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Marinobacter adhaerens HP15 is the type strain of a newly identified marine species, which 
is phylogenetically related to M. flavimaris, M. algicola, and M. aquaeolei. It is of special in-
terest for research on marine aggregate formation because it showed specific attachment to 
diatom cells. In vitro it led to exopolymer formation and aggregation of these algal cells to 
form marine snow particles. M. adhaerens HP15 is a free-living, motile, rod-shaped, Gram-
negative gammaproteobacterium, which was originally isolated from marine particles sam-
pled in the German Wadden Sea. M. adhaerens HP15 grows heterotrophically on various 
media, is easy to access genetically, and serves as a model organism to investigate the cellu-
lar and molecular interactions with the diatom Thalassiosira weissflogii. Here we describe the 
complete and annotated genome sequence of M. adhaerens HP15 as well as some details on 
flagella-associated genes. M. adhaerens HP15 possesses three replicons; the chromosome 
comprises 4,422,725 bp and codes for 4,180 protein-coding genes, 51 tRNAs and three 
rRNA operons, while the two circular plasmids are ~187 kb and ~42 kb in size and contain 
178 and 52 protein-coding genes, respectively. 

Introduction 
Strain HP15 (DSM 23420) is the type strain of the 
newly established species Marinobacter adhaerens 
sp. nov. and represents one of 27 species currently 
assigned to the genus Marinobacter [1]. Strain 
HP15 was first described by Grossart et al. in 2004 
[2] as a marine particle-associated, Gram-
negative, gammaproteobacterium isolated from 
the German Wadden Sea. The organism is of inter-
est because of its capability to specifically attach in 
vitro to the surface of the diatom Thalassiosira 
weissflogii-inducing exopolymer and aggregate 
formation and thus generating marine snow par-
ticles [3]. Marine snow formation is an important 
process of the biological pump, by which atmos-
pheric carbon dioxide is taken up, recycled, and 
partly exported to the sediments. This sink of or-
ganic carbon plays a major role for marine biogeo-

chemical cycles [4]. Several studies reported on 
the formation and properties of marine aggregates 
[5-8]. Although it was shown that heterotrophic 
bacteria control the development and aggregation 
of marine phytoplankton [3], specific functions of 
individual bacterial species on diatom aggregation 
have not been explored thus far. 
A better understanding of the molecular basis of 
bacteria-diatom interactions that lead to marine 
snow formation is currently gained by establish-
ing a bilateral model system, for which M. adhae-
rens sp. nov. HP15 serves as the bacterial partner 
of the easy-to-culture diatom, T. weissflogii [3]. 
Herein, we present a set of features for M. adhae-
rens sp. nov. HP15 (Table 1) together with its an-
notated complete genomic sequence, and a de-
tailed analysis of its flagella-associated genes. 
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Classification and features 
M. adhaerens sp. nov. strain HP15 is a motile, 
Gram-negative, non-spore-forming rod (Figure 1). 
Based on its 16S rRNA sequence, strain HP15 was 
assigned to the Marinobacter genus of Gammapro-
teobacteria. Two other Marinobacter species were 
identified based on their interactions with euka-
ryotes - M. algicola isolated from dinoflagellate 
cultures [20] and M. bryozoorum derived from 

Bryozoa [21]. The 16S rRNA gene of strain HP15 is 
most closely related to those of the type strains of 
M. flavimaris (99%), M. salsuginis (98%) and M. 
algicola (96%). These four type strains form a dis-
crete cluster in the phylogenetic tree (Figure 2). In 
contrast, DNA-DNA hybridization experiments 
revealed that the genome of M. adhaerens sp. nov. 
HP15 showed about 64% binding to that of M. fla-
vimaris [1], which is below the generally accepted 
species differentiation limit of 70% [25]. 

 

 
Figure 1. Transmission electron micrograph of M. adhaerens sp. nov. strain HP15. 

Chemotaxonomy 
Strain HP15 can grow in artificial sea water with a 
nitrogen-to-phosphorus ratio of 15:1 supple-
mented with glucose as the sole carbon source. In 
presence of diatom cells but without glucose, 
HP15 utilized diatom-produced carbohydrates as 
sole source of carbon. Furthermore, M. adhaerens 
sp. nov. HP15 differed from M. flavimaris and oth-
er Marinobacter species in a number of chemotax-
onomic properties, such as utilization of glycerol, 
fructose, lactic acid, gluconate, alanine, and gluta-
mate [1]. Additionally, strain HP15 showed a 
unique fatty acid composition pattern. 

