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Understanding oceanic processes, both physical and biological, that control 

atmospheric CO2 is vital for predicting their influence during the past and into the 

future. The Eastern Equatorial Pacific (EEP) is thought to have exerted a strong 

control over glacial/interglacial CO2 variations through its link to circulation and 

nutrient-related changes in the Southern Ocean, the primary region of the world 

oceans where CO2-enriched deep water is upwelled to the surface ocean and comes 

into contact with the atmosphere. Here we present a multi-proxy record of surface 

ocean productivity, dust inputs and thermocline conditions for the EEP over the last 

40,000 years. This allows us to detect changes in phytoplankton productivity and 

composition associated with increases in equatorial upwelling intensity and influence 

of Si-rich waters of Sub-Antarctic origin. Our evidence indicates that diatoms 

outcompeted coccolithophores at times when the influence of Si-rich Southern Ocean 

intermediate waters was greatest. This shift from calcareous to non-calcareous 

phytoplankton would cause a lowering in atmospheric CO2 through a reduced 

carbonate pump, as hypothesized by the Silicic Acid Leakage Hypothesis (SALH). 

However, this change does not seem to have been crucial in controlling atmospheric 

CO2, as it took place during the deglaciation, when atmospheric CO2 concentrations 

had already started to rise. Instead, the concomitant intensification of Antarctic 

upwelling brought large quantities of deep CO2-rich waters to the ocean surface. This 

process very likely dominated any biologically mediated CO2 sequestration, and 

probably accounts for most of the deglacial rise in atmospheric CO2.  
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Introduction 

 

The EEP cold tongue is the major oceanic source of carbon dioxide to the 

atmosphere, despite that it supports up to 5-10 % of global marine productivity (1). 

Nowadays, a net flux of CO2 from the ocean to the atmosphere is generated by the 

upwelling of CO2-rich deep waters, which dominates over carbon fixation by 

phytoplankton and export production (2). There is also a strong link between the EEP and 

the high latitudes of the Southern Ocean, where the formation of intermediate waters in the 

subantarctic region transports previously upwelled waters south of the Antarctic Polar Front 

to the thermocline of the tropical Pacific via the Equatorial Undercurrent (EUC) (3). 

 
 

One of the most recently proposed mechanisms to explain glacial CO2 cycles is the 

SALH (4-5). It advocates for a shift in phytoplankton composition in low-latitude regions 

during glacial times, from coccolithophores to diatoms, as a result of an increased Si(OH)4 

supply from the Southern Ocean. At these high-latitudes, under present Fe-limited 

conditions, diatoms are known to silicify much more heavily, taking up four times more Si 

than N (6) and using up most of the Si upwelled around Antarctica. During glacial times, 

the alleviation of Fe-limiting conditions leaves unused Si(OH)4 that can be transported 

northward in Sub-Antarctic Mode Waters (SAMW), the main source of nutrients for the 

tropical thermocline (7), being eventually upwelled in the EEP (3) (Fig. S1). The increase 

in silicate availability in the EEP would favour diatom production over coccolithophores 
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which cannot compete with diatoms when there is enough Si(OH)4 available (8-10). This 

causes a reduction in calcite production, affecting the CaCO3 to organic carbon rain ratio to 

the deep ocean and ultimately, a lowering of atmospheric CO2 of 40 to 50 ppm (5, 11). The 

production of organic matter and of calcium carbonate have opposing effects on surface 

pCO2. While both diatoms and coccolithophores remove dissolved CO2 during 

photosynthesis and Corg production, coccolithophores also build a calcium carbonate 

skeleton which releases CO2 to the water. On the contrary, the remineralization of organic 

carbon at depth releases CO2 and the dissolution of CaCO3 consumes CO2. The overall 

effect of these two pumps, denoted here as the rain ratio or the export ratio of CaCO3 to 

organic carbon to the deep ocean will dictate the influence of the biological pump in 

atmospheric CO2. 

