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Advances in Plant Virus Evolution: Translating Evolutionary 46	  

Insights into Better Disease Management 47	  

 48	  

ABSTRACT 49	  

 Recent works in plant virus evolution are revealing that genetic structure and behavior of 50	  

virus and viroid populations can explain important pathogenic properties of these agents, such 51	  

as host resistance breakdown, disease severity, and host shifting among others. Genetic 52	  

variation is essential for the survival of organisms. The exploration of how these subcellular 53	  

parasites generate and maintain a certain frequency of mutations at the intra- and inter-host 54	  

levels is revealing novel molecular virus-plant interactions. They emphasize the role of host 55	  

environment in the dynamic genetic composition of virus populations. Functional genomics has 56	  

identified host factors that are transcriptionally altered after virus infections. The analyses of 57	  

these data by means of systems biology approaches are uncovering critical plant genes 58	  

specifically targeted by viruses during host adaptation. Also, a next-generation re-sequencing 59	  

approach of a whole virus genome is opening new avenues to study virus recombination and 60	  

the relationships between intra-host virus composition and pathogenesis. Altogether, the 61	  

analyzed data indicate that systematic disruption of some specific parameters of evolving virus 62	  

populations could lead to more efficient ways of disease prevention, eradication, or tolerable 63	  

virus-plant coexistence. 64	  

 65	  

 66	  

Acosta-Leal, R., Duffy, S., Xiong, Z., Hammond, R. W., and Elena, S. F. 2011. Advances in 67	  

plant virus evolution: Translating evolutionary insights into better disease management. 68	  

Phytopathology (accepted). 69	  
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 70	  
Viruses and viroids appear to be the fastest-evolving plant pathogens (39), and cause 71	  

tremendous economical crop losses annually. Some, such as the single-stranded DNA 72	  

begomoviruses, are emergent problems worldwide (117, 126). These subcellular pathogens 73	  

have higher mutation rates than, and distinct evolutionary dynamics from, bacterial and fungal 74	  

phytopathogens. Understanding their reproductive and transmission strategies – their biology, 75	  

ecology, and evolution – can lead to insights and interventions for effective crop disease 76	  

management. This review highlights how viruses and viroids achieve and maintain their unique 77	  

parasitic lifestyles and how evolutionary virology and systems biology approaches to virus-plant 78	  

interactions have implications for pathogen control. 79	  

The ability of viruses and viroids to change, and to change rapidly, underlies many 80	  

disease management concerns. Excepting migration from distant locations and other countries, 81	  

variability in plant pathogen populations is the necessary initial step in adaptation to new plants 82	  

(host shifting), resistance breaking (RB), and changes in symptoms and virulence.  Many times 83	  

the rise and fall of different genotypes in a population is due to the effects of natural selection: 84	  

variant genomes that generate more viable descendants become more frequent over time. This 85	  

process can be sped up or inhibited by bottlenecks (see Textbox 1 for definitions of terms in 86	  

bold), that plant pathogens experience as they move from cell to cell and from plant to plant (57, 87	  

69, 88). To expand its host range, a virus population must already have a variant (perhaps at a 88	  

very low level in the population) that can infect that potential host. In the novel host, those 89	  

mutants will be fitter and will rise in frequency. However, in absence of selection on that novel 90	  

host, the only chance that neutral host range mutations have to be fixed in the population is by 91	  

genetic drift. Otherwise, neutral or even deleterious mutations will be sweep away by purifying 92	  

selection. Understanding the processes that generate viral diversity and the ecological 93	  

processes that determine selective pressures and bottlenecks can illuminate potential 94	  

interventions or determine where and when control measures might be most effective. 95	  
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Mechanisms of virus and viroid genetic variation. Viruses have several ways 96	  

to achieve variation within a plant and within a field. First and foremost is mutation: the imperfect 97	  

copying of genomic material from parent to offspring and subsequent chemical and enzymatic 98	  

changes to nucleotide bases. RNA viruses are notorious for having high mutation rates, due to 99	  

replication with RNA-dependent polymerases lacking proofreading activity. The polymerases of 100	  

large nidoviruses are an exception (100), but none have yet been shown to infect plants. Most 101	  

studies of plant virus variation measure mutation frequencies over a range of time, such as 102	  

viral mutations arising within a month after plant infection. These studies are popular in plant 103	  

virology because of the difficulty in relating mutation frequency to how often the viruses have 104	  

replicated their genome within a whole plant. Despite this limitation, mutation frequencies can 105	  

be used to estimate upper boundaries on plant viral mutation rates (reviewed in 120). Mutation 106	  

rate studies tally the mutations produced prior to the action of selection, either per round of 107	  

genomic replication or per cell infected. Two exceptional studies have calculated mutation rates: 108	  

one for TMV (94) and the other for TEV (135). In both cases, the mutation rates trend towards 109	  

the lower end of measured animal and bacterial RNA virus rates (Fig. 1). 110	  

Plant RNA viruses may indeed have lower mutation rates than animal RNA viruses, but 111	  

the existing data show that they are not substantially lower, and some of the differences could 112	  

result from methodological dissimilarities. In fact, some plant pathogens do mutate faster than 113	  

animal RNA viruses: plant viroids, for instance, have the highest per-base mutation rate yet 114	  

measured for any disease-causing agent at 2.5x10-3 per base per round of replication (61) (Fig. 115	  

1). Despite this highest per base mutation rate, viroids seem to obey the constant of around one 116	  

mutation per replicated genome reported by Drake et al., (36) for most RNA viruses. This fairly 117	  

constant per-genome mutation rate suggests that RNA genome sizes are limited by their 118	  

individual per-base mutation rates. Otherwise, a larger genome replicated with a given per-base 119	  

mutation rate, for example, a closterovirus with a per-base mutation rate of a viroid, would be 120	  
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unable to maintain functional elements because of the accumulation of too many mutations in its 121	  

genes. Thus, a population of such larger genomes would collapse due to lethal mutagenesis 122	  

(17). Recombination may play a significant role in the virus survival by reducing the amount of 123	  

deleterious mutations incorporated in the same virus genome. 124	  

Viroids are the smallest known pathogenic agents of plants and cause diseases of 125	  

considerable economic importance (33, 34). Viroid genomes are composed of a single-126	  

stranded, self-complementary RNA molecule of 246 to 475 nucleotides. Viroids lack the 127	  

capacity to code for proteins, are not encapsidated, and are replicated by host-encoded 128	  

polymerases (32). They are classified into two families: those that replicate in the nucleus 129	  

