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 Summary  

 

Sexually transmitted human papillomavirus (HPV) infections cause most 

cervical cancers. The inability to propagate HPV in vitro has led to the 

development of alternative approaches to antigen production for vaccine 

development. In the present work we describe a low-cost efficient production of 

HPV virus-like particles (VLPs) in a non-fermentative system based on 

baculovirus and Trichoplusia ni (T. ni) insects. The L1 protein from HPV 16 was 

expressed by a recombinant baculovirus in larva at levels that reached 18 to 21 

mg per g of fresh insect biomass. It represents about 2.5 times the L1 

production yields obtained per g of insect cells using the same recombinant 

baculovirus. Under electron microscopy, purified VLPs produced in larvae were 

indistinguishable from those produced in Sf-21 insect cell cultures, presenting 

identical shape and size. Immunization of mice with the insect-derived VLPs 

induced a potent immune response similar to that obtained with insect cells-

derived VLPs. The use of live insect larvae as “mini bioreactors” opens up the 

possibility of cost-effective production of a vaccine against cervical cancer 

produced by papillomavirus, with special application in human populations 

where production costs restrain their use.  
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Introduction 

Human papillomavirus (HPV) is recognized as the main causative agent of 

invasive carcinomas of the uterine cervix (Sigurdsson et al., 2007). Cervical 

cancer is the most common cancer affecting women in developing countries, 

where 80% of deaths caused by this type of cancer occur. Among other 

considerations, affordability and cost-effectiveness of vaccination are the most 

important factors for application of HPV vaccines in developing countries. Two 

HPV types, HPV16 and HPV18, account for 60–70% of all cervical cancer 

cases worldwide (Ho et al., 1998; Munoz et al., 2003). The inability to propagate 

HPV in vitro has led to the development of alternative approaches to antigen 

production for vaccine development (Carter et al., 1991; Rose et al., 1993; Xi 

and Banks, 1991). Successful development of papillomavirus vaccines is 

dependent upon the use of nondenatured, conformationally correct capsid 

antigens forming pentamers or VLPs (Bonnez, Rose, and Reichman, 1992; 

Christensen and Kreider, 1990; Christensen et al., 1990; Christensen et al., 

1992). 

The viral capsid is primarily composed of 72 pentamers (capsomers) of the 

major late L1 protein, in association with 12 or more copies of the L2 protein. 

The L1 pentamers have the intrinsic property of self-assembly into empty 

capsids, referred to as virus like particles (VLPs) (Hagensee, Yaegashi, and 

Galloway, 1993; Kirnbauer et al., 1992; Kirnbauer et al., 1993; Rose et al., 

1994; Zhou et al., 1993). VLPs are structurally and immunologically similar to 

infectious viruses, as determined by electron microscopy and their ability to bind 

conformation-dependent monoclonal antibodies (mAbs) (Kirnbauer et al., 1992). 

Conformational epitopes have been identified on the surface of HPV L1 VLPs 

(Christensen and Kreider, 1990). It is now well established that those epitopes 

are responsible for the activity of neutralizing antibodies (Christensen et al., 

1994; White et al., 1998; White et al., 1999) and it has been demonstrated that 

high levels of neutralizing antibodies can be generated after immunization with 

HPV VLPs (Harro et al., 2001). 
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Vaccines based on L1 capsid protein VLPs from several high risk HPV types 

have been proved to be effective against HPV infections. Raising high levels of 

neutralizing antibodies against each HPV type is believed to be the primary 

mechanism of protection, gained by vaccination. On June 8, 2006, the US FDA 

approved Gardasil, a prophylactic HPV vaccine from Merck. The vaccine 

showed protection against initial infection with the most common cancer 

inducers papillomaviruses, HPV types 16, 18, 6 and 11. GlaxoSmithKline 

obtained in 2007 the approval for another prophylactic vaccine targeting HPV 

types 16 and 18, known as Cervarix. Those vaccines are made up with 

recombinant protein L1, expressed in yeast or in insect cells by recombinant 

baculoviruses infection (Gardasil and Cervarix respectively), self-assembled 

into VLPs similar to the wild-type virus. The use of these production systems 

based on fermentation technologies are expensive which is one of the reasons 

that justify the elevated price of the vaccines in the market, (a complete round of 

vaccination costs around 450 $).  