 

However, the impact of the SALH in the EEP region may not only depend on an 

increased availability of Si(OH)4 in surface waters of the glacial Southern Ocean. This 

silica excess may not be enough to guarantee its leakage to tropical thermocline waters of 

the EEP if it is not effectively transported by ocean circulation. Crosta et al. (12) suggested 

that reduced formation rates of SAMW and Antarctic Intermediate waters (AAIW) during 

glacial times would prevent the northward flow of Si-rich waters and thus, inhibit the 

expected biological effect on phytoplankton productivity in low latitude areas. A corollary 

to the original SALH (13), however, still predicts a reduction of atmospheric CO2 

associated with a shift in the phytoplankton community despite a reduction in the 

ventilation of glacial intermediate waters and the associated absolute Si(OH)4 flux, as long 

as the Si:N ratio is high enough.  
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 Until now, the available paleoceanographic data have been inconclusive about 

changes in the CaCO3:organic carbon export ratio during glacial times in the EEP (14-18). 

A reason for the lack of unequivocal data is that these studies (except (16)) focused only in 

the magnitude of diatom production instead of in its relative contribution to total export 

production compared with coccolithophores.  

 

In order to test whether changes in phytoplankton composition were responsible for 

the atmospheric CO2 changes observed during the last transition from glacial to interglacial 

conditions, we studied a sediment core from the EEP, ODP Site 1240 (0º 01.31’N, 86º 

27.76’W; 2,921 m water depth), located at the northern flank of the Carnegie Ridge in the 

Panama Basin. We present a high resolution multi-proxy record of surface ocean 

productivity and dust inputs, based on the analyses of molecular biomarkers, and also of 

thermocline conditions to account for changes in upwelling and the influence of sub-

Antarctic intermediate water masses.  

 

Results and Discussion 

 

We analyze two marine biomarkers, long chain alkenones as tracers of past 

productivity of coccolithophorid algae and brassicasterol (24-methylcholesta-5,22-dien-3β-

ol) as a proxy for diatom abundances (see also Methods section). Long chain alkanes and 

alcohols, terrestrial biomarkers derived from higher plants, were also analyzed as proxies 

for continental input (19). Previous studies based on molecular biomarkers in the southern 
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Caribbean (20) and the Subtropical South Pacific (21) illustrated the potential of these 

paleoceanographic tracers to reconstruct past changes in phytoplankton composition. We 

also compare our productivity proxies with the δ13C record for the thermocline-dwelling 

foraminifera Neogloboquadrina dutertrei in core Site 1240 (22) as an indicator of the 

influence of waters from subantarctic origin (23). A reconstruction of Deep Thermocline 

seawater δ18O (DT- δ18Osw), in the main core of the EUC, provides a proxy for relative 

salinity changes. The DT-δ18Osw calculation involved the subtraction of the Mg/Ca 

estimated temperature effect from the δ18O record measured in the same thermocline 

dwelling foraminifera samples (N. dutertrei) and the removal of the global sea level 

component (24) of the seawater δ18O composition. Thus, more positive values of DT-

δ18Osw indicate saltier waters at the thermocline whereas more negative DT-δ18Osw 

implies fresher waters. These positive values have also been recently ascribed to increased 

upwelling of EUC waters from the thermocline to the surface (22). The EUC is 

characterised by high-salinity waters (25) and thus, saltier waters at the thermocline (higher 

DT- δ18Osw values) can be associated with an intensified EUC and strengthened upwelling 

from the thermocline to the surface (22). 

 

Today, marine productivity in the EEP is colimited by iron, due to low dust inputs, 

and also by the low Si(OH)4 content of upwelled waters of Southern Ocean origin that bath 

this area (26). Thus, past changes in productivity will reflect both changes in upwelling 

(intensity and/or nutrient content) and in dust inputs. In Figure 1, we compare the two 

marine biomarkers, associated with diatom and coccolithophorid production, with the 

terrestrially-derived C26-alcohol record as a proxy of dust inputs (the most significant 
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source of terrestrial material to this location) and therefore, of iron availability. During the 

last glacial period, all three biomarkers show very similar patterns, with higher abundances 

between 23-33 ka compared with today. Another maximum also occurs between 20 and 15 

ka, during the late glacial/early deglaciation. The higher flux of eolian dust inferred from 

the C26-alcohol record during the last glacial period is consistent with recent studies of dust 

deposition measuring 232Th fluxes in marine cores from the central and eastern equatorial 

Pacific (27-29) (Fig. 1). In the EEP, high dust inputs were maintained until 15 ka (29-30) as 

indicated by our C26-alcohol record. After 15 ka, both alkenones and the C26-alcohol 

records display decreasing trends towards the low values recorded during the Holocene. In 

contrast, the diatom marker, brassicasterol, shows a third maximum between 12.5 and 9 ka. 

