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The extraction of antioxidant compounds from soybeans fermented with Aspergillus oryzae 

was optimised using a factorial design. A kinetic study of the total phenolic production and 

DPPH scavenging activity was first performed at the points selected in the factorial design. 

In both cases, the experimental profiles were fitted to a modified first-order kinetic model.  

To investigate the combined effects of temperature and solvent concentration on the 

extraction, the parameters obtained from the fitted kinetic models were used as response 

variables in a rotatable second-order design with quintuple replications in the centre of the 

experimental domain. The results obtained indicate that temperature had the most 

significant effect. The response surfaces show a maximum in the experimental domain 

studied. The optimum conditions for the extraction of total phenolic content were 65.3oC 

and 73.1% ethanol, in which 56.2 mg of GAE/g were predicted. A scavenging activity of 

81.6% DPPH was predicted at the optimum conditions of 61.6oC and 60% ethanol. 

 

 

Keywords:  Total phenolic; DPPH; soybean; Aspergillus oryzae; antioxidant extraction;  

factorial design; kinetics optimization. 
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Antioxidant compounds play an important role in human health.  A diet rich in foods 

containing molecules with antioxidant properties can reduce the risk of human diseases 

(Halliwell, & Gutteridge, 1999; Tsao, & Deng, 2004).  However, the growing concern 

about potential health hazards caused by the use of synthetic antioxidants in food products 

has led to the scrutiny of natural antioxidants (Wettasinghe, & Shahidi, 1999).  Among 

these, phenolic compounds, which are widely found in plants, are the most promising group 

of molecules (Pratt, & Hudson, 1990; Cuppett, & Schnepf, 1997; Shahidi, & Wanasundara, 

1997). Soybeans and their products are nutritionally rich foodstuff and they contain various 

amounts of phytochemicals (isoflavones, saponins, phytic acid, phytosterols, Kunitz and 

Bowman-Birk trypsin inhibitors, phenolic acids) that show functional, antioxidants and 

radical scavenging properties (Pratt, & Birac, 1979; Hayes, Bookwalter, & Bagley, 1977; 

Da Silva Pinto, Lajolo, & Genovese, 2005; Wardhani, Vázquez, & Pandiella, 2008; Isanga, 

& Zhang, 2008; Hubert, Berger, Nepveu, Paul, & Daydé, 2008).  In some cases the 

antioxidant effect could be significantly enhanced through fermentation using aspergilli 

(Romero, Doval, Sturla, & Judis, 2004; McCue, & Shetty, 2003; Esaki, Onozaki, 

Kawakishi, & Osawa, 1997; Lin, Wei, & Chou, 2006). 

 

For a practical application in the food industry antioxidants should be first extracted.  The 

efficiency of the extraction process affects the antioxidant capacity of the extract 

(Hinneburg, & Neubert, 2005).  Studies on the extraction of the antioxidant activity in 

unfermented soybeans and vine have reported a variation of the total phenolic concentration 

when different solvents were used, which is due to differences in their polarities (Naczk, & 

Shahidi, 2006; Calliste, Trouillas, Allais, Simon, & Duroux, 2001).  Limited information is 
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available regarding the extraction of antioxidant compounds in fermented soybeans.  

However, significant higher concentration of phenolics was obtained after fermentation 

when compare to unfermented soybeans (McCue, & Shetty, 2003; Esaki, Onozaki, 

Kawakishi, & Osawa, 1997; Lin, Wei, & Chou, 2006; Wardhani, Vázquez, & Pandiella, 

2009).  A universal extraction protocol would be difficult to establish due to the complex 

composition of the beans and the structural diversity of the antioxidant compounds of the 

natural source.  The extraction efficiency is affected by multiple variables, amongst which 

temperature and the nature of the solvent are the most important factors, which may act 

dependently or independently (Liu, & Ang, 2000). 

 

Processes are commonly optimised using one-factor-at-a-time approaches.  Optimal 

conditions or interactions between variables cannnot be predicted with this methodology.  