In recent years, biotechnology has provided for the tools that allow the use of 

living organisms to produce recombinant vaccines with high efficiency but at a 

very low production costs. One of these alternatives is the use of insects as 

bioreactors (Liu, DeCarolis, and Beek, 2007). Recently, It has been described 

the obtention of rotavirus VLPs from infected Spodoptera frugiperda larvae 

using baculovirus, opening the option to get vaccines against rotavirus from 

insect larvae (Molinari, Peralta, and Taboga, 2008). There are other examples 

of recombinant subunit vaccines against infectious agents obtained from insects 

used as bioreactors (Chimeno Zoth et al., 2009; Hu, Yao, and Wu, 2008; 

Johansson, Price, and Kilbourne, 1995; Matsuoka et al., 1996; Pang et al., 

2002). We currently have in clinical studies an insect larvae-derived 

recombinant subunit vaccine against RHDV (Perez-Filgueira et al., 2007).  

 

Our main goal in this work was to exploit all possibilities of insects as 

biofactories to produce an effective HPV vaccine, always thinking in a dramatic 

reduction of production costs. In the present study we describe the expression 

of the L1 protein from HPV type 16 in Trichoplusia ni larvae. L1 protein self-
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assembled forming VLPs in the larvae tissues and the immune response of 

larva-derived VLPs compared to that induced by VLPs obtained in insect cell 

cultures in immunized mice was similar.  

 

 

Experimental procedures 
 

Construction of the Baculovirus expression vector 
HPV-16 L1 cDNA (GenBank Accession AF472508) was provided by Dr. 

Robert D. Burk (Albert Einstein College of Medicine, New York, USA). For 

cloning into the pFastBacTM1 vector (Invitrogen), L1 was amplified by PCR with 

the following primers in order to introduce the Afl III and Not I sites: 5’-

CCACATGTCTCTTTGGCTGCCTAGCG-3’ and 5’-GCGGCCGCTCGAGTTA 

CAGCTTACGTTTTTTGC-3’. The L1 gene was cloned into the pGEM-T vector 

(Promega), digested with Not I, treated with alkaline phosphatase and 

introduced into the pFastBacTM1 vector of the Bac-to-Bac	   Baculovirus 

Expression System (Invitrogen). The final clone was sequenced, and used to 

transfer DH10Bac E. coli cells for the transposition into the recombinant 

bacmid. A minimum of 1 µg of this bacmid was used to transfect 1 x 106 

Spodoptera frugiperda Sf-21 cells using Cellfectin Reagent (Invitrogen). The P1 

viral stock was obtained after 72 h of incubation at 28ºC. The baculovirus was 

amplified following the manufacturer’s instructions. 	  

Larvae and insect cell infection 

Trichoplusia ni (T. ni, Cabbage looper) larvae were reared under level-2 

biosafety conditions following previously described methodology (Perez-

Filgueira et al., 2006). For all experiments, fifth-instar larvae were injected with 

the recombinant baculoviruses near the proleg (forward the body cavity) using 

10 µl of different pfu/larva doses, as indicated on each experiment. At different 

postinfection times, larvae were collected, immediately frozen and kept at -20ºC 

until processed. 
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Preconfluent monolayers of Sf-21 insect cells were infected with 10 pfu (plaque 

forming units) of the recombinant baculoviruses and harvested 72 hpi (hours 

post-infection). 

Western blot and Coomassie staining analysis 
T. ni larvae were homogenized in 10 vol of phosphate buffered saline 0.5 M 

NaCl, pH 7.4 (PBS-HS) and sonicated for 20 seconds. After centrifugation at 

20000 g for 5 min, the supernatant was considered the soluble fraction. Sf-21 

cells were disrupted with  RIPA extraction buffer (150 mM NaCl, 1% NP-40, 

0.1% SDS, 50 mM Tris pH 8,5 mM β-mercaptoethanol and a protein inhibitor 

cocktail (Complete, Roche, Germany), kept on ice for 30 min, centrifuged at 

5000 rpm for 5 min, and the supernatant was collected for further assays. 