(Pospiviroidae) and those that replicate in the chloroplast (Avsunviroidae) (29). The most 130	  

abundant Pospiviroids are characterized by the presence of a central conserved region, 131	  

absence of hammerhead ribozymes, and nuclear replication via an asymmetric rolling circle by 132	  

a nuclear DNA-dependent RNA polymerase II. Avsunviroids are characterized by the absence 133	  

of a central conserved region, the presence of a hammerhead ribozyme, and replication in the 134	  

chloroplast via a symmetric rolling circle by another nuclear-encoded chloroplast DNA-135	  

dependent RNA polymerase. Whereas pospiviroids are predicted to be primarily rod-shaped, 136	  

avsunviroids are predicted to be more highly branched structures. Thus, viroid molecules are a 137	  

collection of structural-sequence motifs that interact with host components for viroid replication, 138	  

processing, transport, and pathogenesis that may all influence viroid evolution (153). 139	  

Avsunviroids populations appear to have more haplotypes than pospiviroids (26). It has been 140	  

estimated that the mutation rate of avsunviroids is 10-fold larger than for pospiviroids (41, 46). 141	  

Apparently, most mutations in the rod-like structure of pospiviroids are deleterious. In fact, many 142	  

stable mutations of viroid genomes map in loops or as compensatory mutations in hairpins and 143	  

stems (8, 30). 144	  
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Therefore, how viroids achieve the highest mutation rates among the known infectious 145	  

RNAs observed in nature is still a matter of speculation. Viroids are replicated by DNA-146	  

dependent RNA polymerases with variable proofreading efficiencies. Even more, when these 147	  

enzymes use RNA instead of native DNA as template, their replicative fidelity could be further 148	  

reduced. Another putative mechanism, by which their mutation rates could be elevated above 149	  

that of the polymerase error, and it could also happen to viral genomes, is through enzymatic 150	  

changes to nucleotide bases. Cytidine deaminases are enzymes that turn cytidine (C) into 151	  

uridine (U), and mammals use a family of them (APOBEC) as anti-viral defense against some 152	  

animal viruses (73). Plants have orthologous proteins that have known roles in post-153	  

transcriptional modification, and they are most active in mitochondria and chloroplasts (24). It 154	  

may be the case that these plant enzymes can be active on virus and viroid RNA as well, which 155	  

would increase C→U substitution rates. Other deaminases increase substitutions such as A→I 156	  

(adenosine to inosine). Patterns of frequent cytosine deamination have also been detected 157	  

during ssDNA geminivirus evolution (37). This could be due to these enzymes reacting with 158	  

single-stranded DNA viral genomes, but C→U is also the most common kind of spontaneous 159	  

chemical degradation that can occur on unpaired nucleotides so cytosine transitions could be 160	  

increased solely because geminiviral DNA is frequently single-stranded. 161	  

Substantial virus and viroid diversity is generated in plants also by homologous and 162	  

heterologous recombination. Pathogens often co-infect the same plant, allowing co-infection of 163	  

single cells (102), and some viruses frequently take the opportunity to unequally exchange 164	  

genes (23, 66, 87). While recombinants mostly appear to be tolerated between conspecific 165	  

viruses, intergenus recombination is also possible, and recombination can even lead to 166	  

incorporation of host genetic material. Recombination rates are difficult to measure, but could be 167	  

as high as mutation rates: BMV could exhibit an homologous crossover event per RNA 168	  

molecule per replication cycle (139), CaMV has an estimated recombination rate of around 169	  
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2x10-5 per round of replication (59). It has been proposed that recombination may have led to 170	  

the emergence of mosaic sequences from viroids co-infecting the same host (74, 106). 171	  

Recombinants have been associated with altered host range and virulence (107). One clear 172	  

example of a virulent recombinant was a hybrid of EACMV and ACMV that overcame crop 173	  

resistance to ACMV and decimated cassava production in Uganda in 1997 (113). 174	  

Plant viruses evolve quickly. The speed of evolution can be estimated by the rate 175	  

at which the genetic makeup of a population changes in time by selection and/or genetic drift. 176	  

Representatives of the RNA families Potyviridae (67, 127), Tobamoviridae (108), and a 177	  

sobemovirus (52), and the ssDNA families Geminiviridae (37, 38, 75) and Nanoviridae (70)  178	  

evolve faster than 10-5 fixed nucleotide substitutions/site/year (s/s/y), and as high as 10-3 s/s/y. 179	  

There does not appear to be a distinction between the evolution rate of plant versus animal 180	  

viruses (39, 65), and between RNA and ssDNA viral substitution rates in plants: all plant viruses 181	  

appear to be fast-evolving. 182	  

These results were initially at odds with the plant virus evolution literature, which 183	  

stressed overall genetic stability over time, especially in comparison to viruses of animals with 184	  

adaptive immune systems (63, 66, 149). Indeed, substantial purifying selection exists for plant 185	  

viruses to maintain nucleotide or amino acid sequence that reduce nucleotide substitution rates. 186	  

One well-established source of purifying selection is the alternation in selective pressures that 187	  

vectored viruses experience when cycling between animal and plant cells. The capsid proteins 188	  

of these viruses, which interact with both host and vector, are under more pressure to be 189	  

unchanging, as evidenced by very low ratios of the rate of nonsynonymous changes to the rate 190	  

of synonymous changes (dN/dS) (22). This purifying selection also leads to lower average rates 191	  

of capsid gene evolution in vectored animal viruses than in directly transmitted viruses (79). Still, 192	  

the measured and estimated high nucleotide substitution rates of plant viruses occurs in 193	  

presence of purifying selection, and the evolutionary rate of vectored plant viruses is within the 194	  



Acosta-‐Leal	  et	  al	  (2011).	  Mini-‐review	  in	  Phytopathology	  

9	  
	  

same order of magnitude to some directly transmitted viruses. But an important point to stress is 195	  

that these rates of evolution are usually calculated over many years, if not decades, and reflect 196	  

an average nucleotide substitution rate. As will be shown in a subsequent section, rates of 197	  

mutation fixation can be higher when viruses are under positive selection, such as when they 198	  

are adapting to a novel host plant and several beneficial mutations may become ascendant in a 199	  

short period of time. 200	  

Variability sometimes leads to adaptability. The average mutation and the 201	  

average recombination event are deleterious, and many are lethal. Around 70% of mutations 202	  

are deleterious (20, 35, 122). Consequently, variants that are produced are not always 203	  

maintained in viral populations. However, some of those changes that are deleterious in the 204	  

current host and environment may be adaptive under different conditions (40, 53). Mutations 205	  

that are deleterious in the current host will be maintained in a population if they are either mildly 206	  

deleterious (nearly-neutral), if they are continually created by new mutational events, or at a 207	  

ratio of these two factors called the mutation-selection balance. 208	  

The mutation-selection balance is one, but not the only factor determining whether a 209	  

mutation will be part of a virus population. Complementation between co-infecting viruses can 210	  

result in viral genomes carrying deleterious, even lethal, mutations to be maintained in 211	  

populations (60). Plant viruses can even develop defective interfering genomes that require at 212	  

least one essential component or function be supplied in trans by another virus genome (90). 213	  