This limitation can be overcome using experimental design methodologies (DOE; Box, 

Hunter, & Hunter, 1989; Akhnazarova, & Kafarov, 1982).  DOE is a collection of statistical 

and mathematical techniques that have been successfully used in developing, improving 

and optimizing bio-processes (Liyana-Pathirana, & Shahidi, 2005; Juntachote, Berghofer, 

Bauer, & Siebenhandl, 2006; Paz, Vázquez, Riobó, & Franco, 2006; Vázquez, González, & 

Murado, 2006; Bandeira, Tininis, Bolzani, & Cavalheiro, 2006).   

 

In this study, the optimal conditions for antioxidant extraction from soybeans fermented 

with Aspergillus oryzae were investigated using two complementary and sequential 

approaches.  A factorial design was initially proposed.  Kinetic analyses were then 

performed at the temperature-ethanol concentration points of the design.  The parameters 

obtained from the fits of the kinetic data to a modified first-order model were the dependent 
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variables to formulate the empirical equations of the second order design.  Finally, optimal 

conditions for a maximum antioxidant extraction were obtained from the response surfaces. 

 

MATHERIALS AND METHODS 

Microorganism 

Aspergillus oryzae was originally obtained from ABM Chemicals Ltd. (Woodley, Cheshire, 

UK).  A distilled water suspension of the fungi spores was kept at -30oC until used.  The 

volume of inoculum was 1.5 mL with a cell concentration of 1.2108 cells/mL. 

 

Soybeans fermentation 

Split soybeans (150 g) and 73.5 mL of distilled water were placed in 500 mL capped Duran 

bottles and autoclaved at 121oC for 20 minutes.  After soybeans and distilled water cooled 

down (at room temperature), the spore suspension was mixed with the sterile medium and 

the bottle was manually shaken (vertically and horizontally) for 10 minutes to homogenise 

the inoculum. The inoculated soybeans were poured into Petri dishes and incubated at 30oC 

for 5 days.  Soybean samples were crushed with mortar and pestle before sealed in plastic 

bag and store at -30oC until used. 

 

Crude phenolic extraction 

Detailed extraction conditions of temperature and concentration of ethanol are shown in 

Table 1.  Ground samples (2 g) were extracted with 20 mL of the corresponding aqueous 

ethanol concentration at the temperature pre-established in the factorial design using a 

Soxhlet System HT (1043 – Tecator).  Subsequently, the extract was dehydrated to obtain a 

dry extract and diluted with ethanol up to 20 mg/mL of extract concentration. After that, the 
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extract was centrifugated at 16,249 g for 5 min, and the supernatant was used for the 

antioxidant determination. 

 

Determination of total phenolic content 

The total phenolic content was determined based on the method of Singleton, Orthofer, and 

Lamuela-Raventós (1999), using the Folin-Ciocalteu Reagent (FCR) with gallic acid as a 

standard.  50 µL of sample or blank were added to 3 mL of distilled water in 12 mL test 

tubes.  A volume of FCR (250 µL) was placed into the tube and mixed before adding 750 

µL of saturated Na2CO3.  The final volume of the reaction mixture was adjusted to 5 mL 

with distilled water.  The absorbance at 765 nm was read in 1-cm cuvettes after incubation 

for 2 h at room temperature, and readings were compared with a standard curve of gallic 

acid.  The total phenolic content was expressed as mg of gallic acid equivalent per gram dry 

basis of fermented soybeans (mg GAE /g db).  

 

Determination of DPPH radical scavenging activity 

The effect of the extract on 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) radical 

was estimated according to the procedure described by Brand-Williams, Cuvelier, and 

Berset (1995). The extract (0.1 mL) was added to 3.9 mL of DPPH 610-5 M in methanol 

which was prepared daily. The decrease in absorbance was determined at 515 nm after 

incubation for 30 min. A DPPH solution without sample was used as control and the DPPH 

percentage inhibition was calculated according to the following equation: 

 

1 100sample

control

absorbance
DPPH scavenging effect (%) %

absorbance

 
   
 

   (1) 136 
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function of the extraction time was studied u

quintuple replication in the centre of the experimental domain (Box, Hunter, & Hunter, 

1989; Akhnazarova, & Kafarov, 1982). The range of independent variables studied, 

temperature (T) and ethanol concentration (E), is shown in Table 1. 