Proteins were separated on 10% SDS (w/v) polyacrylamide gels (SDS-PAGE) 

and were stained with Coomassie Brilliant Blue G-250 (BioRad) or transferred 

onto nitrocellulose membranes (Hybond C, GE Healthcare). The membranes 

were blocked overnight in PBS with 0.1% (v/v) Tween 20 (PBS-T) and 4% 

skimmed milk (PBS-TM), and incubated for 1 h with a primary antibody, Cam 

Vir-1 (Abcam) diluted 1:25000 in PBS-TM. After 2 washes of 10 min in PBS-T, 

membranes were incubated for 1 h with a peroxidase-conjugated rabbit anti-

mouse IgG (Sigma) diluted 1:25000 in PBS-TM. After washing, the specific 

signal was detected using the Advanced ECL system (GE Healthcare) 

according to the manufacturer’s instructions. 

ELISA quantification of HPV-16 L1 protein 
Infected or uninfected larvae or insect cells soluble protein extracts were 

pelleted at 1500 rpm. Samples were resuspended in 10 vol (w/v) of PBS-HS, 

sonicated for 10 s, and centrifuged at 20000 g for 5 min at 4ºC to remove 

cellular debris. Samples were incubated in a 96 well polyvinyl chloride microtiter 

plate (Costar, Corning) overnight at 4ºC. Wells were blocked with PBS-TM 1% 

skimmed milk for 1 h at RT, washed three times with PBS-T and incubated with 

anti-L1 H16.V5 mAb (provided by Neil Christensen, Pennsylvania State 

University) at 1:500 in PBS-TM (1 h at 37ºC). Wells were washed three times 

with PBS-T and incubated with a 1:1500 dilution of a rabbit anti-mouse IgG-
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peroxidase conjugate in PBS-TM (1 h at 37ºC). After three washes with PBS-T, 

plates were developed with ABTS [2, 2’-azino-bis (3-ethylbenzthiazoline-6-

sulfonic) acid] (Roche). The reaction was read at 405 nm in a microtiter plate 

reader (Multiskan Ex, Labsystems). The standard curve to calculate the amount 

of recombinant protein with H16.V5 mAb was made by plating purified VLPs 

produced in insect cells by baculovirus infection, as described below. VLPs 

were used in the range of 30-150 ng per well diluted in 100 mM PBS pH 7.4 

buffer. Larvae extracts containing L1 protein were diluted (1:1000 to 1:8000) to 

fit within the linear range of the standards 

Purification of VLPs 
Insect cells 

For the production of VLPs, Sf-21 insect cells were grown to a density of 1-1.2 x 

106 cells/mL on BD BaculoGold TNM-FH Insect Medium (BD Biosciences) 

supplemented with 50 µg/mL gentamycin, 50 units/mLe penicillin and 50 µg/mL 

streptomycin in 75 cm2 flasks. Cells were then infected at a m.o.i (multiplicity of 

infection) of 1-5 and 72 hpi (hours post-infection) cells were pelleted by 

centrifugation at 1000 g for 5 min.  

500 mg of pelleted infected insect cells were resuspended in 8 mL PBS-HS and 

sonicated for 2 min. Extracts were layered onto a 40% sucrose cushion and 

centrifuged in a swinging bucket rotor (Kontron TST4114) for 2 h at 140000 g at 

4ºC. The resulting pellets were resuspended in 10 mL of a 27% (w/v) CsCl in 

PBS-HS solution and centrifuged for 20 h at 260,000 g in a swinging bucket 

rotor at 10ºC. 500 µL fractions were collected and their densities were 

measured with a refractometer. The desired fractions were dialyzed overnight 

against PBS-HS. 

Larvae 

For extraction of larvae VLPs, 500 mg of fresh weight larvae were homogenized 

in a blender with 8 mL of PBS-HS and sonicated for 2 min. After centrifugation 

at 20000 g for 5 min at 4ºC, supernatants were layered onto a 40% sucrose 
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cushion. The rest of the protocol was similar to that used for insect cell VLP 

extraction. 

Electron microscopy and immunogold labelling 

For negative staining, 20 µL of samples of the positive fractions in the CsCl 

gradient were dialyzed against PBS-HS on floating filter pads (0.2 µm pore size, 

Millipore). Samples were placed onto carbon-coated copper grids (400 mesh 

size) covered with Formvar membrane and stained with 1% uranyl acetate 

solution for 1 min. Samples were inspected under a ZEISS EM 910 

transmission electron microscope (TEM) operating at 60 and 80 kV.	  

