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Abstract

We have studied the chain dynamics of poly(ethylene-alt-propylene) by combining neutron

spin echo experiments and fully atomistic molecular dynamics simulations. We have focussed

on molecular weights of the order of two times the entanglement mass, for which, in principle,

the topological constraints are not important and the chain dynamics should be well described

†UPV/EHU
‡CSIC-UPV/EHU
¶Forschungszentrum Jülich GmbH
§Institut Laue Langevin
‖Donostia International Physics Center

1



in terms of the Rouse model. From the comparison between experimental and simulated re-

sults we have validated our simulation cell. We have checked the predictions of the Rouse

model on both sets of data and compared the resulting relevant parameters with those obtained

from other experimental works in the literature. Moreover, taking advantage of the validated

simulated system we have calculated directly the Rouse modes and correlators to investigate

the limitations of the model extending the study at lower temperatures. We have found devi-

ations from Rouse behavior at short length scales that can be attributed to the local potentials

and a sublinear increase of the mean squared displacement of the chain center of mass with

time, probably originating from intermolecular interactions.

Introduction

Polymers may adopt a huge number of conformations determined by the relative positions of their

monomers, which depend on the intra- and interchain interactions. At length scales much larger

than the monomer size, the chemical details can be ignored in the description of the chain dynamics

and polymer melts show unique dynamic processes that are controlled by the chain connectivity

and the molecular weight of the macromolecules. These processes ultimately determine the rheo-

logical properties of polymer melts, which have been extensively studied by mechanical relaxation

techniques. With the development of neutron scattering (NS) techniques, in particular of neutron

spin echo (NSE), it has also become possible to investigate the chain dynamics at a molecular

level. These techniques allow accessing hydrogen motions in protonated samples and the single

chain dynamic structure factor in blends of protonated and deuterated chains, such that theoretical

models can be directly contrasted. The standard model for polymer chain dynamics in the melt,

the so-called Rouse model,1 considers the conformational entropy as the only source for restoring

forces which stabilizes excursions from equilibrium. Due to the difficulty of obtaining rheolog-

ical data on unentangled chains in the melt2,3 the validity of the Rouse model has been mainly

proven by dielectric spectroscopy on type-A polymers (i. e., with a dipole component parallel to

the main chain) (see, e. g. 4,5) and by NS on different polymers.6 From a conceptual point of view
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this model has limitations: (i) at large distances, where long chain melt topological constraints

cause entanglements leading to the reptation mechanism, and (ii) at shorter distances, where the

simplifying assumptions cease to be valid and the local chain structure and dynamics comes into

play. Locally the chain is stiff; furthermore, as a consequence of the rotational potentials, local

relaxation mechanisms through the rotational barriers also start to play a role. At length scales

of the order of the intermolecular distances, we approach the regime of the α process and more

locally possible secondary relaxations. An intriguing question in polymer physics is how does the

crossover from Rouse to segmental dynamics take place. One of the key ingredients to answer

this question would be to know when the Rouse model ceases to be valid. This is not an obvious

issue, since NS results might be described in terms of this model even at momentum transfers7 and

times8 where the model should be, in principle, unrealistic. Recently, a number of NS investiga-

tions on different polymers (polyisobutylene (PIB),9 poly(vinyl ethylene) (PVE),10 poly(dimethyl

siloxane) (PDMS)11) have tried to determine the limits for applicability of the Rouse model. The

role of the intramolecular barriers was put forward in the study of PIB,9 that showed much more

pronounced deviations from Rouse than the extremely flexible PDMS. However, the uncertainties

involved in the experiments and the impossibility to directly access the Rouse correlators prevent

a thorough analysis of the sources for Rouse deviations.

It has been extensively proved that the combination of atomistic molecular dynamics (MD)

simulations with NS experiments provides a very useful tool for investigating the structure and

dynamics of polymer melts at local and intermolecular scales, i.e., where these systems display

universal features of glass forming liquids (see refs 6,12–14 as recent representative references).

Current computing capabilities even allow building big enough cells to address the chain dynamics

in unentangled polymer systems with atomistic detail. Starting from a properly validated simula-

tion cell, it is possible to rely on computed magnitudes that cannot be accessed experimentally,

like mean squared displacements,15 or perform a Rouse mode analysis. This kind of methodol-

ogy can thus shed light also on the problem of the limits of applicability of the Rouse model in

homopolymers. Recent examples of this synergy can be found applied to polybutadiene (PB),16
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polyethylene (PE),17 or poly(ethylene oxide) (PEO).18

Here we present a study of the chain dynamics in poly(ethylene-alt-propylene) (PEP) melts by

means of NS and fully atomistic MD simulations for low molecular weights (Mw ∼ 2Me, where Me

is the entanglement mass). For these chain lengths the entanglement effects that limit the validity

of the Rouse model at large length scales are negligible. By NSE we have covered a momentum-

transfer Q range between 0.03 and 0.25 Å−1. The investigated temperature was 492 K in order

to ensure the decay of the correlation functions in the Q and t range of the experimental window.

The good agreement found from the comparison between the experimental and simulated results

has allowed validating our simulated system. Furthermore, we have checked the predictions of the

Rouse model on these sets of data and compared them with other experimental results on PEP from

the literature. Taking advantage of the validated simulated system, we have calculated directly the

Rouse modes and other correlators to investigate the limitations of the model in this relatively

simple polymer. The deviations and limits found for PEP Rouse-like dynamics are discussed in

comparison with results previously reported for other polymers, mainly PIB9 and PEO.18 The

impact of these deviations on the experimentally accessible dynamic structure factors (reciprocal

space) is finally discussed.