 

The experiments were planned using two different approaches.  In

th

activity) with time were fitted to appropriate mathematical models to obtain a group of 

kinetic parameters that could describe these trends.  Finally, a rotatable second order design 

was implemented using the kinetic parameters as response. 

 

In the first case, the calculation was carried out using a n

N

Statistica 6.0 program (StatSoft, Inc. 2001) was used to calculate the significance of the 

estimated parameters (Student t-test, =0.05) and the robustness of the model (Fisher F 

test, =0.05).  Results of the factorial designs were employed to obtain empirical equations 

that describe the significant parameters as a function of temperature and ethanol 

concentration.  The statistical significance of the coefficients was verified by means of the 

Student t-test (=0.05), and the model consistency by the Fisher F test (=0.05) using the 

following mean squares ratios: 
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F1 = Model / Total error  F1 ≥
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LTS AND DISCUSSION 

P

ethyl acetate) at various concentra

most efficient compounds in the extraction of antioxidant compounds from fermented 

soybeans (data not shown).  Among these, ethanol was selected since it has less restrictions 

in food applications. Therefore, the aim of this study was to evaluate the combined effects 

of extraction temperature and ethanol concentration for the recovery of antioxidant 

compounds from fermented soybeans. 

 

Kinetics of antioxidants activities 

K

factorial design. The results for tota

shown in Figures 1 and 2.  In both cases the experimental data follow hyperbolic curves, 

and for this reason a modified first order kinetic model with a final asymptote was chosen 

to describe the extraction of antioxidants with time 
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  1     d
mD D e  k t

 

w  scavenging activity (%), Dm the maximum DPPH scavenging 

activ

activity (min ).  The continuous curves in Figures 1 and 2 represent the models obtained by 

fitting the experimental data to these equations.  The statistical analyses of the kinetic 

models are summarised in Tables 2 and 3. 

 

In general, the proposed models were statistically robust (F

0.001), and the param

coefficients of linear correlation (r) between predicted and observed values were in all 

cases higher than 0.964.  This indicates that the proposed kinetic models can be used to 

describe and predict the extraction of antioxidants from fermented soybeans in the range of 

temperature and ethanol concentration assayed. 

 

From the values of the parameters in the fitted m

phenolic co

highest temperature studied (74ºC).  The highest DPPH scavenging activity ( m) was 

 9



achieved at the centre of the experimental domain (T=0, E=0), but the maximum specific 

rate of DPPH scavenging activity (kd) is obtained at the point T=1.41 and E=0 (see Table 1). 
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T

was the maximum total phenolic content (Pm) are shown in Table 4.  The statistical analysis 

indicates that the combined term TE in equation (4) was not significant. 

 

T

equation (4) are plotted in Figure 3.  The maximum phenolic content (Pm, left) shows a 

well defined maximum within the experimental domain.  The maximum can be calculated 

deriving the response equation with respect to the independent variables T and E 

 

11.915 17.32
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
 


m

m

T T

P
T

T
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P
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he results for maximum DPPH scavenging activity (Dm) were similar to total phenolic. 239 
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temperature and ethanol concentration for a maximum antioxidant extaction; Tm = 0.690 

and Em = 0.467 in codified values, equivalent to 65.3ºC and 73.1% ethanol in real values 

(see Table 1 for codification/decodification).  At this point the predicted maximum total 

phenolic concentration was 56.2 mg GAE/g db. 

 

T

specific rate of the total phenolic concentration (kp) are shown in Table 5.  In this case the 

statistical analysis indicates that neither the combined term TE nor the E term in equation 

(4) are significant.  The response for kp (Figure 3, right) is a convex surface with a line of 

maxima at E = 0. An absolute maximum response cannot be obtained within the 

experimental domain. However, in all cases the specific rate of total phenolic concentration 

increases with temperature. 

 

T

Figure 4 (left) shows the parabolic response surface obtained from the equation in Table 6. 