Analysis of L1 assembly by sucrose sedimentation 

To identify different assembly forms of L1, soluble extracts from insect cells and 

larvae (200 mg/ 2mL PBS-HS) were prepared as previously described for 

western blotting. Samples were loaded onto linear 10 to 65% (w/v) sucrose 

gradients. After 2 h centrifugation at 150000 g in a swinging bucket rotor, 20 

fractions of 500 µL were collected, determined their density by refractometry 

and analysed by ELISA with the Cam Vir-1 (Abcam) antibody. Sedimentation of 

L1 capsomers was calibrated with catalase from bovine liver (Sigma) as 

sedimentation marker (11.3S). 

Immunization of animals 
Female Balb/c mice were purchased from Harlan Ibérica (Barcelona, Spain). 

Groups of 8-week-old mice (n= 6) were immunized by intraperitoneal injection 

(0.2 mL) with CsCl purified VLPs from larvae (as described before) in presence 

of complete Freund’s adjuvant. The amount of VLPs injected was 5 µg per 

mouse. As a negative control, a group of mice (n= 6) was intraperitoneally 

immunized with larvae extracts from BacNi (baculovirus with no insert) infected 

larvae as negative control. As a positive control, a group of mice (n= 6) was 

intraperitoneally immunized with 5 µg of VLPs from insect cell cultures purified 

by CsCl. Animals were boosted at days 21 and 35 (using incomplete Freund's 

Adjuvant). Blood samples were collected from the facial vein at days 0, 21, 35 

and 50. Pooled sera were titrated against purified VLPs produced in yeast 

(Gardasil, Merck) by ELISA in microtitre plates  coated overnight at 4ºC with 50 
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µL of yeast-derived VLPs (100 ng of L1-VLPs per well) diluted in PBS (pH 7.4). 

Subsequently, the wells were blocked 1 h at room temperature with PBS-TM 

and then incubated 1 h at 37ºC with serial dilutions of pooled sera in PBS-TM. 

Then, plates were incubated for 1 h at 37ºC with a goat anti-mouse IgG 

antibody horseradish peroxidase conjugate. Washes were performed between 

each step with PBS-T. Plates were developed by adding ABTS. Absorbance at 

405 nm was measured in a microtiter plate reader. Antibody titres were 

expressed as the highest serum dilution to yield twice the absorbance mean of 

pre-immune sera.	  
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Results 

Expression of HPV-16 L1 in Sf-21 cells and insect larvae 

HPV-16 L1 ORF was cloned into the baculovirus transfer vector pFasBac giving 

the plasmid named pL1, which was used to obtain a recombinant baculovirus 

(BacL1) as described in Methods. To study the expression of the L1 protein in 

T. ni insect larvae, SDS-PAGE of soluble and insoluble protein larvae fractions 

was made using as a control an insect cell His-tag L1 protein purified by affinity 

chromatography. Coomassie blue-stained gels showed that L1 was easily 

identified as a major band with mobility around 55 kDa (Fig. 1a). Most L1 

protein was detected in the soluble fraction with identical mobility to that 

observed with L1 protein expressed in insect cells. The specificity of the 

expressed protein was further characterized by western blot using the Cam Vir-

1 antibody (Fig. 1b). 

Once the L1 expression was demonstrated, the optimal L1 expression 

conditions induced by BacL1 in larvae were analized.. Fifth instar larvae were 

inoculated with three different doses of BacL1 virus. Samples were processed 

at different times post-inoculation and analyzed by western blot. A 55 KDa band 

corresponding to the L1 protein was accumulated in inoculated larvae in a time-

dependent manner (Fig. 1c). A specific ELISA quantification also confirmed 

these observations (Fig. 1c), determining optimal conditions for L1 expression 

with an infection dose of 4 x 104-105 pfu/larva at 72 hpi. At later post-inoculation 

time the larvae productivity use to drop dramatically.  

In order to determine the larvae expression efficiency we compared it with the 

insect cell commercial system and a recently described method of chloroplast 

transformation of tobacco for L1 vaccine production (Fernandez-San Millan et 

al., 2008) was carried out. As it is shown in figure 1d, the L1 recombinant 

protein reached accumulation levels ranging from 18 to 21 mg per g of insect 

biomass (about four insect larva). Insect larvae produced about 2.5 and 5 times 

more L1 protein than insect cell cultures and transgenic chloroplasts 

respectively per biomass unit. Therefore, insect larvae are the most efficient 

expression system for L1 protein described to date.  
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Characterization of larvae produced virus-like particles. 