 

Our marine biomarkers do not show the expected shift between coccolithophores and 

diatoms predicted by the SALH during the last glacial that could account for the lowering 

of atmospheric CO2 concentrations through a reduced carbonate pump. Instead, the increase 

in both alkenones and brassicasterol between 23 and 33 ka may indicate a global positive 

response of the whole phytoplanktonic community to local fertilization by eolian dust 

inputs. An enhanced biological pump has also been invoked to operate in the EEP during 

the last glacial maximum based on a new silicon isotope record (31). So far, most of the 

attempts to test the SALH were based on opal records from the tropical Pacific (14-15, 17-

18). These studies challenged the SALH on the basis of a decrease in opal accumulation 

during glacial times. However, they were inconclusive for two reasons. Firstly, they did not 

consider changes in the carbonate pump, a requirement of the SALH (13). Secondly, they 

did not take into account that a decrease in opal accumulation may not necessarily be due to 
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a decrease in diatom productivity but could also relate to less silicified diatoms as a 

consequence of the increased local iron input during glacial times (31). Overall, our 

biomarkers records indicate that either the Southern Ocean Si excess did not reach the 

location of Site 1240 and/or the local Fe-induced Si excess was not large enough to 

promote the phytoplanktonic shift during glacial times because perhaps diatom growth was 

somehow limited by other ecological factors. In the Subantarctic region, however, Calvo et 

al. (21) did find an increase in diatoms over coccolithophores in glacial sediments, 

suggesting the arrival of Si-rich waters, at least, to the mid latitudes of the Southern Ocean. 

A low diatom to coccolithophore ratio is also evident during the late Holocene (Fig. 2a and 

method section), although, unlike glacial times, conditions in the Southern Ocean leading to 

the low diatom productivity in the equatorial Pacific were likely different. The lower dust-

derived Fe inputs to the Southern Ocean (30) and its impact on diatom Si:C uptake ratios 

would have left no Si available to be transported to lower latitudes. 

 

 In contrast, silica leakage does seem to have reached and affected low latitudes during the 

deglaciation at certain periods (17.5 - 15.5 ka and 12.2 - 9.2 ka). This is traced in our core 

by an increase in brassicasterol concentrations that are not paralleled by increasing 

alkenone production. This evidence points to higher diatom to coccolithophore production 

(Fig. 2a), which would lead to less calcite exported from surface waters and a decrease in 

atmospheric CO2. At this time, our circulation proxies also show a change in the chemistry 

of the water masses bathing our site starting during the early deglacial.  

 

In Figure 2, we present the δ13C record for N. dutertrei in the same core (22). At Site 

1240, a change in the chemical properties of Southern Ocean intermediate waters is 
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recorded as an intense negative δ13C excursion starting at 17 - 18 ka. At the same time, the 

alkenone and brassicasterol records show an increase in the diatom to coccolithophore ratio 

(Fig. 2a). Spero and Lea (23) argued that these negative excursions in the N. dutertrei δ13C 

records from the EEP during deglaciation were a response to the advection of a low δ13C 

signal from aged circumpolar deep waters into the SAMW source region. However, during 

the last glacial, a reduced deep water ventilation (32-34) prevented the advection of 

nutrient-rich/ δ13C-depleted waters to the tropical thermocline, as reflected by the enriched 

δ13C values (Fig. 2b) and the lower diatom to coccolithophore ratio (Fig. 2a). In the early 

deglacial, the poleward movement of the westerlies and the retreat of sea ice (34), caused 

depleted δ13C waters to be upwelled and incorporated in intermediate waters. These were 

then transported to the low latitudes of the EEP, leaving a signature in the foraminifera 

shells. In agreement with the negative excursion of the δ13C record, the reconstruction of 

DT- δ18Osw from the same core shows more enriched values indicative of more saline 

waters (Fig. 2c). This has recently been ascribed to increased upwelling of EUC waters 

from the thermocline to the surface (22). A δ15N reconstruction from the same studied site 

also supports enhanced arrival of nutrients (increased upwelling) during the deglaciation, in 

agreement with maxima in the diatom to coccolithophore ratio (35). 