Both the E and TE terms in equation (4) were not significant.  The maximum can be 

equally calculated deriving the response equation with respect to the independent variables 

T and E 

 

3.35 8.70



 


m

m
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D
T

T
    and     13.24




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m
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D
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The maximum Dm was found at Tm= 0.385 (61.6ºC) and Em= 0 (60%). At this point the 

predicted maximum DPPH scavenging activity was 81.6%. 
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Table 7 summarises the results of the factorial design for the specific rate of DPPH 

scavenging activity (kd) plotted in Figure 4 (right).  Only the combined term TE was not 

significant, and the model defines a concave response surface with a line of maximum 

slope in the proximity of E=0. As for the kp model, a maximum response cannot be 

calculated within the experimental domain, but kd increases with the temperature. 

  

The empirical models obtained show a good fitting and consistency. The correlation with 

the observed values (r2
adjusted) was higher that 0.85 and the experimental variability of the 

replica in the centre of the experimental domain was considerably low, allowing for 

construction of highly predictive models. 

 

The improvement of the antioxidant extraction with temperature was probably due to the 

increasing diffusivity of the solvent in the solid matrix and the solubility of the phenolic 

compounds in the solvent, which favour the extraction (Juntachote, Berghofer, Bauer, & 

Siebenhandl, 2006; Cacace, & Mazza, 2003; Herrero, Martin-Alvarez, Señoráns, Cifuentes, 

& Ibáñez, 2005). However, it should be noted that increasing temperature beyond a certain 

value can lead to decomposition of some phenolic compounds. Rostagno, Palma, and 

Barroso (2007) reported decomposition of isoflavones in soybean during heat treatments. 

Malonyl isoflavones also degrade when extraction is performed between 75 and 100oC.  

Extraction between 100-125oC affects acetyl isoflavones and higher temperatures sharply 

reduced the glucosides concentrations. 
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It is not surprising to find out that the DPPH results showed a similar trend to the total 

phenolic concentration. However, the optimum extraction conditions were slightly different 

for the two assays. This could be due to the fact that each assay measures different kind of 

phenolics, and each phenolic compound shows different antioxidant properties, which 

depends on the chemical structure and substitution position (Pokorny, 2003). 

 

The fit of models to second-order polynomial equations was in agreement with other 

authors who used temperature, solvent concentration and time as variables in a similar 

approach using other food matrices. Wettasinghe, & Shahidi (1999) studied the antioxidant 

properties of an ethanol extract of defatted borage seeds, and Herrero, Martin-Alvarez, 

Señoráns, Cifuentes, & Ibáñez (2005) investigated antioxidants from Spirulina platensis 

microalga. Liyana-Pathirana, & Shahidi (2005) studied phenolic compounds from wheat, 

and Juntachote, Berghofer, Bauer, & Siebenhandl (2006) tested phenolic extracts of lemon 

grass, galangal, holy basil and rosemary. However, only Herrero, Martin-Alvarez, Señoráns, 

Cifuentes, & Ibáñez (2005) reported that temperature had the strongest influence amongst 

all variables. In the other studies, the solvent concentration was the main factor affecting 

antioxidant extraction. These discrepancies highlight the need for appropriate extraction 

protocols, with suitable solvent polarity, time and temperature for each food matrix, and 

using multivariable experimental design techniques. 

 

CONCLUSIONS 

A factorial design combined with a kinetic approach was successfully applied to maximise 

the extraction of antioxidant compounds from soybeans fermented with Aspergillus oryzae. 
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The highest values of Pm and Dm were obtained close to the centre of the experimental 

domain studied. Both kp and kd showed a marked increase with temperature, but absolute 

maxima for this parameters were not predicted within the experimental domain. In general, 

higher temperatures lead to higher yields of total phenolics and DPPH scavenging activity. 

However, over a certain temperature value decomposition of some phenolic compounds 

may occur. In this case, the optimal conditions for antioxidant extraction were 65.3oC and 

73.1% ethanol for maximum total phenolic concentration, and 61.6oC and 60% ethanol for 

maximum DPPH scavenging activity.  
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Figure 1: Kinetics of total phenolic content extracted from soybeans fermented with 

Aspergillus oryzae in each one of the experimental conditions (in natural values) defined in 

Table 1. The experimental data (symbols) were fitted to the model (2) (continuous line). 

