Q. bicolor (4-5 weeks). The response rates of all Q. 

bicolor and Q. rubra genotypes were quite high (79-99%), but those of Q. alba 

genotypes ranged from 29% to 93% (Table 1). Similarly, whereas for all Q. bicolor 

genotypes and two of the three Q. rubra genotypes more than 50% of explants were at 

least 1 cm in length, only one of the eight Q. alba genotypes, WOQ-1, had more than 

50% of explants that long, the rates of the others ranging from 11% to 40% (Table 1).  

Shoot proliferation 

Shoots excised from initial explants were subcultured following the standard 

multiplication cycle of 6 weeks. Only new developed shoots exhibiting vigorous growth 

were used in successive subcultures. Following this procedure all Q. bicolor and 

Q. rubra genotypes, and all except two Q. alba genotypes (WOQ-2 and WOQ-6, lost 

after 5 months) became stabilized, though the time required ranged from 4 months for 

three of the four Q. bicolor genotypes to 9-12 months for all established Q. alba 

genotypes except WOQ-1 (Table 1). In all cases it was possible to re-culture 

subcultured tissue repeatedly, on fresh medium, after successive harvests of its most 

vigorous shoots. However, Q. alba and Q. bicolor genotypes tended to form elongated 
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shoots with reduced leaf development giving rise to small or scale-like leaves, 

especially in the case of SWOQ-18, and Q. rubra cultures tended to suffer from shoot 

tip necrosis and leaf anomalies (folding, chlorosis or abscission). To address these 

problems, the experiments reported on in the next two subsections were performed.  

Experiments with Q. alba and Q. bicolor 

Both the number and the length of shoots produced by SWOQ-12 and SWOQ-18 

cultures were independent of whether the multiplication medium was GD-based or 

WPM-based, but SWOQ-7 proliferated better on the former (Fig. 2). Moreover, 

although SWOQ-18 shoots with more than two expanding leaves were twice as frequent 

on WPM as on GD, these leaves tended to be thinner and drier than those produced on 

GD medium, which would be of inconvenience for acclimatization purposes. 

In the experiments comparing different cytokinin regimes (Table 2), most of the 

evaluated genotypes produced between 90-100% of responsive explants. Although 

genotype differences were evident within each species (Table 2), acceptable 

multiplication rates were obtained following subculturing in cycle 1. With this 

treatment, however, a considerable proportion of shoots exhibited poor leaf 

development; hence, the frequency of shoots with expanded leaves was lower than those 

achieved with the other subculture cycles in all genotypes of the two species studied. 

With regard to this variable, a significant interaction between genotype and cycle 

treatment was also found for Q. alba (P≤ 0.05) and Q. bicolor (P≤ 0.01). While in cycle 

2 subculturing gave rise to the highest percentages of cultures with normal appearance 

for determined genotypes, it was considered inadequate for shoot proliferation as cycle 

2 also afforded a reduction in shoot number (P ≤ 0.0001) for both species, along with a 

reduction of shoot length in Q. alba genotypes (P ≤ 0.0001) and the SWOQ-7 genotype 

(significant interaction for Q. bicolor). Thus cycle 3, in which both 0.5 mg l-1 zeatin and 

0.1 mg l-1 BA were included in the medium in the final 2 weeks of the cycle, was the 

most efficient in terms of shoot number and shoot length, also giving rise to relatively 

high frequencies of vigorous and normal shoots (Fig. 1 B, C). Similar behaviour was 

shown by genotypes WOQ-3, WOQ-5 and SWOQ 12 (results not shown). 

Experiments with Q. rubra 
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Analysis of variance showed that, regardless of the genotype, addition of AgNO3 to the 

multiplication medium had a significant positive effect (P ≤ 0.0001) on the appearance 

of ROQ-8 and ROQ-10 cultures, to the extent that with 3 or 6 mg l-1 AgNO3 cultures 

developed normally, producing straight, vigorous shoots with dark green leaves (Fig. 