 

An enhanced advection of Si-rich waters from southern origin during the 

deglaciation, as suggested by the prevalence of diatoms over coccolithophores at ODP Site 

1420, is also supported by an opal flux record from Southern Ocean sediments (Fig. 2e 

(36)). This record shows two maxima in opal flux during the deglaciation, in synchrony 
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with increased abundances of brassicasterol in the EEP record. The enhanced upwelling of 

deep waters in the Southern Ocean at the initiation of deglaciation also brought 

accumulated silica to surface waters, increasing opal production in this area and also 

allowing part of this silica to be transported to the EEP thermocline. Further evidence for 

the connection between the Southern Ocean and these low latitudes comes from a 

reconstruction of 14C activities in a sediment core located at intermediate water depths off 

Baja California (37). The Δ14C record shows two excursions of low 14C activities during the 

last deglaciation, indicating the arrival of relatively older waters to the studied site (Fig. 

2d). Marchitto et al. (37) related these results to the exposure of deep and isolated waters 

from the Southern Ocean to the atmosphere and its subsequent northward transport via 

intermediate waters. Moreover, new and direct evidence from a marine core recovered in 

the Atlantic sector of the Southern Ocean strongly supports the existence of a poorly 

ventilated deep carbon reservoir during glacial times that was subsequently released to the 

atmosphere during the last deglaciation (38). 

  

Along with these old 14C-depleted and Si-rich waters (reflected by the shift in 

phytoplankton composition in the EEP and the increased opal productivity in the Southern 

Ocean (36)), the resumption of upwelling also resulted in a major CO2 outgassing to the 

atmosphere, which coincides with the two-step rise in atmospheric CO2 concentrations 

recorded in Antarctic ice cores (39) (Fig. 2f). The close link between the EEP and the high 

latitudes of the Southern Hemisphere is also seen between ~13-15 ka when all proxies vary 

in accordance. The data reflect reduced upwelling (more depleted DT- δ18Osw values), 

slightly attenuated influence of Si-rich Southern Ocean waters (more enriched δ13C values) 
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and reduced phytoplankton productivity (lower biomarker abundances and diatom:alkenone 

ratios). This is in agreement with the Δ14C and opal flux records and corresponds to a CO2 

plateau (Figs. 1 and 2).  

 

Overall, the remarkable correlation between our EEP records and those from high 

latitudes reveals the tight link between high southern and low tropical latitudes. It is also 

consistent with a high latitude control on low latitude biological productivity (7). 

Importantly, the expected changes in phytoplankton composition, as predicted by the 

SALH, that could have lowered atmospheric CO2 concentrations, did not take place during 

glacial times, although the dust-stimulated increase in total productivity may still have 

partially contributed to driving past glacial/interglacial CO2 changes(5, 40). Instead, an 

increase in diatom with respect to coccolithophore productivity did occur during the 

deglaciation, although this floral shift, and the resulting reduction of the carbonate pump, 

was apparently not sufficient to counteract the return to the atmosphere of large amounts of 

CO2 delivered by the oceans through an enhanced ventilation of deep southern waters. 

 

Methods 

 

Molecular biomarker analyses 

 

ODP core 1240 was sampled every 4 cm for the upper 5.5 m for biomarker analyses 

and every 2 cm for C and O isotopes analyses (22). The age model was constructed from 17 
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AMS 14C ages of monospecific samples of the planktonic foraminifera Neogloboquadrina 

dutertrei (22). 

 

Analysis and characterization of total lipid content were performed at Geoscience Australia 

laboratories following published methods (41-42). Briefly, 0.5 - 2 g of freeze-dried 

sediment were loaded into 11 ml stainless steel extraction cells of a Dionex ASE 200 

pressurized liquid extraction system. After addition of an internal standard (n-

hexatriacontane) and subsequent extraction with dichloromethane, the extracts (~ 25 ml) 

were evaporated to dryness under a nitrogen stream. 6% potassium hydroxide in methanol 

was used to hydrolyze wax esters and eliminate interferences during quantization of gas 

chromatographic data. After derivatization with bis (trimethylsilyl) trifluoroacetamide, 

extracts were dissolved in toluene and then injected in a Hewlett Packard HP6890 Gas 

Chromatograph with a flame ionization detector and equipped with a CP-Sil 5 CB capillary 

column (50m, 0.25 mm I.D. and 0.25μm film thickness). The oven was programmed from 

90°C (holding time of 1 min) to 160°C at 15°C/min, 160°C to 280°C at 10°C/min with 30 

min hold at 280°C and finally, from 280°C to 310°C at 6°C/min with a holding time of 6 

min. Selected samples were analyzed by GC-MS for compound identification, using a 

Hewlett-Packard HP5973 MSD attached to an HP6890 GC and with the same capillary 

column. The mass spectrometer was operated at 70eV in full scan mode from 50 to 600 

m/z. 