 

Figure 2: Kinetics of DPPH scavenging activity extracted from soybeans fermented with 

Aspergillus oryzae in each one of the experimental conditions (in natural values) defined in 

Table 1. The experimental data (symbols) were fitted to the model (3) (continuous line). 

 

Figure 3: Response surface corresponding to the joint effect of ethanol (E) and temperature 

(T) on the maximum total phenolic production (Pm, left) and in the specific rates of total 

phenolic production (kp, right) according to the equations described in Tables 4 and 5. 

Independent variables are expressed in codified values. 

 

Figure 4: Response surface corresponding to the joint effect of ethanol (E) and temperature 

(T) on the maximum DPPH scavenging activity (Dm, left) and in the specific rates of DPPH 

scavenging activity (kd, right) according to the equations described in Tables 6 and 7. 

Independent variables are expressed in codified values. 
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Table 1: Experimental domain and codification of independent variables in the factorial 

rotatable design. 

 

Table 2: Parametric estimations corresponding to the modified first order kinetic model (2) 

applied to the extraction of total phenolic compounds from fermented soybeans by 

Aspergillus oryzae at the experimental conditions studied. Independent variables are 

expressed in natural values in brackets. 

 

Table 3: Parametric estimations corresponding to the modified first order kinetic model (3) 

applied to the extraction of DPPH scavenging activity from fermented soybeans by 

Aspergillus oryzae at the experimental conditions studied. Independent variables are 

expressed in natural values in brackets. 

  

Table 4: Results of the factorial design and tests of significance for the model of maximum 

total phenolic concentration (Pm). 

 

Table 5: Results of the factorial design and tests of significance for the model of the 

specific rate of total phenolic production (kp). 

  

Table 6: Results of the factorial design and tests of significance for the model of maximum 

DPPH scavenging activity (Dm). 
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Table 7: Results of the factorial design and tests of significance for the model of the 

specific rate of DPPH scavenging activity (kd). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLES 508 
509 
510 
511 
512 
513 
514 

 
 
Table 1 
 
 
       

 Natural values of temperature (T) and ethanol 
concentration (E)       

Coded values T  (ºC) E (%) 
      

-1.41 40 21 
-1 45 32 
0 57 60 

+1 69 88 
+1 1 .4 7  4 100       

Codification: Vc=(Vn–V0)/ Vn  ;  Decodification: Vn= V0+(VnVc) 
Vn=natural value in the centre of the domain;  
Vn= increment of Vn per unit of Vc. 
Shaded area: values correspond g to the first order design. in   

515 
516 
517 
518 
519 
520 
521 
522 

 
 
 
 
 
Table 2 
 
 
            
Design Conditions aPm bCI ckp CI dF (df1=2, df2 =0.05) =7; p-value er (O:P)             
T:-1 (45ºC); E:-1 (32%) 27.61  12.82 0.0043  0.0029 702.72 <0.0001 0.983 
T: 1 (69ºC); E:-1 (32%) 49.15  3.20 0.0142  0.0023 2931.01 <0.0001 0.995 
T:-1 (45ºC); E: 1 (88%) 33.59  26.58 0.0039  0.0038 305.02 <0.0001 0.964 
T: 1 (69ºC); E: 1 (88%) 51.08  2.07 0.0151  0.0016 6904.27 <0.0001 0.998 
T:-1.41 (40ºC); E: 0 (60%) 13.54  3.29 0.0098  0.0048 416.68 <0.0001 0.967 
T: 1.41 (74ºC); E: 0 (60%) 53.26  1.07 0.0195  0.0012 20067.38 <0.0001 0.999 
T: 0 (57ºC); E:-1.41 (21%) 38.86  13.56 0.0076  0.0048 345.59 <0.0001 0.966 
T: 0 (57ºC); E: 1.41 (100%) 49.87  7.75 0.0092  0.0028 1160.07 <0.0001 0.988 
T: 0 (57ºC); E: 0 (60%) 52.85  5.74 0.0096  0.0021 2210.10 <0.0001 0.994 
T: 0 (57ºC); E: 0 (60%) 49.80  3.32 0.0108  0.0015 4580.68 <0.0001 0.997 
T: 0 (57ºC); E: 0 (60%) 52.55  5.11 0.0097  0.0019 2668.48 <0.0001 0.995 
T: 0 (57ºC); E: 0 (60%) 52.41  7.53 0.0101  0.0030 1118.99 <0.0001 0.988 
T : 0 (57ºC); E: 0 (60%) 49.37  5.21 0.0114  0.0026 168 .54 8 <0.0 01 0 0.9 2 9   