Viral proteins that generally are shared among particles are involved in coating, cell-to-cell 214	  

movement, and suppression of gene silencing, but many other proteins may operate in trans 215	  

exclusively in some virus species. Defective interfering genomes are distinct from satellite 216	  

viruses, which rely on complementation but do not descend from the helper virus. Many 217	  

satellites attenuate the effects of the primary virus infection (128), but a minority can increase 218	  

virulence, such as the beta satellites of ssDNA begomoviruses (16). Similarly, defective 219	  
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interfering genomes modulate infection severity, often competing with the complementing virus 220	  

and reducing virulence (111, 128). 221	  

Maintaining population variability is what allows for the chance encounter between a 222	  

novel environment and a mutation that is beneficial in that environment, such as a host range 223	  

mutation. However, high variability does not necessarily indicate great adaptive potential. For 224	  

instance, genetic robustness is based on a number of buffering mechanisms (including genetic 225	  

redundancy and cellular chaperones) that minimize mutational effects (44). Since plant viruses 226	  

and viroids mutate so frequently, and the vast majority of mutations are deleterious, robustness 227	  

is often a successful evolutionary strategy. The empirical demonstration of robustness operating 228	  

in an infectious RNA was provided by Codoñer et al. (26). They designed a co-infecting 229	  

competition experiment for this purpose. In this experiment, slow replicating and highly 230	  

heterogeneous populations of an avsunviroid outcompeted fast replicating and relatively 231	  

homogeneous pospiviroid populations only when the mutation rates of both viroids were 232	  

artificially increased by UV irradiation. Thus, under such conditions, the highly heterogeneous 233	  

viroid populations were more adapted. Whether the increased robustness in the avsunviroid is 234	  

due to its more relaxed RNA secondary structure or its higher genetic heterogeneity is still 235	  

unknown. 236	  

Eventually, even robust genomes will show effects due to the numerous mutations 237	  

accumulated in their genomes, but it is in unpredictable ways. The accumulated mutations may 238	  

together cause large drops in fitness, even though some individual genotypes may be adaptive 239	  

in the current host (18). Additionally, robustness is often specific to a virus in a particular 240	  

environment, shifting to another host can cause plant viruses to be less robust, and show the 241	  

effects of their accumulated genetic diversity and subsequent mutations. The relationship 242	  

between robustness and the ability to evolve and adapt, is complex and murky (99). Further 243	  

complicating the practical interpretation of viral and viroid genetic diversity, robustness does not 244	  
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explain all examples where greater variability fails to lead to greater adaptability. Despite the 245	  

greater robustness of an avsunviroid mentioned above, members of this family generally infect 246	  

fewer hosts and appear to host-shift less often and have more restricted host ranges than 247	  

pospiviroids (41). Therefore, more research is required into the evolution of a wide variety of 248	  

plant subcellular pathogens to understand the interplay between genetic heterogeneity of the 249	  

population and adaptation. 250	  

 251	  

EPIDEMIOLOGICAL DYNAMICS OF VIRUS POPULATIONS 252	  

A premise in virus evolution is that the dynamic genetic structure of virus populations 253	  

has a significant role in virulence, epidemiological progression of the disease, and host shifting 254	  

among other biological properties of viruses (76). The mechanisms that regulate the genetic 255	  

structure (i.e., number and frequency of haplotypes, and genetic distances among them) of virus 256	  

populations and their biological relevance are presented in this section. 257	  

Dynamics of the INTRA-host genetic structure of plant virus 258	  

populations. Theoretically, the structure of an active virus population changes within a host 259	  

individual during the course of a systemic infection. Despite the random emergence of 260	  

spontaneous mutations, these structural changes could exhibit deterministic or stochastic 261	  

behavior (118). The former has been observed primarily in compatible virus-plant interactions 262	  

(i.e., between virulent pathogen and susceptible host), whereas stochastic population structures 263	  

are more frequently generated in incompatible interactions (i.e., avirulent pathogen and resistant 264	  

host) or during viral host adaptation. Intra-host populations of TMGMV, despite their 265	  

heterogeneous composition, exhibit high genetic stability in field infections of Nicotiana glauca 266	  

(55, 103, 115). High genetic stability also appears to be the norm in several other plant viruses 267	  

infecting their compatible hosts (reviewed in by 63). This relative genetic stability suggests that 268	  
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virus populations might not undergo substantial changes while they are interacting with their 269	  

natural host genotype. Purifying selection affecting the dN/dS ratio in the order of 0.01 to 0.31 270	  

has been found to operate in highly adapted virus populations, maintaining them in equilibrium 271	  

(62). The mutation frequency of plant viruses are influenced by host species (124). Recently, a 272	  

comparative bioassay of BNYVV infecting compatible versus incompatible host genotypes 273	  

demonstrated that more variability exists in small BNYVV populations from partially resistant 274	  

than in large populations produced in susceptible hosts (1). These data agree with the high 275	  

genetic stability of BNYVV prevailing worldwide during long periods in susceptible sugar beet 276	  

cultivars and the sudden stochastic diversification of BNYVV observed after the deployment of 277	  

resistant genotypes in the field (2, 85). Similarly, for other plant viruses, higher diversity has 278	  

been recorded at their centers of origin, where the plant virus presumably initiated its adaptation 279	  

to a new host (51, 104, 133). 280	  

Without external input variation by superinfections, the increase in the intra-host genetic 281	  

diversity that some plant virus populations experience under restrictive host conditions is most 282	  

likely the result from deviations of the mutation-selection balance. Accumulating evidence 283	  

indicates that mutation rate, rather than an invariable property of the virus, may fluctuate in 284	  

response to changes in viral replicase and specific cellular conditions (39, 47). For instance, the 285	  

terms mutators and antimutators have been coined for individuals within a species that have an 286	  

inheritable higher or lower mutation rate than the wild type, respectively (95). They have been 287	  

discovered in bacteria, bacteriophages, and human viruses (reviewed in 129). Individuals 288	  

encoding each one of these mutational phenotypes might coexist in the same intra-host 289	  

population and, under some conditions, one will eventually predominate. Although neither a 290	  

plant virus nor a viroid isolate has exhibited mutator or antimutator phenotypes, greater than 291	  

usual mutation frequencies have been detected for PVY and BNYVV only under restrictive host 292	  