Experiments

Samples

The sample investigated in this work was a blend of protonated (h-PEP) and deuterated (d-PEP)

chains of poly(ethylene-alt-propylene): 30%h-PEP / 70%d-PEP, Mw≈ 6 kg/mol. The mixture was

accomplished just by stirring the two components for some time in a cuvette. The niobium sample

container was filled with the mixture in a glovebox under argon and closed also there. The two

PEP polymers, h-PEP6k and d-PEP6k, were synthesized by anionic polymerization of isoprene-h8

and isoprene-d8 and subsequent saturation with H2 and D2, respectively. The two PI-precursor ma-

terials were polymerized with t-butyllithium as initiator in benzene. Deuterated isoprene monomer

4



was prepared from acetylene and acetone-d6 following largely the method of Krebs et al.19 The

degree of deuteration of the isoprene-d8 was determined to be 94%. The saturation to the PEP poly-

mers was accomplished by means of a conventional Pd/BaSO4 catalyst at 4 MPa H2/D2 pressure

and 100◦C in n-heptane. The number average molecular weight, Mn, of the h-PI6k precursor was

determined by 1H-NMR in deuterochloroform using the 9 protons of the t-butyl initiator group as

internal reference. Both PI polymers were characterized by size exclusion chromatography (SEC)

in THF with a PL-GPC220 chromatograph from Polymer Laboratories, Varian, equipped with a

refractive index detector and a set of 3 PLgel 5 µm mixed D columns. The molecular weight

distribution, Mw/Mn, was determined relative to polystyrene standards. The elution volumes of

both polymers are almost identical. The number average molecular weight, Mn, of the d-PI6k was

calculated according to: Mn(d-PI6k)=(M(d-PI6k)/M(h-PI6k))(PS−cal) (75.5/68) Mn(h-PI6k)NMR,

where the first term represents the ratio of molecular weights obtained by SEC with PS-calibration,

while the second term denotes the ratio of the molecular weights of the repeat units of isoprene-d8

(94%D) and isoprene-h8, respectively, multiplied with the Mn of h-PI6k obtained by 1H-NMR.

After saturation the resulting PEP materials were remeasured by SEC. No change in the molecular

weight distribution could be observed. The molecular weights were corrected for the addition of

H2 and D2, respectively. The characteristics of both PEP materials, h-PEP6k and d-PEP6k, are

summarized in Table 1.

Neutron Spin Echo

NSE is the neutron scattering technique that offers the highest energy resolution. In addition,

NSE is unique in that it accesses the intermediate scattering functions directly in the time domain.

This is achieved by the direct observation of the velocity change of the neutron in the scattering

process encoding the neutron energy transfer into its spin rotation.20 In this way, the application

of precession magnetic fields before and after the scattering event results in a polarization of the

neutron that depends only on the velocity difference of each neutron individually, irrespective of

its initial velocity. Energy resolution and monochromization of the incident beam are decoupled,
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and resolutions in energy of the order of ∆E/E ≈ 10−5 can be achieved with an incident neutron

spectrum of 20% bandwidth. These experiments access the following normalized combination of

coherent and incoherent scattering intensities

INSE(Q, t) =
Icoh(Q, t)− 1

3 Iinc(Q, t)

Icoh(Q,0)− 1
3 Iinc(Q,0)

, (1)

where Q is the momentum transfer that depends on the neutron wavelength λ and the scattering

angle θ [Q = (4π/λ )sin(θ/2)].

In this work we performed NSE experiments at the IN15 instrument (Institut Laue-Langevin,

ILL, Grenoble, France), which offers a resolution ∆λ/λ = 15%. With λ = 22 Å we could gain ac-

cess to Q values of 0.03, 0.05, and 0.077 Å−1; with λ = 14.5 Å to 0.115 Å−1; and with λ = 10 and

6.3 Å to 0.25 Å−1. The accessed Fourier times covered a range from 0.05 up to 500 ns. The sample

was put in a flat niobium holder with 2.5 mm of thickness. The temperature of the experiment was

492 K and the measuring time per angle was about 7 hours for λ = 22 Å and about 4 hours for the

other wavelengths. Direct deconvolution of the measured spectra from the experimental resolution

was carried out dividing by the measurement of a graphite sample at room temperature. The scat-

tering from the deuterated matrix was subtracted by using the measurement on a fully deuterated

d-PEP sample (Mw ≈ 200 kg/mol, Mw/Mn ≈ 1.0221) of 1 mm thickness at the same conditions. In

the subtraction, the relative value of the sample transmissions (Th−PEP/d−PEP/Td−PEP = 0.57/0.93)

and the concentration were taken into account, yielding finally the corrected function Icorr
NSE(Q, t).

In the blend investigated, the main contribution to the scattering signal comes from the coher-

ent scattering arising from the contrast between the protonated chains and the deuterated matrix

(∆ρ2 = 5.01e21 cm−4). For the chains investigated, the coherent differential cross section due

to this contrast amounts to dΣ/dΩ = 13.79P(Q) cm−1 (P(Q): chain form factor), while the in-

coherent contribution is dΣinc/dΩ = 0.16 cm−1. For Q . 0.077 Å−1, the absolute value of the

relative incoherent contribution to the NSE signal is . 1% and INSE ' Schain(Q, t)/Schain(Q,0).