523 
524 
525 
526 

aMaximum total phenolic concentration. bConfidence intervals ( = 0.05; df = 7). cSpecific rates of total phenolic production. 
dF-Fisher test (df1 = degrees of freedom of the model; df2 = degrees of freedom of the error) 
eCorrelation coefficient between observed and predicted data. 
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527 
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529 
530 
531 
532 
533 
534 
535 
536 
537 

 
 
 
 
 
 
 
 
Table 3 
 
 
            
Design Conditions aDm bCI ckd CI dF (df1=2, df2 7; =0.05) = p-value er (O:P)             
T:-1 (45ºC); E:-1 (32%) 65.51  6.11 0.0152  0.0041 1124.24 <0.0001 0.992 
T: 1 (69ºC); E:-1 (32%) 74.48  3.17 0.0248  0.0037 3386.46 <0.0001 0.997 
T:-1 (45ºC); E: 1 (88%) 61.32  1.03 0.0232  0.0013 23578.91 <0.0001 0.999 
T: 1 (69ºC); E: 1 (88%) 70.71  3.75 0.0284  0.0057 1978.03 <0.0001 0.994 
T:-1.41 (40ºC); E: 0 (60%) 70.32  6.65 0.0147  0.0042 1071.03 <0.0001 0.991 
T: 1.41 (74ºC); E: 0 (60%) 76.23  2.49 0.0308  0.0041 4860.86 <0.0001 0.998 
T: 0 (57ºC); E:-1.41 (21%) 66.53  4.03 0.0221  0.0042 1961.18 <0.0001 0.995 
T: 0 (57ºC); E: 1.41 (100%) 70.99  3.02 0.0249  0.0037 3453.07 <0.0001 0.997 
T: 0 (57ºC); E: 0 (60%) 79.34  2.76 0.0199  0.0021 6576.57 <0.0001 0.999 
T: 0 (57ºC); E: 0 (60%) 79.91  2.14 0.0206  0.0017 10498.72 <0.0001 0.999 
T: 0 (57ºC); E: 0 (60%) 82.02  6.11 0.0192  0.0039 1569.18 <0.0001 0.994 
T: 0 (57ºC); E: 0 (60%) 79.96  5.15 0.0185  0.0034 2103.97 <0.0001 0.996 
T : 0 (57ºC); E: 0 (60%) 80.98  3.70  0.0206  0.0026 4099.41 <0.0 01 0 0.9 7 9   

538 
539 
540 
541 

aMaximum DPPH scavenging activity. bConfidence intervals ( = 0.05; df = 7). cSpecific rates of DPPH scavenging activity. 
dF-Fisher test (df1 = degrees of freedom of the model; df2 = degrees of freedom of the error) 
eCorrelation coefficient between observed and predicted data. 
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Table 4 542 
543  

                

T E m
aP  m

bP̂  
Coefficients from the 

least-squares 
regression 

t cAdjusted Model 

                
-1 -1 27.61 24.74 51.39 68.84 51.39 i.t. 
1 -1 49.15 48.57 11.92 20.16 11.92 T 
-1 1 33.59 30.61 2.94 4.97 2.94 E 
1 1 51.08 54.44 -1.01 1.21 NS TE 

-1.41 0 13.54 17.38 -8.66 13.62 -8.66 T2 

1.41 0 53.26 50.98 -3.15 4.95 -3.15 E2 

0 -1.41 38.86 40.99     
0 1.41 49.87 49.28   
0 0 52.85 51.39 Average value = 44.149 
0 0 49.80 51.39 Expected average value = 51.396 
0 0 52.55 51.39 Var(Ee) = 2.7867 
0 0 52.41 51.39 t(<0.05; =4) = 2.776 
0 0 49. 7 3 51 9 .3   
              