Genome sequencing and annotation 
Genome project history 
M. adhaerens HP15 was selected for sequencing 
because of its phylogenetic position, its particular 
feature as a diatom-interacting marine organism 
[3], and its feasible genetic accessibility to act as a 
model organism. The respective genome project is 
deposited in the Genome OnLine Database [19] 
and the complete genome sequence in GenBank. 
The main project information is summarized in 
Table 2. 
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Figure 2. Maximum likelihood phylogenetic tree based on 16S rRNA sequences of M. adhaerens type strain (HP15) 
plus all type strains of the genus Marinobacter and the type species of the neighbor order Pseudomonadales. Se-
quence selection and alignment improvements were carried out using the Living Tree Project database [22] and the 
ARB software package [23]. The tree was inferred from 1,531 alignment positions using RAxML [24] with 
GTRGAMMA model. Support values from 1,000 bootstrap replicates are displayed above branches if larger than 
50%. The scale bar indicates substitutions per site. 

Growth conditions and DNA isolation 
M. adhaerens sp. nov. HP15 was grown in 100 ml 
Marine Broth medium [26] at 28°C. A total of 23 
µg DNA was isolated from the cell paste using a 
Qiagen DNeasy Blood and Tissue Kit (Qiagen, Hil-
den, Germany) according to the manufacturer’s 
instructions. 

Genome sequencing and assembly 
The Marinobacter adhaerens sp. nov. HP15 ge-
nome was sequenced at AGOWA (AGOWA GmbH, 
Berlin, Germany) using the 454 FLX Ti platform of 
454 Life Sciences (Branford, CT, USA). The se-
quencing library was prepared according to the 
454 instructions from genomic M. adhaerens sp. 
nov. HP15 DNA with a final concentration of 153 
ng/µl. Sequencing was carried out on a quarter of 
a 454 picotiterplate, yielding 258.645 reads with 

an average length of 405 bp, totaling to almost 
105 Mb. These reads were assembled using the 
Newbler assembler version 2.0.00.22 (Roche), re-
sulting in 253.285 fully and 4.763 partially assem-
bled reads, leaving 932 singletons, 226 repeats 
and 371 outliers. The assembly comprised 112 
contigs, with 40 exceeding 500 bp. The latter 
comprised more than 4.6 Mb, with an average con-
tig size of almost 116 kb and a longest contig of 
more than 1.2 Mb. Gaps between contigs were 
closed in a conventional PCR-based gap closure 
approach, resulting in a fully closed circular 
chromosome of 4.421.911 bp, and two plasmids of 
187.465 bp and 42.349 bp, respectively. Together 
all sequences provided 22.5× coverage of the ge-
nome. The error rate of the completed genome 
sequence is about 3 in 1,000 (99.7%). 
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Table 1. Classification and general features of M. adhaerens sp. nov. HP15 according to the MIGS recommendations [9] 
MIGS ID Property Term Evidence code 

  Domain Bacteria TAS [10] 

  Phylum Proteobacteria TAS [11] 

  Class Gammaproteobacteria TAS [12,13] 

 Current classification Order Alteromonadales TAS [12,14] 

  Family Alteromonadaceae TAS [15-17] 

  Genus Marinobacter TAS [1,18] 

  Species Marinobacter adhaerens TAS [1] 

  Type strain HP15 TAS [1] 

 Gram stain negative IDA 

 Cell shape rod-shaped IDA 

 Motility motile, single polar flagellum IDA 

 Sporulation non-sporulating NAS 

 Temperature range mesophilic IDA 

 Optimum temperature 34-38°C IDA 

 Salinity 0.4-10 g NaCl/l (optimum/growth within 1 day) IDA 

MIGS-22 Oxygen requirement strictly aerobic IDA 

 

Carbon source 

dextrin, Tween 40 and 80, pyruvic acid methyl 
ester, succinic acid mono-methyl-ester, cis-
aconitic acid, β-hydroxybutyric acid, γ-
hydroxybutyric acid, α-keto glutaric acid, α-keto 
valeric acid, D,L-lactic acid, bromosuccinic acid, 
L-alaninamide, D-alanine, L-alanine, L-glutamic 
acid, L-leucine and L-proline 

IDA 

 Energy source chemoorganoheterotrophic IDA 

MIGS-6 Habitat sea water IDA 

MIGS-15 Biotic relationship free-living and particle-associated TAS [2] 