 

Marine productivity proxies 
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Long chain alkenones, in particular di- and tri- unsaturated C37 alkenones, are used here to 

trace back the input of Haptophyta algae, such as the coccolithophore Emiliania huxleyi, 

the most abundant source of alkenones in today’s ocean waters (43). Similarly, 24-

methylcholesta-5,22-dien-3β-ol (brassicasterol) has also been used as a proxy for diatom 

abundances (20-21). Brassicasterol represents the major sterol in some species of diatoms 

(44) although a recent study suggests that this compound may only be abundant in pennate 

diatoms (45). Brassicasterol can also be synthesized by other microalgae, like Haptophytes 

and Cryptophytes. In this work, we mostly focus on periods of decoupling between the 

alkenone and brassicasterol records, as this phenomenon implies that the sources of these 

biomarkers must have been different. Changes in the different contribution of 

coccolithophores and diatoms to brassicasterol abundances is also evaluated qualitatively 

looking at the brassicasterol/(brassicasterol + alkenone) ratio (Fig. 2a in the main text). This 

ratio should take higher values when diatoms predominate over coccolithophores. 

 

Terrestrial proxies 

 

We use long chain even n-alcohols derived from terrestrial higher plants as tracers of 

terrestrial input to the marine environment. For simplicity, only n-hexacosanol (n-C26-ol), 

the most abundant n-alcohol homologue of all terrestrial n-alcohols, is presented in this 

work. Another terrestrial biomarker, the long chain n-alkanes, was also quantified, showing 

the same general pattern than the long chain n-alcohols but with lower abundances  
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The general trend of concentration estimates of the specific sedimentary compounds agrees 

well with 230Th-normalized fluxes calculated from measurements in Site 1240 (31). 
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Figure captions 

 

Figure 1. Records from ODP Site 1240 comparing marine productivity, dust inputs and 

circulation/ventilation proxies over the last 40 ka. (A) δ18O of planktonic foraminifera 

Globigerinoides ruber (plotted for stratigraphic purposes). (B) Dust inputs based on the 

concentration of the terrestrial biomarker C26-alcohol (brown line) and 232Th fluxes from 

nearby core TTN013-PC72 (30). (C) Concentrations of the marine biomarker C37 alkenones 

as a proxy for coccolithophore production.  (D) Concentrations of the marine biomarker 

brassicasterol as a proxy for diatom production. (E) δ13C of the thermocline-dwelling 

foraminifera N. dutertrei (22) as an indicator of the influence of waters from subantarctic 

origin (green line) and deep thermocline seawater δ18O (DT- δ18Osw) reconstruction as a 

proxy for salinity changes and upwelling intensity (22). Triangles on the top axis mark 

AMS 14C dates. Coloured bar marks the last glacial/interglacial transition. 

 

Figure 2. Comparison of Site 1240 records with other available climate records. (A) 

Brassicasterol/(Brassicasterol + C37 alkenones) ratio as an indicator of the relative 

abundance of diatoms over coccolithophores. (B) δ13C of the thermocline-dwelling 

foraminifera N. dutertrei. (C) Deep thermocline seawater δ18O (DT- δ18Osw) 

reconstruction. (D) Intermediate-water Δ14C record from Baja California as a proxy for 

deep ocean ventilation (37). (E) Opal flux from Antarctic core TN057-13PC as a proxy for 

upwelling in the Southern Ocean (36). (F) Atmospheric CO2 concentration recorded in 

Antarctic ice cores (39). Coloured bars represent periods of enhanced deep water 
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ventilation (low Δ14C values), resumption of Antarctic upwelling (high opal fluxes) and 

greater impact of high latitude waters in the thermocline waters of the EEP.  

 

 

  