This value increases to 2% at Q = 0.115 Å−1 and ≈10 % at the highest Q investigated. We note
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that the correction procedure above described does not eliminate this incoherent contribution from

the signal.

Molecular Dynamics Simulations

The fully atomistic MD simulations were carried out by using the Materials Studio and the DIS-

COVER module from Accelrys with the COMPASS Force Field (Condensed-phase Optimized

Molecular Potentials for Atomistic Simulation Studies). The COMPASS force field has been

parametrized and validated using condensed-phase properties in addition to various ab initio and

empirical data for molecules. Therefore, this forcefield enables accurate and simultaneous pre-

diction of structural, conformational, vibrational, and thermophysical properties, that exist for a

broad range of isolated molecules and in condensed phases, and under a wide range of conditions

of temperature and pressure.22–28 The model cubic cell was built by means of the Amorphous Cell

Protocol, originally proposed by Theodorou and Suter.29,30

In this work we started from a system composed of 12 different well equilibrated chains of

80 monomers each (Mw = 5.6 kg/mol), being 14424 atoms in total, and we constructed a cubic

cell with periodic boundary conditions at 413 K and an initial density set to 0.79 g/cm3, which is

the experimental value at that temperature31 (Table 2). Standard minimization procedures (Polak-

Ribière conjugate gradients method) were applied to the constructed cell in order to minimize the

so obtained energy structure. Furthermore, a NV T dynamics (constant number of atoms, volume

and temperature) of 1 ns was run to equilibrate the amorphous cell at 413 K. The equilibrium

density of the cell was achieved by running NPT dynamics (constant number of atoms, pressure

and temperature in the cell) at fixed atmospheric pressure (P = 0.0001GPa) . After three runs of

1 ns we reached a density of 0.7948 g/cm3 (close to the experimental value and to the average over

the runs), that leads to a cell dimension of 52.014 Å of side. Further simulations were carried out

in the NV T ensemble at 413 K. As integration method, the Velocity-Verlet algorithm with a time

step of 1 f s has been used. For temperature control instead of a real temperature-bath coupling
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(i.e., Nosé-Hoover thermostat) we have followed a velocity scaling procedure but with a wide tem-

perature window of 10 K, where greater temperature fluctuations are allowed but the trajectory is

disturbed less. In fact, we have checked in a similar polymeric system that by following this simple

procedure we obtain similar results to those obtained with a NV E ensemble (constant total energy

instead of temperature), which has the proper Newtonian dynamics.32 The system so obtained was

used as a starting point for collecting data during successive molecular dynamics runs of 1, 2, and

100 ns. Data were collected every 0.01, 0.05, and 0.5 ps, respectively. Finally, an extra run of 1 ns

was executed in order to check the possible appearance of aging process but nearly indistinguish-

able results were obtained from the consecutive simulation runs, confirming equilibration of the

sample.

The so-obtained system was used to generate corresponding cells at other temperatures namely,

492, 350, and 300 K. In order to do this, NPT simulation runs of some nanoseconds (depending on

the temperature) were used to readapt the system to each new temperature, allowing the size of the

system to rearrange itself in order to accommodate to the new density at each temperature. In this

way, we got the values displayed in Table 2 for the cell sizes and densities. Subsequent NV T runs

of 1 ns were performed for equilibration at each temperature before collecting data for analysis, in

the same way as above described for 413 K.

In a previous work,21 the results from these fully atomistic simulations have been carefully

validated by comparison with NS experiments in the similar dynamic range on fully deuterated and

fully protonated PEP samples. From the atomic trajectories obtained during the simulation runs

the magnitudes measured by NS (diffraction with polarization analysis and NSE) were calculated

and directly compared with the experimental data. The good agreement found validated the results

concerning the short-range order and the dynamical features (collective and H self-motions) at

intra- and inter-molecular level, i. e., where the segmental (α)-relaxation is the dominant process.

We have to note that in order to achieve a perfect matching of the characteristic times obtained

from experiments and simulations for the α-relaxation a shift by a factor of 2 had to be applied to

the time scale (simulations are slower).
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The Rouse Model: Scattering from a Rouse Chain

The dynamics of medium length chains can be described in terms of the Rouse model,1,33 that

considers a Gaussian chain representing a coarse-grained polymer model of beads connected by

entropic springs. The model focuses on length scales b<R<Ree, where b is the statistical segment

and Ree is the average end to end distance of the chain (R2
ee = Nb2, with N the number of beads in

the chain). The contribution of the surrounding chains is assumed to be a stochastic background,

as well as to create a friction characterized by the friction coefficient ξ . The resulting Langevin

equation can be solved by transforming to the normal coordinates (Rouse modes)

Xp(t) =
1
N

N

∑
i=1

Ri(t)cos
[

pπ

N

(
i− 1

2

)]
, (2)

with p the mode number (p= 0,1,2,3, . . . ,N−1). The zeroth mode gives the position of the center

of mass (CoM) of the chain and the others are associated with internal motions of the chain with a

“wavelength” of the order of N/p. The Rouse correlations, with amplitudes

〈X2
p(0)〉=

b2

8N
sin−2

(
π p
2N

)
, (3)

relax independently and exponentially:

〈Xp(t) ·Xp(0)〉/〈X2
p(0)〉= exp(−t/τp). (4)

Here τp is the characteristic relaxation time of the mode p

τ
−1
p = 4W sin2

( pπ

2N

)
, (5)

with the Rouse time τR = τp=1. The Rouse frequency W is given by

W =
3kBT
ξ b2 . (6)
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The correlator of the CoM of the Rouse chain is always proportional to time:

〈X0(t) ·X0(0)〉=
6kBT
Nξ

t, (7)

with an associated diffusion coefficient:

D =
Wb4

3Nb2 =
Wb4

3R2
ee
. (8)

In the Rouse model the coherent dynamic structure factor of a single chain (accessible on h/d-

labelled samples) can be written as

Schain(Q, t) =
1
N

exp
[
−Q2Dt

] N

∑
n=1

N

∑
m=1

exp
[
−Q2b2

6
|n−m|

]
×

exp
{
−2

3
R2

eeQ2

π2

N

∑
p=1

1
p2

[
cos
( pπm

N

)
cos
( pπn

N

)(
1− exp

(
−t p2

τR

))]}
,

(9)

where for QRee > 1 and t < τR the internal relaxations dominate, and for QRee < 1 Schain(Q, t) re-

veals the CoM diffusion of the chain. On the other hand, the self correlation function accessible on

protonated samples is calculated on the basis of the Gaussian approximation, that relates Sinc(Q, t)

directly to the mean squared displacement of the scattering centers 〈r2(t)〉 = 2
(

Wb4

π

)1/2
t1/2 +

6Dt:

Sinc(Q, t) = exp
[
−Q2Dt

]
exp

[
−
(

Wb4Q4t
9π

)1/2
]
. (10)

For Q values where the diffusion contribution is not important, Eq. 10 has just the form of a

stretched exponential or Kohlrausch-Williams-Watts (KWW) function

ΦKWW = exp
[
−
( t

τKWW

)β
]
, (11)
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with a shape parameter β = 0.5 and a characteristic time

τ
KWW
sel f (Q) =

9π

Wb4 Q−4. (12)

Thus, NS experiments on either protonated or labeled samples provide direct microscopic ac-

cess to Wb4. We will use this variable to characterize the dynamics in the Rouse regime in both,

simulated and experimental systems. Obviously, Wb4 is not Q-dependent in the Rouse model and

it depends on the molecular weight of the chains only for short chains.

Results

Neutron Scattering Results

The results from the IN15 experiment Icorr
NSE(Q, t) are shown in Figure 1 both, in linear and logarith-

mic scales for the time axis to highlight the long and short time behavior, respectively. The results

were fitted by using the Rouse expression for Schain(Q, t) of Eq. 9, where the diffusion effects are

included. The residual incoherent contribution to the NSE signal (described also in terms of the

Rouse model) was also included in the fitting function. As mentioned above, this contribution

is only noticeable in the highest Q-value here investigated. The model prediction was found to

lay always above the experimental data, evidencing the need to include prefactors accounting for

amplitudes smaller than 1 in the fitting curves. The fitting parameters were thus these amplitudes

and the Rouse variable Wb4. The value of Ree needed for these fits was estimated from experi-

mental results (Small Angle NS experiments) on the ratio between the unperturbed mean squared

end-to-end distance and the molar mass R2
ee0

/M published in refs 34 and 35, that characterizes the

chain dimensions. This ratio is constant for relatively large molecular weights, where the Gaussian

statistics is well fulfilled. For our system such relation would not be completely right, but it can

be used as a good approximation. The estimated value of Ree was 68 Å at 492 K. The fits pre-

sented in Figure 1 were done considering D as predicted by the Rouse model, i. e., depending on
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Wb4 by means of Eq. 8. The model function represents well the data in the linear representation

(Figure 1b), though some discrepancies can be envisaged at short times in the logarithmic-time

representation (Figure 1a). From these fits the value of Wb4 was extracted. Since this variable

depends on molecular weight only for very short chains, it is possible to perform a direct compari-

son between experimental results on different samples. In Figure 2 we compare the obtained value

with those corresponding to the short-time regime (to avoid effects of reptation) of the single chain

dynamic structure factor of a PEP sample of Mw ≈ 80 kg/mol from ref 35. Furthermore, Wb4

can be also estimated from the incoherent scattering measured by means of backscattering exper-

iments on a fully protonated sample addressing the self-motions of hydrogens, which has already

been published in ref 36. Those data were phenomenologically described in terms of a KWW

functional form (Eq. 11) with β = 0.5, and the resulting characteristic times are represented in

Figure 3. In that sample, the chains were quite long (Mw ≈ 20 kg/mol) and translational diffusion

contributed there only marginally. Thus, the scattering function of Eq. 10 without considering the

diffusion term was implicitly used for the data description. Moreover, below Q ≈ 0.4 Å−1 the Q

dependence of the characteristic times (Figure 3) obeys the Q−4-law predicted in the Rouse model

(Eq. 12). In view of these observations, the Rouse model seems to be applicable in this range

and from the characteristic times presented in Figure 3 it is possible to calculate Wb4 by means of

Eq. 12. The values so obtained are also presented in Figure 2. A good overlap is observed with

the other results. We note that at lower temperatures the determination of Wb4 is subject to higher

uncertainties, since there the quasielastic broadening cannot be properly resolved for the lowest Q

value. Nevertheless, the comparison among all data is very good, indicating that the chain dynam-

ics in PEP as observed by NS on different samples and experiments is consistently described by

the Rouse model within the experimental uncertainties.