1D, E) and, at most, a low incidence of shoot tip necrosis (Table 3). AgNO3 also tended 

to produce more shoots, though somewhat shorter (P ≤ 0.01). Analysis of variance also 

indicated that the genotype had a significant effect on shoot number and shoot length, as 

well as on the frequency of anomalous shoot development (Table 3), whereas in 

genotype ROQ-8, 3 mg l-1 AgNO3  treatment significantly increased the production of 

shoots longer than 1 cm (significant interaction at P ≤ 0.05). On balance, a 

concentration of 3 mg l-1 was deemed the most appropriate for the shoot proliferation 

stage of red oak. 

Rooting experiments 

Treatment of cultures with IBA for 24 h achieved rooting rates of only 24% for WOQ-1 

and 8.3% for SWOQ-12. With 48 hours’ treatment, these clones achieved rates of at 

least 40% regardless of whether initial darkness or activated charcoal was used 

(Fig. 3A). Rooting started around day 10 or 11 for shoots of WOQ-1 and SWOQ-12, 

and between days 13 and 16 for the Q. rubra clones; in all cases root emergence was 

completed between days 21 and 24. In all genotypes, initial darkness accelerated root 

emergence by 1-3 days.  

For all clones, the effect of initial darkness on rooting rate (Fig. 3A) depended on 

whether activated charcoal was present or absent, and the effect of activated charcoal on 

whether initial darkness was applied (significant interaction of the two factors, Table 4). 

In the absence of activated charcoal, rooting rates were always higher with initial 

darkness (≈ 45-90%) than without (≈ 30-55%), whereas in its presence darkness was 

associated with slightly lower rooting rates for all clones except ROQ-8 (Fig. 3A). 

Activated charcoal always greatly increased rooting rates to values of 80-90% when an 

initial dark period was not applied, and when it was, slightly increased the rates of all 

clones except WOQ-1, affording values of 70-90%.  

Neither activated charcoal nor initial darkness had any significant influence on the 

number of roots produced by SWOQ-12 shoots (Table 4). WOQ-1 shoots produced 
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most roots if dark was applied in the absence of charcoal, or charcoal without initial 

darkness (Fig. 3B). Both factors had statistically significant additive positive influences 

on the number of roots on ROQ-8 shoots, but in clone ROQ-10 the use of both charcoal 

and initial darkness had a less positive influence than the use of either factor by itself 

(Fig. 3B). A further difference we observed was that roots developed in the charcoal 

supplemented medium produced more secondary roots than those in medium lacking 

charcoal, although this variable was not measured.  

In all clones, WOQ-1 and SWOQ-12 especially, a number of rooted shoots 

exhibited browning and senescence of the apical zone, and initial darkness favoured the 

appearance of these deleterious symptoms (Fig. 3C, Table 4). In all except ROQ-8, the 

survival rate was greater in the presence of activated charcoal than in its absence.  

Overall, the best rooting treatment was deemed to consist of an initial 48 h 

treatment with 25 mg l-1 IBA, followed by transfer to auxin-free medium containing 

activated charcoal at a concentration of 0.4%, with no initial dark period (Fig. 1F). 

Application of these conditions to clones WOQ-4 and SWOQ-7 afforded rooting rates 

of 83% and 71%, respectively, but that of SWOQ-18 was only 19%. However, the 

rooting rate of SWOQ-18 increased to 89% when the initial 48 h  IBA treatment was 

prolonged for a further 24 h.  