environments (1, 4). 293	  
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Once mutations have been introduced in a virus population, their frequency is regulated 294	  

by their interaction with other existing mutations. Generally speaking, the interaction between 295	  

genetic loci is known as epistasis. Epistasis can be antagonistic or synergistic depending on its 296	  

effect on fitness (76). Antagonistic epistasis means that two deleterious or beneficial mutations 297	  

carried in a given genome can be, respectively, not as bad or as good in combination as 298	  

expected by combining their individual fitness effects. Synergistic epistasis, on the other hand, 299	  

enlarges the total fitness effect of the interacting mutations. Given the extreme genome 300	  

compactness, gene overlapping, and lack of genetic redundancy, most mutations in virus 301	  

genomes show antagonistic epistasis (20). Coincidently viral genome architectures that favor 302	  

antagonistic epistasis are less robust to spontaneous mutations than those with greater 303	  

synergistic epistasis (44). Trans complementation and interference also regulate the frequency 304	  

and prevalence of mutants into the infecting virus population (60). The genetic structure that 305	  

results from the combined action of all these interactions, rather than specific genotypes 306	  

composing the population, could be the target of selection. 307	  

Dynamics of the INTER-host diversity of virus populations. The largest 308	  

amount of genetic data available on plant virus populations is for the inter-host level. The data 309	  

could be from individual or pooled plant samples and, typically, it is represented by consensus 310	  

sequences of a specific region of the virus genome. One of the most striking observations 311	  

derived from these data is the apparent differentiation between fully host-adapted and host-312	  

adapting virus populations. In both of these types of compatible virus-plant interactions, viruses 313	  

reach high titers in infected plants, but in host-adapted populations the genetic diversity among 314	  

isolates is several orders of magnitude lower than in host-adapting populations. The genetic 315	  

diversification of WSMV can be used as a reference point for the rate of plant virus evolution. 316	  

Phylogenetic analysis of 54 WSMV field isolates from North America suggests that they arose 317	  

from a common ancestor introduced nearly a hundred years ago. The number of segregating 318	  

SANTIAGO ELENA F…, 4 18, 2011 12:33
Comentario [1]: Creo	  que	  así	  queda	  un	  poquito	  
más	  claro.	  
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polymorphic sites in this representative population was 0.047 and the mean pairwise 319	  

nucleotide diversity (π) 0.020 (130). Phylogeographic studies of RYMV infecting rice crops in 320	  

Africa pinpointed the center of origin of RYMV to eastern Tanzania from where it migrated 321	  

northwest up the west coast of Africa (51). The largest RYMV inter-host π per Km2 occurs in 322	  

Tanzania (i.e., around 200 times greater than in any other region of the continent) without a 323	  

correlation with the diversity of its potential host species (114). Therefore, it is likely that the high 324	  

RYMV diversification in Tanzania may have resulted from disruptions of the mutation selection-325	  

balance that initially took place at the intra-host level and then among adapting isolates. 326	  

Similarly, around 240 times greater BNYVV nucleotide diversity was detected between RB 327	  

variants recently emerging in the Imperial Valley of California (π = 0.0024) than wild type 328	  

isolates collected nationwide (π = 0.00001) (3). Other factors that could be correlated with the 329	  

magnitude of inter-host virus diversity are the genetic diversity of the host, frequency of 330	  

superinfections, transmission mechanisms, etc. However, other than greater virus diversity 331	  

detected in sexual than asexual host genotypes (105) the effects that those variables may have 332	  

on plant virus populations apparently have not been explored. 333	  

Relationships between INTRA- and INTER-host virus diversity. Except for 334	  

those viruses that mechanical inoculation is part of their mode of transmission in the field (11, 335	  

116), limited data exists concerning the intra- and inter-host genetic structure of vector-336	  

transmitted virus populations. These are some of the few available examples where the 337	  

population was not mechanically inoculated prior to the analysis, which may disturb the natural 338	  

structure. The π value of whitefly-transmitted isolates of CVYV was around 0.0005 among 339	  

clones from two single-plant populations and 3.4 times greater among 56 consensus sequences 340	  

(78). Similarly, Vives et al. (142) found that the intra-host π of CLBV in 37 citrus trees naturally 341	  

infected (unknown vector) in a region of Spain, was three to four times lower than the inter-host 342	  

π. Theoretical analyses indicate that greater genetic diversities between (i.e., πB) rather than 343	  
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within (i.e., πW) single-plant populations is favored by random genetic drift during virus 344	  

propagation (62). If genetic drift occurs more frequently at suboptimal virus fitness because πW 345	  

is higher than at optimal fitness, then, it is expected that the πW/πB ratio of virus populations will 346	  

be related to virus fitness as described in Figure 2. In this way, the ratio πW/πB could reflect the 347	  

level of viral host adaptation. Initial support for this model has been obtained by comparing the 348	  

nucleotide diversities of BNYVV populations from composite samples of resistant Rz1 sugar 349	  

beets (3). Pooled samples apparently are more reliable for this type of analysis because they 350	  

minimize the intrinsic plant-to-plant variation. This analysis revealed that, while BNYVV titers are 351	  

102 to 104 times higher in symptomatic plants infected by emerging RB variants than 352	  

asymptomatic plants infected by avirulent virus populations, the opposite occurs in relation with 353	  

the πW/πB ratio. It was 7.8 to 12.2 times larger in asymptomatic than symptomatic resistant 354	  

plants (i.e., πW/πB = 6.1 to 16.7 versus 0.5 to 2.1, respectively). 355	  

Population bottleneck as an additional modulator of genetic diversity. 356	  

Sustaining variation is a particular challenge for plant viruses because severe genetic 357	  

bottlenecks exist as vectored viruses move from plant to plant and even within plants. 358	  

Population bottlenecks can occur during vector inoculation, cell-to-cell movement, vascular 359	  

access, vascular transport, vascular exit, specific tissue entry (i.e., lateral roots, endosperm, 360	  

meristems, etc.), vector acquisition, viruliferous vector migration, and alternate host infections 361	  

(57, 88). These conditions create spatial structure in how the virus diversity is distributed 362	  

throughout the plant and the field. Within each new plant or portion of a plant, a viral population 363	  

regains diversity as it multiplies from a small initial number of infecting genomes. After repeated 364	  

host-to-host transfers of WSMV, similar numbers of haplotypes were found whether one or two 365	  

strains initially infected the plant (58). Thus, bottleneck size during virus transmission is not 366	  

always correlated with the extent of regained variability in the derived population. 367	  
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Throughout the life cycle of a plant virus, at any bottleneck event, the virus survival and 368	  

its population structure are especially vulnerable. The multiplicity of cellular infection (MOI) 369	  

has been developed as a way of estimating the number of virus genomes that invade a plant 370	  

cell during the course of local and systemic virus infections. The first reported MOI of a plant 371	  

virus was provided by González-Jara et al. (69). They estimated that approximately six TMV 372	  

genomes initially infect Nicotiana benthamiana cells. Then, the MOI decreases to one to two 373	  

genomes during the systemic infection process suggesting the involvement of mechanisms 374	  

inhibiting superinfection at the advanced stages of the disease. Similarly, MOI of five to six 375	  

genomes were estimated for SBWMV causing localized leaf infections in Chenopodium quinoa 376	  