MIGS-13 Culture deposition no. DSM 23420 IDA 

MIGS-14 Pathogenicity none NAS 

 Biosafety level 1 NAS 

 Isolation marine aggregates (0.1-1 mm) TAS [2] 

MIGS-4 Geographic location German Wadden Sea TAS [2] 

MIGS-4.1 Latitude 53°43’20’’N TAS [2] 

MIGS-4.2 Longitude 07°43’20’’E TAS [2] 

MIGS-4.3 Depth surface waters TAS [2] 

MIGS-4.4 Altitude sea level TAS [2] 

MIGS-5 
Sample collection 
time 15 June 2000 TAS [2] 

Evidence codes – IDA: inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement 
(i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed 
for the living, isolated sample, but based on a generally accepted property of the species, or anecdotal evi-
dence). These evidence codes are from the Gene Ontology project [19]. If evidence code is IDA, then the 
property was directly observed for a live isolate by one of the authors or an expert mentioned in the acknowl-
edgements. 
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Table 2: Genome sequencing project information for M. adhaerens sp. nov. HP15 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 
MIGS-28 Library used 454 pyrosequencing standard library 
MIGS-29 Sequencing platforms 454 FLX Ti 
MIGS-31.2 Sequencing coverage 22.5× pyrosequencing 
MIGS-30 Assemblers Newbler version 2.0.00.22 
MIGS-32 Gene calling method GLIMMER v3.02, tRNAScan-SE 
 

Genbank ID 

CP001978 (chromosome) 
 CP001979 (pHP-42) 
 CP001980 (pHP-187) 
 Genbank Date of Release September 18, 2010 
 GOLD ID Gi06214 
 NCBI project ID 46089 
 Database: IMG pending 
 Project relevance Marine diatom-bacteria interactions 

Genome annotation 
Potential protein-coding genes were identified 
using GLIMMER v3.02 [27], transfer RNA genes 
were identified using tRNAScan-SE [28] and ribo-
somal RNA genes were identified via BLAST 
searches [29] against public nucleotide databases. 
The annotation of the genome sequence was per-
formed with the GenDB v2.2.1 system [30]. For 
each predicted gene, similarity searches were per-
formed against public sequence databases (nr, 
SwissProt, KEGG) and protein family databases 
(Pfam, InterPro, COG). Signal peptides were pre-
dicted with SignalP v3.0 [31,32] and transmem-
brane helices with TMHMM v2.0 [33]. Based on 
these observations, annotations were derived in 
an automated fashion using a fuzzy logic-based 
approach [34]. Finally, the predictions were ma-
nually checked with respect to missing genes in 
intergenic regions and putative sequencing errors, 

and the annotations were manually curated using 
the Artemis 11.3.2 program and refined for each 
putative gene [35]. 

Genome properties 
The genome of strain HP15 comprises three circu-
lar replicons: the 4,422,725 bp chromosome and 
two plasmids of ~187 kb and ~42 kb, respectively 
(Table 3A and Figure 3). The genome possesses a 
56.9% GC content (Table 3B). Of the 4,482 pre-
dicted genes, 4,422 were protein coding genes, 
and 60 RNAs; 391 pseudogenes were also identi-
fied. The majority of the protein-coding genes 
(67.5%) were assigned with a putative function, 
while those remaining were annotated as hypo-
thetical proteins. The distribution of genes into 
COGs functional categories is presented in Table 4. 

Table 3A. Genome composition for M. adhaerens HP15 

Label Size (Mb) Topology RefSeq ID 
Chromosome§ 4.423 circular CP001978 
Plasmid pHP-187¶ 0.187 circular CP001980 
Plasmid pHP-42* 0.042 circular CP001979 