Discussion 

The achievement of uniform, continuous in vitro shoot growth is highly problematic for 

woody species with a strongly episodic growth habit (McCown 2000); such is the case 

of Q. alba, Q. bicolor and Q. rubra. When these shoots were cultured upright for 4-6 

weeks with or without transfer to fresh medium (preliminary experiments), the episodic 

character of the shoots was observed, with arrested shoot growth generally followed by 

explant death. The successful proliferation of shoot cultures in this study may have been 

helped by the culture of decapitated shoots in a stressful horizontal position which 

promoted vigorous shoot development, as has previously been reported in Q. robur 

(Vieitez et al. 1994). In addition, the fortnightly transfer of cultures to fresh cytokinin-

containing medium in a 6-week subculture cycle was beneficial in overcoming the 

episodic character. Changes of medium within subculture cycles have also proved 
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necessary for the stabilization of other Fagaceae, including Fagus sp. (Vieitez et al. 

1993b) and Q. robur (Vieitez et al. 1994). 

When the only cytokinin in the multiplication medium was BA, both Q. alba and Q. 

bicolor tended to form elongated shoots with small or scale-like leaves (Fig. 1 B). 

Scale-like leaves have also been observed on shoots developed from germinating 

Q. suber somatic embryos, the frequency of scales increasing with the BA concentration 

applied to the latter (González-Benito et al. 2002). In previous work we found that 

although Q. robur (Vieitez et al. 1985) and Q. rubra (Vieitez et al. 1993a) required only 

BA treatment for axillary shoot culture systems, the in vitro growth of shoots and leaves 

of beech species was favoured by combining BA with zeatin (Vieitez et al. 2003). The 

present study shows that the same is true of Q. alba and Q. bicolor. Zeatin is one of the 

natural cytokinins found in higher plants, and our results suggest the occurrence of a 

possible imbalance in levels of endogenous zeatin or its different derivatives in shoots 

of these species cultured in presence of BA-supplemented medium. This finding is in 

keeping with those of Werner et al. (2001), who concluded that the growth of leaves in 

cytokinin-defficient tobacco plants not only required cytokinins, but also the fine 

adjustment of natural cytokinin levels. Similarly, Perrin et al. (1997) have also reported 

that the recovery of capacity for axillary shoot organogenesis by in vitro rubber tree 

shoots is related to an increase in endogenous zeatin levels.  

Although the horizontal position of subcultured shoot explants successfully 

promoted the initially vigorous development of shoots, horizontal culture is a form of 

mechanical stress, and as such may have favoured the synthesis of ethylene and its 

accumulation in the atmosphere of the culture vessel (Anten et al. 2006). Ethylene-

induced shoot growth anomalies similar to those observed in non-Ag+-treated Q. rubra 

cultures in this study - shoot tip necrosis and leaf abscission – have been observed in 

shoot cultures of Annona squamosa (Armstrong et al. 1997), Holostemma ada-Kodien 

(Martín 2002) and habanero pepper (Santana-Buzzy et al. 2005). AgNO3 and silver 

thiosulphate have previously been reported to have beneficial effects on shoot growth 

and organogenesis in a variety of culture systems (Faria and Segura 1997; Reis et al. 

2003; Burgos and Alburquerque 2003; Alaska-Kennedy et al. 2005; Qin et al. 2005), 

but as far as we know there have hitherto been no studies of the effects of ethylene 

inhibitors on the growth and development of oak shoots in vitro. It may be noted that in 
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the concentration range used in this study, AgNO3 appears not to have any of its known 

undesirable side effects (Kumar et al. 1998).  

For all three species studied, acceptable rooting rates were achieved by optimizing 

the initial IBA treatment (48 or, exceptionally, 72 h) and including activated charcoal in 

the root expression medium. Moreover, activated charcoal not only stimulated rooting, 

but also benefited root, shoot and leaf growth. These effects of charcoal are attributable 

to its adsorbing excess of plant growth regulators or detrimental substances that may be 

released by the plant tissue or by the medium, and to its partial darkening of the 

environment (Pan and van Staden 1998). The positive effect of darkness on rooting 

frequency may be due to a dark-induced decrease in peroxidase activity, which may 

delay the degradation of plant growth regulators. Also, Ahn et al. (2007) have suggested 

that the number of cells that are competent to initiate adventitious root development 

may be higher in dark-treated tissues since etiolation of stems has been reported to 

result in a high level of undifferentiated cells, and cell dedifferentiation is required for 

acquiring organogenic competence (Sugiyama 1999). In this study, in the absence of 

activated charcoal, rooting rates were always increased by an initial dark period of 

5 days, the time taken by Q. robur microcuttings to differentiate root initial cells and 

meristemoids (Vidal et al. 2003). However, darkness treatment during this period 

favoured shoot senescence and necrosis, as has also been observed in the case of Q. 

robur (Sánchez et al. 1996).  