(101). MOI values around four, with a maximum of 13 during the acute phase of systemic 377	  

infection, were calculated for CaMV infecting its natural host, Brassica rapa (72). In general, the 378	  

estimation of cellular MOI requires viral genomes carrying specific neutral mutations or reporter 379	  

genes to monitor the frequency and location of single and mixed infected cells. Newly generated 380	  

mutant genomes that may have derived from the inoculated transcripts are not considered in 381	  

these calculations, neither are virus genomes that may have been silenced or partially 382	  

expressed. Therefore, MOI values, rather than being an absolute number, may represent a 383	  

fraction of a larger and still unknown number of viral genomes per cell. 384	  

Theoretical analysis of the data presented above indicates that bottleneck size is critical 385	  

in preserving the parental population structure including both adaptive and defective mutants. 386	  

For instance, in virus populations where lethal mutants can only be maintained by trans-387	  

complementation by functional virus genes, the chances that these selfish mutants will 388	  

predominate in the following generation are greater with broader bottlenecks because it 389	  

increases the probabilities of co-infecting with fitted virus genomes (101). With narrow 390	  

bottlenecks, on the other hand, only fit genomes will infect most of the cells and consequently 391	  

the genetic diversity is expected to decrease by leaving behind defective mutants. For mutants 392	  
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that can replicate by themselves, however, the opposite outcome is more likely, i.e., the genetic 393	  

diversity is expected to increase at smaller bottleneck sizes because low frequency neutral or 394	  

near neutral mutants have better chances of moving forward by random drift and be able to 395	  

infect neighboring cells by themselves. With broader bottlenecks, by contrast, the parental 396	  

population structure has more probabilities of being reproduced in most of the infected cells. 397	  

The impact that different levels of intercellular bottleneck may have on the genetic 398	  

structure of ensuing virus populations has not been empirically determined, but coincidental 399	  

data suggest that it could be extremely important for disease management. For instance, two 400	  

resistant tobacco genotypes with the same barrier to PVY cell-to-cell movement but different 401	  

levels of cellular virus accumulation exhibit drastic differences in the incidence of spontaneous 402	  

RB infections (4). The tobacco with the weak resistance durability, NC745, has larger PVY 403	  

populations in the initially infected cells than the near immune tobacco VAM. Consequently, the 404	  

proportion of particles moving from one cell to the next is smaller in NC745. Thus, although the 405	  

absolute number of moving viral particles might be the same in both tobacco genotypes the 406	  

proportions are not. This observation suggests that relative rather than absolute MOI values 407	  

could be a more reliable estimation of the effect of bottlenecking on plant resistance durability. 408	  

 409	  

THE SYSTEM BIOLOGY APPROACH 410	  

Systems Biology (SB) allows assessing gene expression at a genome-wide scale, 411	  

providing unprecedented views of the virus-host interaction. SB deals with the study of 412	  

interactions between components of biological systems and how these interactions give rise to 413	  

the function and behavior of the system (14, 84). 414	  

To complete their infectious cycle, the few viral components must establish multiple and 415	  

complex interactions among them (54, 71, 89, 138) as well as with a large number of 416	  



Acosta-‐Leal	  et	  al	  (2011).	  Mini-‐review	  in	  Phytopathology	  

18	  
	  

components from the host (13, 132, 146). These interactions result either in the plant controlling 417	  

the infection or in the virus overcoming defenses and establishing a systemic infection. Indeed, 418	  

the recent application of the SB approach to the analysis of virus-host interactions has revealed 419	  

a more complete picture of the sets of host factors required for virus infection (86, 146). 420	  

Moreover, SB has uncovered highly connected host genes that operate as central elements in 421	  

the plant regulatory network and are specifically targeted by viruses to control the host 422	  

metabolism (19, 28, 42). Additionally, SB has evidenced topological changes of the intra-viral 423	  

interaction network that are caused by its integration within the host network (93, 137). 424	  

While the SB approach has been increasingly used in the analysis of animal virus-host 425	  

interactions (e.g. hepatitis C, human immunodeficiency, yellow fever, influenza A, or 426	  

herpesviruses), plant virology has not yet benefitted to the same extent, and the most relevant 427	  

studies in the field generally apply transcriptomic techniques to generate lists of genes with 428	  

altered mRNA abundance in infected plants. However, the proper network analysis of virus-429	  

plant interaction is still a pending task (45). 430	  

Different viruses, common targets. Although some studies have analyzed 431	  

changes in mRNA profiles resulting from viruses infecting their natural hosts, such as ACMV 432	  

infecting cassava (56) or RYMV infecting rice (141), Arabidopsis thaliana has been extensively 433	  

used as a model host in combination with viruses belonging to different taxonomic families 434	  

(Table 1). However, even using the same host species, direct comparison across experiments is 435	  

not straightforward because differences in profiling techniques and platforms, plant ecotypes, 436	  

sampling schemes, inoculation conditions and dosages, and environmental variables may all 437	  

exert some unpredictable effects on the expression pattern of multiple genes. 438	  

Whitham et al. (145) carried out the most comprehensive of such studies, including five 439	  

viruses mentioned in Table 1 (CMV, ORMV, PVX, TVCV, and TuMV) while keeping all other 440	  
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experimental variables and techniques constant. Some generalities were drawn from this study 441	  

that are extensible to most of the other studies listed in Table 1. First, approximately one-third of 442	  

over-expressed plant genes are associated with cell responses to situations of stress, defense 443	  

against infection, apoptosis, programed cell death, and ageing. Second, defense-like responses 444	  

of A. thaliana to viruses are dependent on salicylic acid (SA) and require upstream signaling 445	  

components (148). Third, a spectrum of heat-shock proteins (HSP) is also induced after 446	  

infection with all viruses by a yet unknown SA-independent mechanism. HSP over-expression 447	  

may be a generic unspecific response of the plant to stress or, alternatively, directly triggered 448	  

and controlled by viruses to assist the right folding of their own proteins, many of which may be 449	  

misfolded (and thus aggregating) as a consequence of mutations produced during replication 450	  