Since a successful development of a papilloma vaccine is dependent upon 

conformationally correct capsid antigens forming pentamers or VLPs, we 

investigated the L1 self-assembling in larvae tissues. For that purpose, total 

soluble protein fractions obtained from BacL1-infected larvae were used for 

HPV VLPs purification using CsCl and sucrose gradients. A clear antigenic 

peak measured by ELISA, using the Cam Vir-1 anti-L1 mAb as primary 

antibody, was detected in the fraction 4, collected from the CsCl gradient both 

with material derived from insect cell cultures or insect larvae (Fig. 2a). L1 

protein was mainly present in CsCl gradient fractions at a density of 1.27 g/mL, 

suggesting the presence of VLPs. In both systems the peaks of L1 protein 

derived from insect cells and larvae overlapped indicating that complex 

structures were very similar in densities (Fig. 2a). Fractions where the maximum 

L1 was found either in cells or in larvae extracts were also positive in 

immunoblot assay (Fig. 2b). 

Analysis of fraction 4 of the CsCl gradient by electron microscopy using 

negative staining showed structures that correspond in shape and size to 

previously described HPV VLPs. They consisted of spherical particles of about 

55 nm in diameter with a regular array of capsomeres. Smaller, larger, and 

irregular spheres as well as tubular structures were also seen (Fig. 2c). These 

structures have been already described by others in plants (Biemelt et al., 2003; 

Maclean et al., 2007) but also in insect cells (Le Cann et al., 1995; Volpers et 

al., 1994). 

Soluble proteins from infected larvae and insect cell cultures were also 

submitted to sucrose sedimentation analysis in order to address L1 self-

assembly patterns. Gradient fractions were collected and analyzed by ELISA 

with the Cam Vir-1 mAb. Results revealed that the L1 antigen assembled into 

similar structures independently of the production method used (insect cell 

cultures or larvae), presenting overlapping peaks of L1 distribution at specific 
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sucrose densities measured by refractometry (Fig. 2d). Either there were not 

capsomers in fraction 17 nor monomers in fraction 20. 

	  

Immunogenicity of purified HPV 16 VLPs produced in insect larva 

 To investigate the immunogenicity of larvae-derived HPV VLPs, mice (5 Balb/c 

per group) were intraperitoneally immunized with 5 µg of purified VLPs derived 

from larvae and the immune response was compared to that induced by similar 

preparations derived from Sf-21 insect cells. Animals were boosted at days 21 

and 35 after the first vaccine dose.  The L1-specific humoral responses in mice 

were analyzed by L1 VLPs-based ELISA using native yeast-derived VLPs as 

antigen to coat the plates (Fig. 3). At day 50 post inoculation, all immunized 

animals reached titres higher than 1/10000. In the case of the animals 

immunized with the purified VLPs from larvae the titres were even higher than 

those derived from mice immunized with insect cells derived VLPs (Fig. 3). All 

control mice immunized with extracts from infected larvae with a non-related 

baculovirus and equally processed did not show any specific immune response 

cross-reactive with L1 protein (Fig. 3).  
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Discussion 

HPV infection is a necessary factor in the development of nearly all cases of 

cervical cancer. Although the widespread use of Pap tests (Papanicolau test) 

has reduced the incidence and lethality of cervical cancer in developed 

countries, the disease still kills several hundred thousand women per year 

worldwide. More than any other cancer, cervical cancer reflects striking global 

health inequity. It is the second most common cancer among women worldwide, 

with about 493,000 new cases diagnosed annually. Of 274000 deaths due to 

cervical cancer each year, more than 80% occur in developing countries, and 

this proportion is expected to increase to 90% by 2020 (Agosti and Goldie, 

2007). Affecting relatively young women, it is the largest single cause of years of 

life lost by cancer in the developing world. Considerations for policymakers 

debating the use of HPV vaccine in any particular country include among other 

factors cost-effectiveness of vaccination relative to other programs competing 

for resources.	  The factors with the greatest influence on the cost-effectiveness 

of vaccination will be the price of the vaccine and the costs of a program to 

reach adolescents. These make urgent to develop lower production costs HPV 

vaccines for developing countries. The main objective of this work was the 

search for an HPV vaccine production technology that facilitate a potential 

dramatic cost reduction in order to facilitate  its application in developing 

countries or extend the vaccination to other susceptible population. For such 

purpose, we have explored in this work the use of a non-fermentative system 

based on insects (T. ni larvae) as biofactories in combination with a 

recombinant baculovirus to produce HPV VLPs. 