Finally, that the plant material employed in the present study derived from 

relatively juvenile source plants (6-7 years old) may seem to throw doubt on whether 

the results of the study are of use for genetic improvement purposes. However, 

correlations between the values of growth parameters such as height or diameter at 

different ages indicate that, at least in the case of Q. alba, selection of the fastest 

growing families can be identified at a relatively early (6-9 years) age (Schlarbaum 

1993). 

In conclusion, the above results show the possibility of successful in vitro micro-

propagation of species representative of the Quercus subgenera Lepidobalanus (Q. alba, 

Q. bicolor) and Erythrobalanus (Q. rubra) - all of them woody plants of episodic 

growth habit and consequently difficult establishment in vitro - starting from crown 
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material obtained from trees 6-7 years old. Given the analogous results reported for 

Q. robur (Sánchez et al. 1996; Ballester et al. 2009) and Q. suber (Romano et al. 1995; 

Romano and Martins-Louçao 2003), this means that in spite of their reputation for 

recalcitrance to microculture, all the most important Quercus species could now be 

micropropagated via axillary shoot cultures.  
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Table 1 Results on the in vitro establishment of shoot cultures of several genotypes of Quercus 

alba, Q. bicolor and Q. rubra, evaluated when initial explants had been cultured for the times 

shown in parentheses in column 1. The time required for stabilization of shoot proliferation 

cultures is also shown.  

Species Genotype 
Number 
of initial 
explants 

Contami-
nation 
rate  
(%) 

Response rate 
(%)* 

Explants 
with shoots 
≥ 1 cm (%) 

Period needed for 
stabilization 

(months) 

Q. alba 
(7 wks) 

 
WOQ-1 

 
32 

 
6.3 

 
93.3 

 
60.0 

 
6 

WOQ-2 117 5.1 48.6 16.2 lost 
WOQ-3 54 1.8 71.7 17.0 9-10 
WOQ-4 56 0 69.6 37.5 9-10 
WOQ-5 51 1.9 84.0 40.0 10 
WOQ-6 138 9.4 38.7 20.2 lost 
WOQ-14 58 1.7 29.4 10.5 12 
WOQ-23 71 1.4 77.1 35.7 10 

      
Q. bicolor 
(4-5 wks) 

 
SWOQ-7 

 
140 

 
6.4 

 
78.9 

 
54.1 

 
4 

SWOQ-12 96 2.1 92.6 76.2 4 
SWOQ-13 111 25.2 90.4 83.1 10 
SWOQ-18 103 4.9 98.9 93.8 4 

      
Q. rubra 
(6 wks) 

 
ROQ-8 

 
48 

 
0 

 
89.4 

 
53.2 

 
7-8 

ROQ-10 48 45.8 81.8 54.5 8 
ROQ-11 47 0 82.9 38.3 6 

*Explants with sprouting buds. 537 
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Table 2 Effect of genotype and sequence of cytokinin application (cycles 1, 2 and 3) on the in 

vitro multiplication of Q. alba and Q. bicolor. Statistical significance (P-values) of the terms of 

a two-way ANOVA with genotype and cycle treatment as the two main factors. 