§ Number of protein-coding genes: 4,180; ¶ Number of protein-coding genes: 178; 
* Number of protein-coding genes: 52 
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Table 3B. Genome statistics for M. adhaerens HP15 
Attribute Value % of totala 
Genome size (bp) 4,651,725  
DNA Coding region (bp) 4,178,502 89.8 
DNA G+C content (bp) 2,644,970 56.9 
Number of replicons 3  
Extrachromosomal elements 2  
Total genesb 4,410  
tRNA genes 51 1.16 
5S rRNA genes 3 0.07 
16S rRNA genes 3 0.07 
23S rRNA genes 3 0.07 
Protein-coding genes 4,355 98.66 
Genes assigned to COGs 3,027 67.54 
Genes with Pfam domains 2,918 65.1 
1 Pfam domain 2,041 45.54 
2 Pfam domains 598 13.34 
3 Pfam domains 194 4.33 
4 or more Pfam domains 85 1.9 
Genes with signal peptides 765 17.07 
Genes with transmembrane helices 1,043 23.27 
1 transmembrane helix 341 7.61 
2 transmembrane helices 154 3.44 
3 transmembrane helices 72 1.61 
4 or more transmembrane helices 476 10.62 
Genes in paralogous clusters 570 12.72 
Genes with 1 paralog 364 8.12 
Genes with 2 paralogs 63 1.41 
Genes with 3 paralogs 26 0.58 
Genes with 4 or more paralogs 117 2.61 
Pseudo/hypothetical genes 391 8.72 
Conserved hypothetical genes 668 14.90 
Genes for function prediction 3,363 75.03 

a) The total is based on either the size of the genome in base 
pairs or the total number of protein coding genes in the anno-
tated genome. 
b) Also includes 54 pseudogenes and 5 other genes. 

Flagella-associated gene clusters of 
M. adhaerens HP15 
Because M. adhaerens HP15 was experimentally 
shown to adhere to diatom cells, gene clusters cod-
ing for secretion, assembly, and mechanistic func-
tion of the polar flagellum were analyzed in detail 
(Figure 4). Besides several other chemotactic me-
chanisms and various cell surface interactions, bac-
terial flagella and other cell appendages had pre-
viously been shown to be instrumental for chemo-
tactic movement towards and adhesion to biotic 
surfaces [36,37]. The amino acid sequences of pro-
teins encoded by the three identified gene clusters 
showed significant similarities to orthologous and 
experimentally well-described gene products of P. 

aeruginosa PAO1 and various other bacterial spe-
cies as determined by BLASTP algorithm compari-
son using the Blosum 62 substitution matrix [29]. 
Not surprisingly, hook and motor switch complex 
components were most conserved. However, gene 
products involved in flagellar filament formation 
encoded by Cluster II also showed 53 to 78% simi-
larity to the respective PAO1 proteins. Mutagenesis 
of flagella-associated genes of M. adhaerens HP15 
will be carried out in the near future to study the 
role of flagella in bacteria-diatom interactions and 
to further our understanding of the cell-to-cell 
communication between those organisms. 
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Figure 3. Graphical circular maps of the genome and the two plasmids of HP15. From outside to the center: Genes on forward strand (color by COG 
 categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 
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Table 4. Number of genes associated with the 21 general COG functional categories 

Code Value %agea Description 

J 162 3.7 Translation 

A 0 0 RNA processing and modification 

K 161 3.6 Transcription 

L 132 3 Replication, recombination and repair 

B 0 0 Chromatin structure and dynamics 

D 32 0.7 Cell cycle control, mitosis and meiosis 

Y 0 0 Nuclear structure 

V 0 0 Defense mechanisms 

T 199 4.5 Signal transduction mechanisms 

M 151 3.4 Cell wall/membrane biogenesis 

N 166 3.8 Cell motility 

Z 0 0 Cytoskeleton 

W 0 0 Extracellular structures 

U 0 0 Intracellular trafficking and secretion 

O 127 2.9 Posttranslational modification, protein turnover, chaperones 

C 192 4.3 Energy production and conversion 

G 82 1.9 Carbohydrate transport and metabolism 

E 254 5.7 Amino acid transport and metabolism 

F 51 1.1 Nucleotide transport and metabolism 

H 97 2.2 Coenzyme transport and metabolism 

I 141 3.2 Lipid transport and metabolism 

P 138 3.1 Inorganic ion transport and metabolism 

Q 76 1.7 Secondary metabolites biosynthesis,  transport and catabolism 

R 330 7.5 General function prediction only 

S 251 5.7 Function unknown 

- 285 6.4 multiple COGs 

 3,027 68.6 Total 

- 1,383 31.4 Not in COGs 

a) The total is based on the total number of protein coding genes in the annotated genome 
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Figure 4. Schematic presentation of the three flagella-associated gene clusters of M. adhaerens HP15 coding for 
the basal body, the filament, and the hook and motor switch complex. Identities to the respective orthologs in the 
genome of P. aeruginosa PAO1 are indicated by gray-scale code. Numbers of CDS are shown below gene names. 
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