 

The major structural protein of the HPV capsid, L1, is the antigen of choice for 

the development of prophylactic vaccines. It is well known that expression of the 

L1 by recombinant baculoviruses in insect cell cultures is sufficient for the 

formation of VLPs which are highly immunogenic (Rose et al., 1993). 

Interestingly one of the two approved prophylactic HPV vaccines is expressed 

in insect cell cultures by fermentation technology by recombinant baculoviruses 

(Cervarix). However, although this technology platform is very efficient in 
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recombinant protein production and generates highly immunogenic self-

assembled L1 derived VLPs, the production costs increase the vaccine price at 

levels that can not be easily applied for HPV prevention programs in developing 

countries. To overcome this problem, other heterologous systems to produce L1 

have been developed as bacteria, eukaryotic cell cultures or transgenic plants 

(Aires et al., 2006; Fernandez-San Millan et al., 2008; Fraillery et al., 2007; 

Heino, Dillner, and Schwartz, 1995; Kim et al., 2007; Maclean et al., 2007). 

However, none of them allow a significant cost reduction that would boost its 

wide use in developing countries. 

It has been extensively demonstrated that the larvae expression system is a 

suitable method for inexpensive production of large amounts of recombinant 

proteins for either vaccine or diagnostic use (Barderas et al., 2000; Ferrer et al., 

2007; Gomez-Sebastian et al., 2008; Lopez et al., 2005; Perez-Filgueira et al., 

2006; Perez-Filgueira et al., 2007). In this work we have demonstrated the high 

yield production of L1 protein in T. ni larvae that self-assembles forming the 

same type of VLPs that are currently used in vaccine formulations against this 

important infectious disease. One gram of infected insect biomass is able to 

produce in optimal conditions 18-21 mg of totally soluble recombinant L1 protein 

This means a 2.5 times the L1 production yields obtained in insect cell cultures 

and 5 times more productivity than transplastomic tobacco plants per biomass 

unit (Fernandez-San Millan et al., 2008).  Another interesting feature of the 

insect platform technology is that the system requires lower amounts of 

baculovirus inocula than the insect cell cultures for protein expression 

optimization. This is of great interest from a practical point of view since the 

production cost of the baculovirus stocks could be also reduced. Furthermore, 

the necessity to generate high titre virus stocks and the difficulty to get them 

would be also avoided with the larvae expression system. Additionally, 

recombinant baculoviruses can be propagated in insect larvae without the need 

of insect cell cultures avoiding any possibility of the use of any animal 

compound (ie. animal sera) in the production process. 

The reactivity of the larva-derived L1 structures with the conformational-specific 

anti-HPV antibody H16.V5 mAb, strongly suggest a correct conformation of the 
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HPV VLPs generated in the larva system. Additionally, the data obtained from 

CsCl or sucrose sedimentation gradients related to sedimentation coefficient of 

L1 structures obtained from larva, as well as the electron microscopy 

observations, corroborates that VLPs formed are similar to that obtained by 

other vaccine production systems. As L1 protein expressed in insect cells, L1 

obtained by infected larvae was present in CsCl gradient fractions at a density 

of 1.27 g/mL, in which it is known that HPV VLPs migrates. In addition, as 

observed by sucrose gradient sedimentation, L1 structural pattern found in larva 

overlaps with that obtained in insect cell cultures. Electron microscopy negative 

staining of sedimentation fractions revealed also the presence of indistinguisible 

VLPs to that produced in insect cell cultures (Fig. 2c).  