  

dSS e fM  S   
gMean Squares Ratios       

Model 1747.66 4 436.92  MSM/MSE= 53.99 
4

8F (=0.05)= 3.838 

Error 64.74 8 8.092  MSMLF/MSM= 0.515 
8
4F (=0.05)= 6.041 

Exp. Error 11.15 4 2.787  MSE/MSEe= 2.904 
8
4F (=0.05)= 6.041 

Lack of fitting 53.59 4 13.398  MSLF/MSEe= 4.808 
4
4F (=0.05)= 6.388 

Total 181 .40 2 1  2     
                
    r2=  0.964 
    r2 adjusted=  0.946                 

544 
545 
546 
547 
548 
549 
550 
551 

aExperimental values of maximum total phenolic concentration. bEstimated values of maximum total phenolic concentration from the 
adjusted model. cCoefficients for the terms of the adjusted model: i.t., independent term; E, ethanol concentration (%); T, temperature 
(ºC); NS, not significant coefficient.  dSS: sum of squares. e: degrees of freedom. fMS: mean squares. gMean Square Ratios: MSM, 
mean squares of the model; MSE, mean squares for error; MSMLF, mean squares for model lack of fit; MSEe, mean squares for 
experimental error. 
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552 
553 
554 

 
Table 5 
 

                

T E p
ak  p

bk̂  
Coefficients from the 

least-squares 
regression 

t cAdjusted Model 

                
-1 -1 0.0043 0.0061 0.0103 30.29 0.0103 i.t. 
1 -1 0.0142 0.0148 0.0043 16.07 0.0043 T 
-1 1 0.0039 0.0061 0.0003 1.24 NS E 
1 1 0.0151 0.0148 0.0003 0.83 NS TE 

-1.41 0 0.0098 0.0074 0.0016 5.60 0.0016 T2 

1.41 0 0.0195 0.0197 -0.0015 5.15 -0.0015 E2 

0 -1.41 0.0076 0.0074     
0 1.41 0.0092 0.0074   
0 0 0.0096 0.0103 Average value = 0.0104 
0 0 0.0108 0.0103 Expected average value = 0.0103 
0 0 0.0097 0.0103 Var(Ee) < 0.00001 
0 0 0.0101 0.0103 t(<0.05; =4) = 2.776 
0 0 0.0 14 1 0.0 03 1   
              
  

dSS e   
fM  S   

gMean Squares Ratios      
Model 0.00019 3 0.000063  MSM/MSE= 28.34 

3
9F (=0.05)= 3.863 

Error 0.00002 9 0.000002  MSMLF/MSM= 0.410 
8
3F (=0.05)= 8.845 

Exp. Error 0.000002 4 0.000001  MSE/MSEe= 3.818 
9
4F (=0.05)= 5.999 

Lack of fitting 0.00002 5 0.000004  MSLF/MSEe= 6.073 
5
4F (=0.05)= 6.256 

Total 0.00 21 0 1  2     
                
    r2=  0.904 
    r2 adjusted=  0.872                 

555 
556 
557 
558 
559 
560 
561 

aExperimental values of the specific rates of total phenolic production. bEstimated values of the specific rates of total phenolic 
production from the adjusted model. cCoefficients for the terms of the adjusted model: i.t., independent term; E, ethanol concentration 
(%); T, temperature (ºC); NS, not significant coefficient.  dSS: sum of squares. e: degrees of freedom. fMS: mean squares. gMean 
Square Ratios: MSM, mean squares of the model; MSE, mean squares for error; MSMLF, mean squares for model lack of fit; MSEe, 
mean squares for experimental error. 
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 562 
563 
564 
565 

Table 6 
 
 

                

T E m
aD  m

bD̂  
Coefficients from the 

least-squares 
regression 

t cAdjusted Model 

                
-1 -1 65.51 66.13 80.45 169.31 80.45 i.t. 
1 -1 74.48 72.82 3.35 8.90 3.35 T 
-1 1 61.32 66.13 -0.21 0.55 NS E 
1 1 70.71 72.82 0.10 0.20 NS TE 