Comparison between NS and MD Simulations

From the atomic trajectories collected from MD simulations —extensively validated at the inter-

molecular scale by NS experiments already published in ref 21– we have calculated the NSE signal
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(Eq. 1) by simulating the experimental conditions mentioned above. Thus, from the simulated sys-

tem (Mw = 5.6 kg/mol) we have considered 4 protonated and 8 deuterated chains, which approxi-

mately corresponds to 33%h-PEP / 66%d-PEP (close to the composition of the real sample). The

deuteration level of the real chains is approximately 94% due to the remaining protonated initiator

which is needed in the chain synthesis. In our simulations, this effect was not considered and the

chains were treated as if they were fully deuterated. However, the slightly lower ratio of deuterated

chains in the simulated system can compensate for the protonated initiator effect present in the

experimental sample. Therefore, even though the scattering contrast is not exactly the same, the

simulated results can be considered to be a good approximation to the measured function. Figure 4

shows the comparison of INSE(Q, t) between NSE experiments and atomistic MD simulations for

the two higher Q values measured at 492 K. Since from the simulations all the scattering contri-

butions of the blend of chains were taken into account, the experimental data have been presented

without subtracting the scattering from the deuterated matrix —which is necessary to isolate the

pure Schain(Q, t)/Schain(Q) (see Neutron Spin Echo section), as done in the results presented in Fig-

ure 1. In the comparison of Figure 4, we have applied the time shift (factor of 2) needed to match

the times of the α-relaxation21 as was explained before. The agreement is rather good regarding

both, the spectral shape and the Q dependence. We have to take into account that the low Q limit in

our atomistic MD simulations results from the limitations in the pair correlation calculations given

by the cell size L (rmax = L/2): Q = 2π/rmax = 4π/L(492 K)≈ 0.24 Å−1. Thus, although we find

a very good agreement at Q = 0.115 Å−1, this function is out of the Q limit and the uncertainty

in the calculation could be high. Nevertheless, the good agreement seems to confirm the validity

of the simulated system —at least in the length scales covered by the simulations. Moreover, the

consistency with the previous results on the local dynamics is demonstrated.

Next, the intermediate incoherent scattering function of protons SH
inc(Q, t) (investigated by

backscattering in Ref. 36) was calculated from the atomic trajectories and fitted by Eq. 10 with

D as in Eq. 8. Figure 5 shows the results of such fits at Q = 0.3 Å−1 at the investigated tempera-

tures. The Wb4 obtained values (the only free parameter in the fits) are also included in Figure 2
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after correcting them from the time shift in the MD simulations results described above. They

show an excellent agreement with the experimentally deduced values.

Finally, we have directly calculated the “pure” Schain(Q, t) considering only correlations in-

volving atoms from a given individual chain. In this calculation, the periodic boundary conditions

have been released so that the global cartesian coordinates of the molecule are considered. These

coordinates are not restricted to the cell size. Despite this fact, in any dynamics the cell size is an

underlying limiting factor. We have calculated Schain(Q, t) at the same Q values as in the NSE ex-

periments and fitted them with the expression for the Rouse model (Eq. 9). Figure 6 shows the fits

in linear and logarithmic scales of the time axis. The fits do not describe properly the correlation

functions at short times, in a similar way as it is observed in the logarithmic-time representation of

the experimental data (Figure 1a). The Wb4 values obtained are presented in Figure 2, showing a

consistent comparison with the other results once they have been properly corrected by the above

mentioned factor 2.

From all these observations we can conclude that the simulated system behaves as the real

one also concerning chain dynamics and that the Rouse model seems to reasonably describe such

dynamics.

Exploiting the Simulations. Rouse Mode Analysis

After this validation, we can take advantage of the simulations in order to accurately investigate

the Rouse model limits. For instance, we can calculate the atomic and the CoM mean squared

displacements (msd), which cannot be directly measured by experiments. After the decageing

regime, a sublinear regime is observed in the msd displacement of the hydrogens which is char-

acteristic for glass-forming polymer dynamics. This regime is attributed to the segmental dy-

namics in the α-relaxation regime with a msd 〈r2(t)〉 ∝ tβ , being β the stretching exponent

(0.4≤ β ≤ 0.6).37–39 Since polymers are interconnected objects with large conformational entropy,

the universal entropy-driven Rouse dynamics prevails at intermediate scales. Thus, the sublinear
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regime following the decageing process leads to Rouse motion at larger scales and longer times,

with 〈r2(t)〉∝ t1/2. This behavior is a clear signature of the Rouse motion and has been observed in

simulations18 and some NS experiments.8,10 The hydrogen msd of simulated PEP at 492 K shows

an almost direct crossover from the microscopic regime toward the Rouse-like behavior (Figure 7).