 

Genotype Cycle Responsive 
explants 
(%) 

Number of 
shoots  
≥1 cm 

Number of 
shoots  
0.5-1.0 cm 

Total 
number of 
shoots 

Longest 
shoot 
length 
(mm) 

Shoots with 
expanded 
leaves  
(%) 

Quercus alba 
 

       

WOQ-1 1 100±0.0 4.9±0.5 1.9±0.4  6.9±0.8 19.6±1.1 47.7±3.8  
 2 97.1±2.6 3.7±0.5 1.3±0.3  4.9±0.7 17.2±1.3 62.9±3.1  
 3 97.5±2.3 3.9±0.6 2.3±0.2  6.2±0.8 19.0±1.1 80.5±3.0  
        
WOQ-4 1 100±0.0 2.4±0.2  2.1±0.2  4.4±0.3  16.8±1.0  75.0±3.7  
 2 94.3±3.1 1.0±0.1  1.2±0.2  2.1±0.2  10.1±0.5  89.9±3.1  
 3 97.1±2.6 3.2±0.2  2.8±0.6  5.8±0.4  16.5±1.2  78.5±2.2  
        
WOQ-23 1 97.1±2.6 1.8±0.1  2.1±0.4 3.8±0.5  14.8±0.9  55.8±6.7  
 2 87.4±3.0 0.8±0.1  1.1±0.2 1.9±0.2  10.2±0.8  82.5±8.2  
 3 100±0.0 2.7±0.3  1.4±0.2 4.1±0.3  15.7±0.5  88.0±3.2  
F-test 
 

       

Cycle treatment (A)   P ≤0.0001 P ≤ 0.0001 P ≤ 0.0001 P ≤ 0.0001 P ≤0.0001 

Genotype (B)   P ≤ 0.0001 ns P ≤ 0.0001 P ≤ 0.0001 P ≤ 0,001 

A x B   P ≤ 0.05 ns ns ns P ≤ 0,05 

Quercus bicolor 
 

       

SWOQ-7 1 94.3±2.9  2.5±0.2  2.3±0.3  4.8±0.3  17.0±0.8  66.6±4.3  
 2 80.0±6.1  0.8±0.2  1.3±0.1  2.1±0.2   10.8±0.9  89.6±3.8  
 3 100±0.0  3.9±0.3  2.1±0.1  6.0±0.4  19.3±1.5  74.7±2.7  
        
SWOQ-18 1 100±0.0 3.7±0.3  2.5±0.2  6.2±0.4  21.6±1.3 20.6±2.9  
 2 94.9±6.3 1.6±0.2  0.9±0.2  2.5±0.3  25.4±2.2 74.2±4.7  
 3 

 
97.1±5.7 3.3±0.2  1.6±0.2  4.8±0.3  20.4±0.8 70.7±1.8  

F-test 
 

       

Cycle treatment (A)   P ≤ 0.0001 P ≤ 0.0001 P ≤ 0.0001 ns P ≤ 0.0001 

Genotype (B)   P ≤ 0.05 ns ns P ≤ 0.0001 P ≤ 0.0001 

A x B   P ≤ 0.05 ns P ≤ 0.01 P ≤ 0.0001 P ≤ 0.01 

Data represent means ± SE of six replicate jars with six shoot explants per jar. 
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Table 3 Effect of genotype and addition of AgNO3 to the shoot multiplication medium on the 

development of shoots by Q.  rubra. SN: number of shoots of the stated size per explant. 

Anomalous shoot development: presence of recumbent shoots with folded leaves. Statistical 

significance (P-values) of the terms of a two-way ANOVA with genotype and AgNO3 treatment 

as the two main factors. 