(81). Fourth, cell wall modification genes are preferentially down-regulated. Because the 451	  

expression of these genes is correlated with plant cell growth and expansion, their reduced 452	  

expression may well result in the stunting syndrome associated with some infections. Fifth, 453	  

similarly, plastid genes and genes involved in chloroplast functioning are also preferentially 454	  

down-regulated, resulting in chlorotic symptoms. Sixth, ribosomal proteins and protein turnover 455	  

genes are up-regulated. This may either reflect an increased demand on the cells for protein 456	  

synthesis or a response triggered by viruses to enhance its own replication. 457	  

Host-adaptation and changes in gene expression profiles. The actual 458	  

interactions between viruses, natural hosts, and vectors are the results of natural selection 459	  

operating during many generations. Hence, to have a precise description of the interactions 460	  

established between viral and cellular components, it is necessary to take into account the 461	  

evolutionary perspective of the process: the degree of adaptation of the virus to its host. 462	  

Unfortunately, this evolutionary perspective has not been taken in most studies listed in Table 1: 463	  

only TuMV, CMV and CaMV are prevalent in wild A. thaliana populations (109). 464	  
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To test whether adaptation to a host may result in changes in mRNA profile, Agudelo-465	  

Romero et al. (6) performed an evolution experiment adapting TEV to the susceptible ecotype 466	  

Ler-0 of A. thaliana (25). The TEV clone used as the ancestral virus was able of systemically 467	  

infect Ler-0 plants although the infection was asymptomatic. After 17 serial passages, the 468	  

resulting virus (labeled as TEV-At17) accumulated three orders of magnitude more than the 469	  

ancestral one per gram of infected tissue, its infectivity was 100% (compared with the low 10% 470	  

of the ancestral genotype) and induced severe symptoms including stunting, etching, and leaf 471	  

malformation. A single amino acid substitution in the VPg was enough to trigger these 472	  

symptoms. TEV-At17 infection caused the differential expression of a total of 505 up-regulated 473	  

and 1335 down-regulated plant genes relative to its ancestor virus (Figure 3 in 6). Both viruses 474	  

also differentially affected the expression of transcription factors, with 51 up-regulated and 84 475	  

down-regulated only by the evolved virus. Interestingly, only genes up-regulated by the 476	  

ancestral virus and unaffected by the evolved virus were significantly enriched in categories 477	  

related to plant responses to different abiotic and biotic stresses, including systemic acquired 478	  

resistance and activation of the innate immune resistance. 479	  

At face value, the above results support the hypothesis that by adapting to a host, 480	  

viruses should change and improve the way they interact with the components of the host cell 481	  

transcriptional network. Therefore, studies of virus-plant interactions should concentrate on 482	  

naturally coevolved pairs rather than ad hoc pairs. While keeping in mind this concern, global 483	  

profiling experiments will allow identifying sets of genes that are essential for the replication of a 484	  

given virus, but also other sets that may be required for closely relative viruses and even for 485	  

unrelated viruses. Furthermore, if all these genes are placed into the context a host regulatory 486	  

networks, we may identify pathways, rather than individual genes, that may be targets of 487	  

intervention for therapeutics without undesired side effects. 488	  

 489	  
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WHOLE VIRUS GENOME ANALYSIS: CASE STUDY OF CTV  490	  

Repeated infections of perennial hosts often result in mixed infections by multiple strains 491	  

of the same virus or related viruses (7, 92, 110, 131, 143, 144). This occurs, to a lesser extent, 492	  

in annual crops as well (31, 98, 112). Natural viral complexes create an environment that is 493	  

conducive to high frequencies of recombination, and consequently appearance of an enormous 494	  

collection of genetic variants that have potentials to evolve into novel genotypes or strains. In 495	  

addition, functional complementation of viral proteins in such an environment may nurture 496	  

mutations that could have been negatively selected in single infections. Studying such complex 497	  

systems may require novel experimental approaches. An example of these approaches is the 498	  

analyses of whole genome CTV complexes by high throughput genomic sequencing of viral 499	  

populations (144, 150). These analyses have revealed detailed, genome-wide information on 500	  

virus recombination, mutation, and evolution. 501	  

CTV, one of the largest plant viruses, is encoded by a positive sense single-stranded 502	  

RNA molecule of 19.2 to 19.3 kb. Its transmission is through vegetative grafting and by aphids 503	  

in a semi-persistent manner. Its natural host, citrus, is propagated by budwood grafting and has 504	  

longevity of more than one hundred years. Repeated transmissions by aphids and vegetative 505	  

propagation have resulted in an increase in the complexity of CTV populations over hundreds of 506	  

years. The initial infection may have originated from a single strain, but subsequent infections by 507	  

different strains occurred during the long history of human cultivation of citrus species, resulting 508	  

in co-existence of multiple strains (genotypes) in a single host. Similar scenarios of viral 509	  

accumulation and consequently the existence of viral complexes with multiple strains are 510	  

common in other viruses that persistently infect perennial, long living trees (80). Within CTV 511	  

complexes, promiscuous recombination between genomes occurred at remarkably high rates 512	  

(143, 144). Recent data also suggests extraordinary stability and low mutation rates of CTV 513	  

(Weng, Z., Dawson, W. O., and Xiong, Z., unpublished). These lead to hypothesis that the high 514	  
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level of promiscuous RNA recombination compensates for the extreme genome stability and low 515	  

mutation rate of CTV, and functions as a major force driving the production of genetic variants 516	  

important for adaptation and evolution. These variants can be selected upon in a new 517	  

environment and can potentially evolve to become an emerging viral strain. This hypothesis 518	  

perhaps explains the origin of the sequenced CTV SY568 genome (152), which consists of 519	  

mosaic sequences from a severe and mild strains (143). 520	  

To study these complexes, a high density CTV re-sequencing microarray was designed 521	  

to simultaneously re-sequence multiple genotypes in CTV populations with high accuracy (Fig. 522	  

3) (144, 150). A large number of natural isolates and single-aphid transmitted isolates have 523	  

been analyzed using this array. Nearly all of the isolates, even some single-aphid-transmitted 524	  

isolates, were found to contain more than one strain (144). The re-sequencing microarray 525	  

provided direct visual identification of multiple components in a mixed infection and at the same 526	  

time re-sequenced the predominant viral sequences in the complex. 527	  

This whole genome strategy further showed that CTV complexes comprised one or more 528	  

predominant genotypes, with one or more genotypes as minor components. For example, a 529	  

severe stem-pitting isolate from Florida, FL278, contains a predominant T30-like strain. T30 is a 530	  

mild strain that causes little or no symptoms and does not cause significant economic damage 531	  