NS experiments on a high molecular weight PEP melt (Mw ≈ 80 kg/mol) published in ref 40 also

present Rouse-like behavior at the same temperature. However, we also observe deviations from

Rouse behavior: at times shorter than the Rouse time (τR(492 K) = 106 ns) the msd of the chain

CoM 〈r2
CoM(t)〉 does not increase linearly with time. An analogous behavior has also been ob-

served in experimental and simulation works on PB,16 PE,17 or PEO.18 The time dependence of

〈r2
CoM(t)〉 can be (at least effectively) described by a power law 〈r2

CoM(t)〉∝ tx with x<1, indicative

for sublinear diffusion, that has generally been interpreted in terms of the effect of intermolecular

interactions ignored in the Rouse model. For instance, in the mode coupling approach of Guenza41

the solution of the corresponding generalized Langevin equation for short chains gives values of

x in the range 0.85 . x . 0.97. Another possible description of the deviations of 〈r2
CoM(t)〉 from

purely diffusive behavior is provided by the Mode Coupling Theory (MCT), if a coupling between

chain dynamics and the mean surrounding medium is considered.42 In this framework, in addition

to the Rouse linear increase a contribution proportional to t0.75 would be present, giving rise to a

’globally apparent’ 〈r2
CoM(t)〉∝ tx. Our data would be compatible with both kinds of frameworks.

Next we perform a direct analysis of the Rouse modes and Rouse correlators 〈Xp(t)·Xp(0)〉/〈X2
p(0)〉

coarse graining the atomistic MD simulations. We have defined a bead as the CoM of one monomer

creating 12 chains with N = 80 beads each and with 80 associated modes (p = 0,1, . . . ,79). The

chosen definition of bead is justified since the msd of the monomers is very close to that of the

hydrogen atoms, at least in the interesting sublinear regime, at large time scales, as it is shown

in Figure 7. Some of the normalized Rouse correlators at 492 K are presented in Figure 8. To

check the exponentiality of the Rouse correlators (Eq. 4), we have fitted them by means of KWW

functions (Eq. 11):

〈Xp(t) ·Xp(0)〉/〈X2
p(0)〉= exp[(−t/τ

KWW
p )βp ], (13)
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where the relaxation time τKWW
p and the stretching parameter βp —measuring the deviations from

an exponential decay— depend on mode number p. Due to bad statistics at low temperatures we

considered T ≥ 350 K. The resulting values of βp are shown in Figure 9a as a function of the scal-

ing variable N/p (“mode wavelength”). At high N/p values, N/p& 5, βp seems to reach a more or

less constant value about 0.8−0.85 (for the highest temperatures investigated; at 350 K the results

in this region are not reliable). On the other hand, for low N/p values a clearly nonexponential be-

havior is observed, that becomes more pronounced with decreasing temperature. Nonexponential

relaxation of Rouse modes has also been reported for other systems and different simulation meth-

ods as well. For example, simulations of polymers on a lattice with uncrossability constraints,43

atomistic MD simulations of PE and PB (see e.g., refs 44,45), and more recently PEO.18 Such de-

viations have been reported from theoretical treatments as well (see e.g., refs 46,47). Because βp

changes for the different modes and temperatures, we have considered the average relaxation times

〈τp〉 [〈τp〉= τKWW
p β−1Γ

(
β−1)], as characteristic for the relaxation times of the Rouse modes. The

effective Rouse frequency, W e f f , can be calculated from 〈τp〉 by means of Eq. 5. Both parameters,

shown in Figure 9b and Figure 9c, display a clear temperature dependence and follow Rouse-like

behavior (solid lines in figures) for N/p & 5 or p . 16. There, W e f f tends to a constant plateau,

W e f f
0 . At shorter N/p values clear deviations from the Rouse predictions are observed. A sim-

ilar trend is shown by the amplitudes of the Rouse correlators 〈X2
p(0)〉 (Figure 9d). In the short

N/p range the amplitudes overlap and are massively suppressed, indicating significantly stronger

restoring forces than those originating from the entropic potential of the Rouse model.

An ‘effective’ statistical segment (be f f )2 can be independently determined from the amplitudes

of the Rouse modes according to Eq. 3, resulting in the values shown in Figure 10 as a function

of N/p at the different temperatures. The mode-number dependence of (be f f )2 reflects deviations

from ideal chain statistics due to the local potentials of the atomistic system, in particular the

angular potential which introduces some stiffness. These stiffness effects are more important at

smaller length scales. Only at N/p & 10 a constant value of (be f f
0 )2 ' 60 Å2 is reached, which

corresponds to be f f
0 ' 7.75 Å for the statistical segment. This value is smaller than the Kuhn
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statistical segment length, bK(492 K)' 11.2 Å, estimated from the results published in ref 31.

To check whether the local stiffness is the only reason for the deviations of the chain dynamics

from the Rouse behavior in the low-N/p range we can invoke the so-called All Rotational State

(ARS) model.48 In this framework, the stiffness of the chain at local scales translates in an increase

of the spring constant (3kBT/b2). Accordingly, we have calculated W e f f by the Rouse model (Eq.

6) but taking (be f f )2(N/p) as deduced from the amplitudes (Figure 10) and fixing the friction ξ

from the high N/p values of W e f f , W e f f
0 , where Rouse-like behavior (W e f f ∼ constant) seems

to apply. The results obtained (dashed lines in Figure 9c) evidence that the consideration of local

stiffness overestimates the deviations from the Rouse model at low N/p values.

The last results suggest to postulate a mode-dependent effective friction ξ e f f as the responsible

mechanism. These ξ e f f were calculated by means of Eq. 6 as

ξ
e f f (N/p) =

3kBT
W e f f (be f f )2 , (14)

where W e f f and (be f f )2 depend on N/p (Figure 9c and Figure 10). Figure 11 shows the results

so obtained, which decrease with increasing N/p, reaching a constant plateau ξ
e f f
0 at N/p & 8.