-1.41 0 70.32 67.03 -4.35 10.76 -4.35 T2 

1.41 0 76.23 76.52 -6.62 16.37 -6.62 E2 

0 -1.41 66.53 67.28     
0 1.41 70.99 67.28   
0 0 79.34 80.45 Average value = 73.716 
0 0 79.91 80.45 Expected average value = 80.443 
0 0 82.02 80.45 Var(Ee) = 1.1290 
0 0 79.96 80.45 t(<0.05; =4) = 2.776 
0 0 80 8 .9 80 5 .4   
              
  

dSS e   
fMS   

gMean Squares Ratios       
Model 478.29 3 159.430  MSM/MSE= 23.88 

3
9F (=0.05)= 3.863 

Error 60.09 9 6.677  MSMLF/MSM= 0.419 
8
3F (=0.05)= 8.845 

Exp. Error 4.52 4 1.129  MSE/MSEe= 5.914 
9
4F (=0.05)= 5.999 

Lack of fitting 55.58 5 11.115  - - 
Total 538 38 . 1  2     

                
    r2=  0.881 
    r2 adjusted=  0.851                 

566 
567 
568 
569 
570 
571 
572 

aExperimental values of maximum DPPH scavenging activity. bEstimated values of maximum DPPH scavenging activity from the 
adjusted model. cCoefficients for the terms of the adjusted model: i.t., independent term; E, ethanol concentration (%); T, temperature 
(ºC); NS, not significant coefficient.  dSS: sum of squares. e: degrees of freedom. fMS: mean squares. gMean Square Ratios: MSM, 
mean squares of the model; MSE, mean squares for error; MSMLF, mean squares for model lack of fit; MSEe, mean squares for 
experimental error. 
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574 
575 

 
Table 7 
 

                

T E d
ak  d

bk̂  
Coefficients from the 

least-squares 
regression 

t cAdjusted Model 

                
-1 -1 0.0152 0.0164 0.0198 47.28 0.0198 i.t. 
1 -1 0.0248 0.0258 0.0047 14.22 0.0047 T 
-1 1 0.0232 0.0203 0.0019 5.86 0.0019 E 
1 1 0.0284 0.0297 -0.0011 2.32 NS TE 

-1.41 0 0.0147 0.0160 0.0015 4.09 0.0015 T2 

1.41 0 0.0308 0.0293 0.0018 5.12 0.0018 E2 

0 -1.41 0.0221 0.0206     
0 1.41 0.0249 0.0261   
0 0 0.0199 0.0198 Average value = 0.0218 
0 0 0.0206 0.0198 Expected average value = 0.0198 
0 0 0.0192 0.0198 Var(Ee) < 0.00001 
0 0 0.0185 0.0198 t(<0.05; =4) = 2.776 
0 0 0.0 06 2 0.0 98 1   
              
  

dSS e   
fM  S   

gMean Squares Ratios      
Model 0.00024 4 0.000060  MSM/MSE= 20.52 

4
8F (=0.05)= 3.838 

Error 0.00002 8 0.000003  MSMLF/MSM= 0.541 
8
4F (=0.05)= 6.041 

Exp. Error 0.000003 4 0.000001  MSE/MSEe= 3.349 
8
4F (=0.05)= 6.041 

Lack of fitting 0.00002 4 0.000005  MSLF/MSEe= 5.698 
4
4F (=0.05)= 6.388 

Total 0.00 26 0 1  2     
                
    r2=  0.911 
    r2 adjusted=  0.867                 

576 
577 
578 
579 
580 
581 
582 

583 

584 

585 

586 

587 

aExperimental values of the specific rates of DPPH scavenging activity. bEstimated values of the specific rates of DPPH scavenging 
activity from the adjusted model. cCoefficients for the terms of the adjusted model: i.t., independent term; E, ethanol concentration (%); 
T, temperature (ºC); NS, not significant coefficient.  dSS: sum of squares. e: degrees of freedom. fMS: mean squares. gMean Square 
Ratios: MSM, mean squares of the model; MSE, mean squares for error; MSMLF, mean squares for model lack of fit; MSEe, mean 
squares for experimental error. 

 
 

 

 

 

 

 

 29



FIGURE 1 588 
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FIGURE 2 608 
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