 

Genotype Treatment 
AgNO3 
(mg l-1) 

SN ≥ 1cm  SN 
(0.5–1cm)  

Longest 
shoot length 
(mm)  

Shoot tip 
necrosis (%) 

Shoots with 
leaf 
senescence 
and/or 
abscision 
(%) 

Anomalous 
shoot 
development  
(%) 

ROQ-8 0 1.9±0.1 1.2±0.2 16.8±1.7 22.1±2.8 37.1±4.1 53.0 ±4.7  
 1 2.9±0.4 1.8±0.3 15.7±0.9 15.8± 3.2 31.9±6.3 24.8± 3.1 
 3 3.3±0.3 1.7±0.2 16.6±0.8 4.9±2.1  2.0 ±0.8 0  
 6 2.0±0.1 1.5±0.3 13.2±0.6 6.8 ±2.5 2.1± 1.3 0  
        
 
ROQ-10 

 
0 

 
3.9±0.3 

 
1.4±0.2 

 
22.8±1 .7 

 
44.1±2.6  

 
37.0±3.7  

 
66.1±5.6  

 1 3.3±0.4 2.9±0.3 18.1±0.8 17.3± 2.8 28.0±2.9  37.4±1.2  
 3 4.3±0.6 1.9±0.3 17.8±1.3 3.2 ±1.0 3.7±0.6  7.2 ±2.9 
 6 4.5±0.5 2.9±0.4 17.5±1.0 3.3± 0.7 3.9±1.4  2.2± 0.8 
F-test        
Treatment (A)  ns  P ≤ 0.01 P ≤ 0.01 P ≤ 0.0001 P≤ 0.0001  P ≤ 0.0001

Genotype (B)  P ≤ 0.0001  P ≤ 0.0001 P ≤ 0.0001 ns ns  P ≤ 0.0001

A x B  P ≤ 0.05  ns ns ns ns  ns

Data represent means ± SE of six replicate jars with six shoot explants per jar.
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Table 4 Statistical significance (P-values) of the terms of a two-way ANOVA model for the 

data shown in Figure 3.  

Genotype Rooting (%) Number of roots 
Survival (% of  
rooted shoots) 

WOQ-1  
Illumination (A) P≤ 0.05 

ns 
P≤0.001 

ns 
ns 

P≤0.01 

P≤0.001 
P≤0.01 

ns 
Activated charcoal  (B) 
A x B 
SWOQ-12    
Illumination (A) ns ns P≤0.001 
Activated charcoal  (B) P≤0.001 ns ns 
A x B P≤0.01 ns ns 
ROQ-8    
Illumination (A) P≤0.001  P≤0.05 P≤0.05 
Activated charcoal  (B) P≤0.001 P≤0.001 ns 
A x B P≤0.01 ns P≤0.05 
ROQ-10    
Illumination (A) ns  P≤0.001 P≤0.01 
Activated charcoal  (B) P≤0.001 P≤0.05 P≤0.05 
A x B P≤0.01 P≤0.001 ns 
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Legend for the figures 

Figure 1 a Forced flushing of branch segments in the growth chamber. b-c Shoot 

multiplication in Q. bicolor (clone SWOQ-18) following different cytokinin regimens: 

shoot cultures in cycle 1 (b) and cycle 3 (c). Scale bars in mm. d-e Shoot appearance of 

Q. rubra (clone ROQ-8) after culture in multiplication medium devoid of (d) or 

supplemented with (e) 3 mg l-1 AgNO3. f Root development on Q. alba shoots (clone 

WOQ-1) treated with 25 mg l-1 IBA for 48 h with subsequent transfer to auxin-free 

medium containing 0.4% activated charcoal. Scale bars in mm (b-d) and cm (e). 

Figure 2 Effects of the mineral composition of the multiplication medium (GD or 

WPM) on shoot development in the Q. bicolor clones SWOQ-7, SWOQ-12 and 

SWOQ-18. Values represent means ± SE. 

Figure 3 Effects of an initial 5-day darkness period, and of the presence of activated 

charcoal (AC) in the rooting medium, on rooting rate (a), mean number of roots (b) and 

rooted shoot survival rate (c) of Q. alba (clone WOQ-1), Q. bicolor (clone SWOQ-12) 

and Q. rubra (clones ROQ-8 and ROQ-10) microcuttings. Values represent means ± SE. 
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Figure 3 
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