Similar behavior was observed in atomistic MD simulations on PEO melts.18 A direct comparison

between PEP and those PEO results is made in Figure 11, showing that the similarity is not only

qualitative but also quantitative. In both cases the friction starts deviating from the constant limit

ξ
e f f
0 at approximately the same value of the variable N/p, and the relative increase of the effective

friction in going toward high-p values is nearly the same. Furthermore, qualitatively similar effects

were observed in experimental works in PIB melts9 and solutions,11 and were interpreted in terms

of an internal viscosity effect proposed by Allegra and Ganazzoli.49 However, for PIB the mode

damping effect starts from lower modes. This quantitative difference may result from the stronger

rotational potentials in PIB, causing very different internal viscosities.

Thus, considering long wavelength modes N/p & 8 (p . 10) the apparent friction and statisti-

cal segment are approximately constant and the Rouse variable defined in this limit, W e f f
0 (be f f

0 )4,
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agrees very well with the compilation of Figure 2 (after applying the shift accounting that simula-

tions are a factor of 2 slower). Only the more localized modes present significant deviations from

the Rouse model. The question arises: how do these localized modes affect the scattering func-

tion that is experimentally accessed? The contribution of the normal modes to Schain(Q, t) strongly

depends on the Q value considered, but, since the dynamic structure factor is not simply broken

down into a sum or product of more contributions, the Q dependence is not easy to represent. In

order to make the effects more transparent, we consider the maximum possible contribution of a

given mode p to the relaxation of Schain(Q, t). This maximum contribution is reached when the

correlator 〈Xp(t) ·Xp(0)〉 has fallen to zero. We thus define the contribution factor:

Rp(Q) =
1

Schain(Q, t = 0)

N

∑
n,m=1

exp
[
−Q2b2

6
|n−m|− 2

3
R2

eeQ2

π2
1
p2 cos

( pπm
N

)
cos
( pπn

N

)]
, (15)

that describes to what extent a mode ’p’ may relax Schain(Q, t) in the limit of long times (t → ∞)

and under the premise that all the other modes are not active, i. e., setting in Eq. 9 the term

[1− exp(−ts2/τR)] = 1 if s = p and equal to 0 otherwise. Figure 12 shows the Q-dependence

of the mode contribution factors for the PEP chains investigated in this work. At the lowest Q

investigated, 0.03 Å−1, the contributions of all the internal modes are negligible and the decay of

Schain(Q, t) is practically due to translational diffusion. We note that at this Q value the experi-

mental data appear to be more stretched than the Rouse description (Figure 1). This supports a

sublinear increase of 〈r2
CoM(t)〉, as that observed in the simulated system. In fact, a KWW func-

tion with β = 0.8 , i. e., the exponent in the asymptotic power-law description of 〈r2
CoM(t)〉 of the

atomistic simulated chains (Figure 7), provides a better description of these data (see dashed line

in Figure 1a). With increasing Q (e. g. for the next Q investigated Q = 0.05 Å−1), the first mode

starts to play a role. If Q is further increased, higher relaxation modes also begin to influence

the dynamic structure factor. In fact, the largest Q here studied, 0.25 Å−1, would be appreciably

affected by modes higher than the 10th, where the deviations from Rouse become evident. Thus,
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we would expect that the observed deviations from Rouse would be patent in the experimental

data around this Q and larger values. We note that the higher the mode number, the faster is its

contribution to the total decay of Schain(Q, t) (see Figure 8). Therefore, the deviations arising from

the high-p modes will mainly affect the short-time regime of the scattering function. To realize

about the maximum deviations expected, we have calculated the difference between considering

the contributions of all Rouse modes and of the ten first modes to the Rouse dynamic structure

factor in Eq. 9 (see Figure 13). For Q . 0.2 Å−1 the decay is almost completely determined

by the ten first modes, where W e f f (be f f )4 is constant. As above commented, the incipient devi-

ations detectable at Q = 0.2 Å−1 are most evident in the short-time regime. At a higher Q like

Q = 0.4 Å−1, modes higher than ten substantially contribute to the decay. In the extreme case

where these modes were completely frozen, the observed decay would correspond to the symbols,

while perfect Rouse would deliver the line. Deviations as those found in the simulations would

produce something in between. Thus, we could say that at Q ≈ 0.4 Å−1 and above we could

expect clear deviations from pure Rouse behavior in the experiments. This value is consistent with

the results on the self-motions depicted in Figure 3. If the results for the characteristic times above

Q ≈ 0.4 Å−1 are considered, deviations from the Q−4 dependence become apparent and a fit to

Eq. 12 would deliver a value of the effective Rouse variable smaller than the right one –compatible

with a damping of the dynamics.

We note that the deviations from Rouse dynamics found at short times in Figure 1 and Figure 6

can also be partially due to the fact that the model simply does not include any dynamical process

related to the microscopic dynamics (e. g. vibrations) that are present in real and fully atomistic

samples. The allowed prefactors in the Rouse fits would overcome this problem if the charac-

teristic times of the neglected fast processes are well separated (much faster) than the relaxation

times characteristic for Rouse dynamics. Then, a Debye-Waller-like factor should provide a good

parametrization of the additional fast dynamics. The observation of larger experimental/simulated

values than the Rouse predictions affected by prefactors suggests that some of the faster additional

processes occur at timescales intermediate between the microscopic (picosecond) regime and the
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region where Rouse starts to dominate the dynamics.