(9), which does not agree with the severity of the disease observed in the source plant. Further 532	  

analysis using the CTV re-sequencing microarray and real-time PCR revealed a minor genotype 533	  

(<1% of the population) that resembles a type T36 strain (Table 2), a quick-decline strain that is 534	  

commonly associated with rapid death of trees on sour orange rootstock (82). The presence of 535	  

this unusual CTV strain raises a possibility that the T36-like strain may in fact be a contributor to 536	  

the observed stem-pitting symptoms. This example illustrates that a minor component in a CTV 537	  

complex can play a significant role in pathogenesis. A thorough knowledge of the genetic 538	  
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composition within a CTV isolate is therefore critical to understand the interaction among 539	  

different genotypes in a disease complex and their roles in disease development. 540	  

Evidence for CTV recombination has been documented before (83, 97, 119, 143). As 541	  

high as 4% of cloned viral genome fragments have been found to be recombinants between two 542	  

co-infecting strains (143). However, these studies examined only select regions of the large 543	  

CTV genome. When the recombination analysis is extended to the entire CTV genome by whole 544	  

genome sequencing analysis, the scale and the degree of promiscuous recombination between 545	  

co-infecting strains are even more astonishing. For instance, a natural field isolate, FS2-2, 546	  

contains a CTV complex harboring three distinct strains that are visually identifiable in the 547	  

hybridized re-sequencing microarray (144) (Fig. 3).	  A genome-wide 454 sequencing analysis of 548	  

FS2-2 revealed that a large number of 454 sequencing reads (5%) were recombinants, despite 549	  

the fact that these sequences were relatively short, with an average length of 256 nucleotides. 550	  

The recombination events were throughout the entire genome, with the most active 551	  

recombination occurring toward the 3’ half of the CTV genome. FS2-2 contains at least three co-552	  

infecting strains: T30, T36, and VT. Promiscuous recombination occurred among all the 553	  

identified strains. A deeper analysis of 1 kb genomic fragments, sequenced by the traditional 554	  

Sanger method, corroborated the high level of recombination activity in the FS2-2 complex. A 555	  

surprisingly large percentage (17.9%) of the cloned molecules was found to be recombinants 556	  

between the three constituent strains. Additionally, four recombinants possessed two crossover 557	  

sites, resulting from either a double-crossover or two independent recombination events (144). 558	  

Further divergence of some recombinants after recombination was also evident in this study. 559	  

Thus, this data suggests that promiscuous, intergenic recombination can generate a large 560	  

amount of genetic variants, which could subsequently diverge and evolve to distinct CTV 561	  

genotypes. 562	  
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An interesting phenomenon in mixed infections of CTV is the lack of apparent cross 563	  

protection and interference between multiple strains. Even though the 3’ halves of multiple CTV 564	  

genomes within an infected plant share 90% or higher sequence identity, they replicate 565	  

independently and do not seem to interfere with each other. The inability of the predominant 566	  

mild T30-like genotype in the above FL278 example to mitigate the effect of the severe T36-like 567	  

genotype illustrates this failed cross-protection. Nevertheless, successful cross-protection using 568	  

mild isolates can be achieved (140). Therefore, it is plausible that only strains with highly similar 569	  

sequences across the entire genome protect against each other, or that in some cases the 570	  

powerful, three-component RNA silencing suppression system in CTV (50, 91) somehow 571	  

circumvents the effect of cross protection. Further genome-wide characterization of CTV 572	  

complexes and other plant viruses will likely shed light on this important yet puzzling biological 573	  

phenomenon, and provide guidance on effective implementation of cross protection and gene 574	  

silencing strategies. 575	  

 576	  

INTEGRATION INTO DISEASE MANAGEMENT STRATEGIES  577	  

Theoretically, an assembly of measures that altogether reduce the effective population 578	  

size (Ne), increase the genetic diversity, and maximize the bottleneck effect could gradually 579	  

exclude a virus from its host species (i.e., virus exclusion = small Ne + large π + low MOI). 580	  

Unfortunately, the quantification of each one of these parameters is labor intensive, and the 581	  

magnitude required to obtain the expected effect have not been empirically determined. Ne is 582	  

generally lower than the census of the population, N, and requires co-inoculation experiments to 583	  

be estimated. On the other hand, N can be directly estimated by ELISA or real-time PCR and, 584	  

for practical purposes, it may follow the same trend than Ne in some virus-plant interactions. A 585	  

greater technological challenge is to develop a more feasible approach of estimating π than the 586	  
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traditional cloning and sequencing. Technological advances such as next generation 587	  

sequencing systems (15) may provide part of the solution to this task. Significant advancement 588	  

has been made estimating bottleneck sizes at both ecological and intra-host levels, but these 589	  

calculations may still need to include the population proportions that represent the estimated 590	  

MOI. Plant resistance genes may affect Ne, π, or MOI in the desired way. However, few R 591	  

genes, other than Rz1 and Rz2 affecting π in sugar beet, have been quantitatively 592	  

characterized in relation with some of these parameters to predict resistance durability (21, 49). 593	  

Antivirals based on nucleotide analogs increase π enough to drive the population into lethal 594	  

mutagenesis (27), but their economic cost and environmental safety in agriculture still need to 595	  

be evaluated. More viable antiviral strategies may be those based on natural plant resistance 596	  

mechanisms such as gene silencing or those involving posttranscriptional enzymatic 597	  

modifications of virus nucleotides. 598	  

In addition to the genetic plant restriction of virus cell-to-cell and vascular movements, 599	  

bottleneck narrowing could be achieved by reducing the number of initial infection events to 600	  

which a plant or plant population is exposed. Traditionally, it has been assumed that the amount 601	  

of virus particles inoculated in a susceptible plant is epidemiologically irrelevant (57), but it might 602	  

not be true for some incompatible virus-plant interactions, mainly those where the frequency of 603	  

virulent genomes is constrained by intra-population interactions. 604	  

The host environment influences viral population variability by controlling co-infection 605	  

dynamics, which determine the potential for complementation and recombination (147). 606	  

Therefore, the role that alternate host reservoirs may have in the generation of virus variation 607	  

should be taken in consideration during disease risk assessments. 608	  

Trans-complementation among different versions of the same viral element expressed in 609	  

a common cellular compartment may improve virus robustness through direct reciprocity (e.g., a 610	  
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defective transporter could benefit from an efficient replicator and vice versa) (136). A practical 611	  

consequence of modeling virus robustness is that, under mutagenic conditions imposed by the 612	  

host or external mutagens, some virus populations could be eradicated through lethal 613	  

mutagenesis whereas others would recover following the generation-selection of RB mutations. 614	  