Mice immunized with HPV VLPs derived from larva or insect cell cultures 

showed very good humoral immune responses, with antibody titers higher than 

1/10000 after two vaccine boosts. Up to date, capsomers are considered to be 

a cost-effective alternative to VLP-based vaccines because they can be 

produced in bacterial expression systems and because of their high degree of 

stability. However, it has been already demonstrated that VLPs induced, 

independently of the route of immunization, significantly higher titers of 

neutralizing antibodies than capsomers (Fligge et al., 2001). The insect  

expression system is a very competitive alternative to bacterial expression 

systems in terms of production costs, with the advantage of the insect cells in 

terms of facilitate high complex structures formation such L1 VLPs instead only 

capsomers as those produced in bacteria systems.  

For countries with a gross domestic product of less than $1000 per capita, the 

per-dose cost may need to be as low as $1 to $2 to make vaccination both cost-

effective and affordable (Agosti and Goldie, 2007). Without a doubt, one of the 

greatest barriers to the introduction of this vaccine is price. Using the larvae 

expression system, the high production costs of current HPV vaccines would be 

dramatically reduced, allowing their distribution in developing countries, where 

the highest incidence of this disease occurs. It is important to remark that with 

every 5-year delay in bringing vaccination to developing countries, 1.5 million to 

2 million more women will die (Agosti and Goldie, 2007).   
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Another concern is that by eliminating the two major oncogenic HPV genotypes 

through vaccination, current HPV vaccines target only two oncogenic types 

(albeit those responsible for  70% of cervical cancers), the remaining oncogenic 

types will become more common to fill a niche previously occupied by HPV16 

and HPV18, thereby reducing the impact of the current vaccines on cervical 

cancer. However a low-cost multivalent HPV vaccine eliciting protection against 

a broad spectrum of HPV types would be particularly useful where national 

screening programs are currently not instituted. Our approach could be the clue 

to afford the challenge of a viable worldwide vaccination because its simplicity, 

easily testing and manufacture of such complex vaccines at a low cost. The 

scalability of vaccine production in the larva platform is immediate. In less than 

5 weeks it is possible to generate a new recombinant baculovirus and initiate a 

massive production in larva without minor optimization procedures. 
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Figure 1. L1 protein expression. (a) Coomassie and Immunoblot analysis of L1 

protein expression in infected larvae. BacNi is used as negative control of the 

infection. (b) Coomassie of soluble (1) and insoluble (2) proteins. Proteins were 

extracted from 0.5 mg larvae fresh weight/well were load. Purified 6xHis-L1 

expressed in insect cells (L1) was used as a positive control (2 µg). (c) Time-

dose assays measured by ELISA  and immunoblot. (d) L1 accumulation in 

larvae analysed by ELISA. The result is the average of the analysis of three 

independent larvae batches infected with baculovirus. As comparison, 

expression in chloroplast transgenic tobacco plants and baculovirus-infected 

insect cells is also shown. In insect cells 1 g of pelleted cells comes from 55 ml 

of culture.  

 

Figure 2. Purification of VLPs from Trichoplusia larvae. (a) Detection of L1 by 

ELISA in fractions of a CsCl gradient (fraction 1 corresponds to the bottom 

tube). The Cam Vir-1 anti-L1 mAb was used as primary antibody. The dotted 

line indicates the density of the different fractions. (b) Immunoblot of the 

different fractions of larvae extracts using the same antibody. The band 

corresponds to the L1 monomeric form. (c) Electron microscopy of negatively 

stained VLPs from fraction 4 of the CsCl gradient. I and III from larvae extracts; 

II and IV from insect cell extracts. (d) Sucrose sedimentation analysis of L1 

derived from larvae extracts, detected by ELISA with the Cam Vir-1 mAb. 

Soluble proteins from larvae and insect cells were fractionated by sucrose 

gradient centrifugation (fraction 1 corresponds to the tube bottom). The dotted 

line indicates the refractive index of the different fractions. The arrow indicates 

the fraction in which the standard (corresponding to capsomers’ size) migrated. 
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Figure 3. Analysis of the L1-induced antibody response in mice. Titres of 

antibodies induced by larvae-derived L1 protein against native yeast-derived 

VLPs. Balb/c mice were intraperitoneally immunized. Groups of mice 

immunized with A: partially purified VLPs from larvae; B  partially purified 

negative control-larvae extracts; C: partially purified VLPs from insect cells. 

Data are presented as measures for individual mouse and standard errors (n=2) 

are the result of two repetitions.  

 