We finally comment on a somewhat paradoxical situation that could be found at first sight

in the comparison between PEP and PEO limits for validity of the Rouse model. Despite the

quantitative similarity of the deviations from Rouse behavior in both polymers demonstrated above

(Figure 11), for PEO a substantially larger limiting Q-value (≈ 0.6 Å−1) for applicability of the

Rouse model has been reported.18 This apparent discrepancy arises from the different value of

the statistical segment in both polymers. From the corresponding simulations, for PEP we obtain

b0 ≈ 7.75 Å and for PEO, b0 ≈ 5 Å. The same N/p-value for deviations from Rouse behavior for

both polymers implies a much larger corresponding p-number for PEO, that translates in a higher

Q value for observing the deviations in the dynamic structure factor.

Conclusions

The single chain dynamic structure factor of PEP obtained from both NSE and atomistic MD simu-

lations could be reasonably well described in terms of the Rouse model and in a consistent way with

previous literature results. The Rouse mode analysis of the simulation data has shown deviations

from Rouse behavior for all the investigated temperatures in the short length scale, even when the

chain-stiffness is considered in the model through an ARS-like approach. Such deviations can be

addressed in terms of a mode-number (length scale) dependent effective friction coefficient which

decreases with the length scale reaching a constant value (pure Rouse) at N/p & 8. These results

underline the role of the local potentials in the chain dynamics of polymers. The experimentally

accessed functions reflect these effects at high Q values and mainly short times. In addition, they

are also affected by faster processes that are not considered in the Rouse model. Moreover, below

τR, 〈r2
CoM(t)〉 increases sublinearly with time, presumably due to the effect of intermolecular in-

teractions neglected in the Rouse model. This is reflected in a stretching of Schain(Q, t) at low Q,

where it is dominated by translational diffusion.
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Table 1: Molecular weight characteristics of h-PEP6k and d-PEP6k.

Polymer Mn(kg/mol) Mw/Mn
h-PEP6k 6.2 1.02
d-PEP6k 6.85 1.02

Table 2: Details of the simulated cells.

T (K) ρexp(g/cm3) ρMDS(g/cm3) Cell dimension (Å)
492 - 0.7447 53.155
413 0.79 0.7948 52.014
350 - 0.8266 51.338
300 0.856 0.8549 50.766
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Figure 1: Time dependence of the NSE signal obtained from the sample 30%h-PEP / 70%d-PEP
(Mw≈ 6 kg/mol) and corrected for matrix scattering (symbols) at the specified Q values and 492 K:
(a) logarithmic time scale and (b) linear time scale. The solid lines are fits with the Rouse model
(Eq. 9), where the remaining incoherent contribution has also been considered. The dashed line in
(a) is a KWW description of the lowest-Q data, where the β -value has been fixed to 0.8.
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Figure 2: Temperature dependence of the characteristic Rouse variable Wb4 for PEP: from NSE
experiments on a PEP sample of Mw ≈ 80 kg/mol (empty circles) from the short-time regime pub-
lished in ref 35, and on the 30%h-PEP / 70%d-PEP (Mw ≈ 6 kg/mol) (diamond); from the study of
the self-motions of hydrogens by means of atomistic MD simulations (Mw = 5.6 kg/mol) (squares)
and backscattering experiments on a fully protonated sample (Mw ≈ 20 kg/mol) (triangles); from
the single chain dynamics calculated from the atomistic simulations (inverted triangle); and finally,
from the Rouse mode analysis performed from the atomistic simulations (full circles). Shift in the
simulation results has been applied in order to compare with experiments (see text).
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Figure 3: Momentum transfer dependence of the characteristic times obtained for the incoherent
scattering function of PEP hydrogens by means of backscattering experiments (see ref 36) at the
different temperatures investigated: 300 (circles), 350 (squares), and 400 K (diamonds). The solid
lines display the power law τsel f (Q,T ) ∝ Q−4.
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Figure 4: Figure 5: Time dependence of the signal measured by NSE in the sample 30%h-PEP /
70%d-PEP (Mw ≈ 6 kg/mol) (full symbols) and computed from atomistic MD simulations (Mw =
5.6 kg/mol) (empty symbols) at the specified Q values and 492 K. Shift in the experimental time
scales has been applied in order to match both sets of data (see text).
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492 K. Solid lines correspond to Rouse model fits by using Eq. 10.
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Figure 6: Single chain coherent dynamic structure factor calculated from our atomistic MD simu-
lations at 492 K: (a) logarithmic time scale and (b) linear time scale. The solid lines are fits with
the Rouse model (Eq. 9).
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Figure 12: Q dependence of the contributions of the different modes indicated to the relaxation
of the dynamic structure factor in the Rouse model. The PEP parameters of the real chains have
been used in the calculation. Vertical dotted lines show the Q values investigated in the NSE
experiments.
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Figure 13: Single chain dynamic structure factor predicted by the Rouse model (Eq. 9) at the three
Q values indicated (solid lines). The symbols represent the result of considering only the first 10
modes in the summation. In the calculation, the value of W e f f

0 (be f f
0 )4 obtained for PEP at 492 K

has been considered and all functions have been normalized to their respective values at t = 0.
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