Serial passage of wild type BNYVV through strongly resistant Rz2 sugar beets caused an 615	  

increase of its genetic heterogeneity to such levels that, in some lineages, the virus infection 616	  

was gradually eliminated while in others its apparent robustness was improved (1). 617	  

The relationship between virus fitness and the πW/πB ratio describe in Figure 2 suggests 618	  

that, if a virus have reach the adapted stage without causing significant damage to the crop, it 619	  

most likely will persist in that condition for a long time. Therefore, engaging in a two-arm race 620	  

with the virus to eradicate the disease may not be a profitable strategy. In conclusion, plant 621	  

viruses and viroids have become important experimental systems for studying pathogen 622	  

evolution, and an increasing amount is known about their mutation, recombination, and 623	  

evolutionary dynamics. The ways in which populations of viruses interact with one or a number 624	  

of hosts has begun to be probed using high-throughput techniques, and is revealing how small 625	  

fractions of an infecting population might be driving symptom severity, how rapid viral adaptation 626	  

to a novel host leads to massive changes in host response to the virus, and how sometimes the 627	  

hosts that permit the lowest viral titers harbor the greatest viral population diversity. These 628	  

insights are helping to explain the field data, which often show very little change in viral 629	  

sequences despite large changes in symptoms, host range, and disease severity. Future work 630	  

will continue to expand our basic knowledge of phytopathology and direct applied research into 631	  

how best to control viral and viroid population diversity, effective population size and limit 632	  

pathogen spread. 633	  

 634	  
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Textbox 1. Definitions of important terms 1061	  

Complementation: The rescue of loss-of-function mutants by functional alleles contained in the 1062	  

population. 1063	  

Effective population size (Ne): Number of individuals capable of producing viable progeny. 1064	  

Epistasis: The effect of a mutation in one gene over the expression of another gene or mutation 1065	  

of the same genome. 1066	  

Genetic Bottleneck: A severe reduction in population size. 1067	  

Genetic drift: Changes in the genetic structure of a population caused by random sampling of 1068	  

haplotypes moving from generation to generation. 1069	  

Host range mutation: A mutation that affects the host range of a parasite. 1070	  

Interference: Competition between beneficial mutations to become fixed in the population. 1071	  

Lethal mutagenesis: Excessive accumulation of mutations in a population that causes 1072	  

population extinction. 1073	  

Multiplicity of cellular infection (MOI): Relative number of infectious particles that penetrate a 1074	  

cell. 1075	  

Mutation frequency: Proportion of mutations in a population remaining after the action of 1076	  

selection. 1077	  

Mutation rate: Proportion of mutations in a population that accumulate prior to the action of 1078	  

host selection. 1079	  

Mutation-selection balance: The coupling between mutation rate and selection pressures that 1080	  

define the frequency of mutations in a population. 1081	  
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Nucleotide diversity (π): Average number of nucleotide differences per site between any two 1082	  

randomly chosen haplotypes from a population. 1083	  

Positive selection: Selection of adaptive mutations. 1084	  

Purifying (negative) selection: Conditions that favor the removal of deleterious mutations from 1085	  

the population. 1086	  

Robustness: Molecular mechanisms that allow for the accumulation of mutations without 1087	  

concomitant phenotypic change. 1088	  

  1089	  
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 1090	  

Table 1.  Studies of gene expression global profiling for A. thaliana in response to viral infection 1091	  

Virus genus Virus species Reference 

Caulimovirus Cauliflower mosaic virus (CaMV) (64) 

Cucumovirus Cucumber mosaic virus (CMV) (77, 96, 145) 

Geminivirus Mung bean yellow mosaic virus (MYMV) (134) 

 Cabbage leaf curl virus (CaLCuV) (10) 

Potexvirus Potato virus X (PVX) (145) 

Potyvirus Turnip mosaic virus (TuMV) (145, 151) 

 Plum pox virus (PPV) (12) 

 Tobacco etch virus (TEV) (5) 

Tobamovirus Turnip vein clearing virus (TVCV) (145) 

 Oilseed rape mosaic virus (ORMV) (145) 

 Tobacco mosaic virus (TMV) (48, 68) 

 1092	  

 1093	  

 1094	  

  1095	  
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	  1096	  

Table 2. Amounts (fg)1 of CTV strains in CTV complexes 1097	  

Strains 

CTV complex 

FS2-2 FL278 

VT-like 155.9 ± 9.9 N/A 

T30-like 37.1 ± 4.4 86.28 ± 7.7 

T36-like 62.0 ± 12.4 0.43 ± 0.2 

1 The amount in fg of CTV cDNA in 1 µg of tissues calculated using 

standard curves generated for each genotype (Xiong, Z. and Weng, 

Z., unpublished data). 

 1098	  

  1099	  
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FIGURE CAPTIONS 1100	  

 1101	  

Fig. 1. Average mutation rates (mutations per base per infected cell, except as noted) of viruses 1102	  

and viroids with RNA and ssDNA genomic architectures. The rates of two plant RNA viruses are 1103	  

shown as green squares: TMV (94) and TEV (135). Mutation rates of one RNA bacteriophage 1104	  

and eight RNA animal viruses are shown as orange squares (Measles virus’ mutation rate is 1105	  

given as mutations per base per genomic replication event, and cannot be extrapolated to cell 1106	  

infected (125). Similarly, the per base per genomic replication event mutation rate of CChMVd is 1107	  

shown as the green triangle. Two measured mutation rates of single-stranded DNA 1108	  

bacteriophages are shown as blue squares. Rates are from Sanjuán et al. (123) and references 1109	  

therein. 1110	  

Fig. 2. Model of the relationships between virus fitness and nucleotide diversity of virus 1111	  

populations at the intra- (πW) and inter- (πB) isolate levels along virus host adaptation. The arrow 1112	  

represents the direction of the evolutionary steps followed by a virus adapting to a new host 1113	  

genotype (time scales could be significantly different in each one of the four represented 1114	  

evolutionary phases). The intermediate adapting phase is subdivided into an initial genetically 1115	  

incompatible virus-plant interaction and a subsequent compatible interaction at which host 1116	  

resistance has been genetically defeated. Virus adaptations in the old and new hosts are 1117	  

characterized by the lowest πB and highest virus fitness. 1118	  

Fig. 3. Images of hybridized re-sequencing microarrays showing multiple strains in isolate FS2-1119	  

2. The CTV Affymetrix microarray chips were hybridized with target DNA prepared from full 1120	  

length clones of T30 and T36 strains and from full genomic DNA of FS2-2 amplified by RT-PCR. 1121	  

Warm colors represent higher hybridization intensities and cool colors represent lower 1122	  

hybridization intensities. Locations of CTV genomes tiled on the microarray are indicated to the 1123	  

left. 1124	  


