
Octree-based, GPU Implementation of a Continuous Cellular Automaton for the
Simulation of Complex, Evolving Surfaces

N. Ferrando∗,a, M. A. Gosálvezb,c, J. Cerdáa, R. Gadeaa, K. Satob

aInstituto de Instrumentación de Imagen Molecular, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
bDept. of Micro-Nanosystems Engineering, Nagoya University, 464-8603 Aichi, Japan

cDept. of Materials Physics, University of the Basque Country (UPV-EHU), Donostia International Physics Center (DIPC), and Spanish National Research
Council (CSIC), 20018 Donostia - San Sebastian, Spain

Abstract

Presently, dynamic surface-based models are required to contain increasingly larger numbers of points and to propagate them
over longer time periods. For large numbers of surface points, the octree data structure can be used as a balance between low
memory occupation and relatively rapid access to the stored data. For evolution rules that depend on neighborhood states, extended
simulation periods can be obtained by using simplified atomistic propagation models, such as the Cellular Automata (CA). This
method, however, has an intrinsic parallel updating nature and the corresponding simulations are highly inefficient when performed
on classical Central Processing Units (CPUs), which are designed for the sequential execution of tasks. In this paper, a series of
guidelines is presented for the efficient adaptation of octree-based, CA simulations of complex, evolving surfaces into massively
parallel computing hardware. A Graphics Processing Unit (GPU) is used as a cost-efficient example of the parallel architectures. For
the actual simulations, we consider the surface propagation during anisotropic wet chemical etching of silicon as a computationally
challenging process with a wide-spread use in microengineering applications. A continuous CA model that is intrinsically parallel
in nature is used for the time evolution. Our study strongly indicates that parallel computations of dynamically evolving surfaces
simulated using CA methods are significantly benefited by the incorporation of octrees as support data structures, substantially
decreasing the overall computational time and memory usage.

Key words: parallel computing, dynamic surface, octree, graphics processing unit (GPU), Many-core processors, cellular
automata (CA), anisotropic wet etching
PACS: 89.20.Ff, 85.85.+j, 81.65.Cf

1. Introduction

Dynamic surfaces appear often in a wide variety of physi-
cal systems. These surfaces vary their overall shape, size and
morphology as the underlying physics and/or chemistry change
during the evolution. Several examples of this behavior include
the propagation of a wave front [1, 2], the conformal growth of
thin films on three-dimensional landscapes during atomic layer
deposition [3, 4] or the complex propagation of the etch front
in chemical etching for microengineering applications [5, 6].
When the desired system resolution requires a large number of
surface points and the underlying propagation model requires
processing a large fraction of those points in each time step, the
use of classical sequential processors can lead to highly ineffi-
cient simulations. This is the case of typical Cellular Automata
(CA) models, where groups of points (or cells) with identi-
cal states need to be processed simultaneously. On traditional

∗Corresponding author.
Address: Instituto de Instrumentación de Imagen Molecular, Universidad
Politcnica de Valencia, Camino de Vera S/N CP 46022 Valencia, Spain.
E-mail: nesferjo@upvnet.upv.es
Phone: +34 626401251
Fax: +34 963879609

computers with a single Central Processing Unit (CPU), one
is forced to use a computational loop structure, which will be
sequentially executed by the CPU. As a result, the simulations
are characterized by a linear computing complexity, where the
amount of calculations depends on the size of the modeled sur-
face. This has been usually reported as a limiting factor whose
only solution might be the use of simpler but less accurate phys-
ical or chemical models [7].

In recent years, however, a huge increase in the development
and commercialization of parallel computing architectures has
occurred. Multicore processors have reached the mainstream
market and Many Core Architectures (MCA) such as Graphics
Processing Units (GPUs) have become an affordable alternative
for the computation of massively parallel algorithms [8, 9]. Tra-
ditionally developed for improved and faster graphics, this type
of environment has recently become popular also for scientific
applications due to the high performance-to-price ratio of most
GPU cards. Although these novel architectures provide new
possibilities and promise significant speedups, they also impose
new restrictions to traditional data structures, which need to be
re-evaluated and adapted for the new environments.

One such example is the sparse, spatially-organized data
structure of an octree [10]. This structure is very beneficial in

Preprint submitted to Computer Physics Communications November 1, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36058106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a single-processor, single-memory environment as it provides
a good balance between low memory and reasonably fast ac-
cess to its elements, as well as acceptable searching properties
[11, 12, 13]. In this way, the octree offers wide flexibility in
order to represent an evolving surface that is reshaped contin-
uously. As an example, octrees have been successfully used to
describe anisotropically wet etched silicon surfaces, giving rise
to complex, often multivalued, three-dimensional structures of
ample use in microengineering applications in the area of Mi-
cro Electro Mechanical Systems (MEMS) [11]. The wide use
of wet etching is due to its many advantages, including its low
cost, the simplicity of the experimental setup, the ability to
perform batch fabrication, an unmatched capability to release
mechanical structures and the excellent uniformity and surface
quality. Incidentally, it has been recently shown that the prop-
agation of the evolving front during wet etching can be accu-
rately modeled using an intrinsically parallel method known
as the Continuous Cellular Automaton (CCA) [11, 14, 15, 16].
The major drawback, however, is the relatively low efficiency
of the simulations when performed on a traditional CPU envi-
ronment. On the contrary, affordable GPUs have demonstrated
remarkable performance for the simulation of CA-based mod-
els [17].

In this paper, the use of the octree structure for the manage-
ment of dynamically evolving, multivalued, complex surfaces
is revised in order to meet the particular needs of the GPU ar-
chitecture, serving as an example for other many-core architec-
tures. By using the CCA method as an example of a strongly
parallel evolution model and anisotropic etching of silicon as
a relevant application that leads to the formation of complex,
dynamically evolving surfaces, we present a series of guide-
lines in order to optimize this type of simulation on massively
parallel computing environments. Not only the results show
that cellular automata simulations of dynamically evolving sur-
faces can be successfully adapted to a parallel computing GPU
environment, thus circumventing the slowness of a CPU-only
implementation, but more importantly, the results also show
that the incorporation of the octree data structure is an effec-
tive procedure to minimize the amount of GPU memory use
and computational effort, thus resulting in faster overall simu-
lation times and enabling the exploration of larger-size and/or
larger-resolution systems.

2. Describing surfaces using octrees: adaptation to the
GPU architecture

2.1. Using octrees to describe complex, evolving surfaces
The dynamic surfaces considered in this study are composed

of points on which the model equations are applied. The points
may correspond to lattice nodes located at the interface between
two different physical regions (or materials), or the atoms at the
surface of a growing/etched crystal. A way to avoid storing the
full lattice or crystal in the computer memory is to regard the
surface points as the leaves of a tree [10, 11, 14]. The idea
is to represent the full computational cubic region as the root
node of the tree. This region is then subdivided into eight sub-
regions, represented by eight children nodes in the tree, directly

connected to the root node. The non-empty subregions (con-
taining surface points) are further subdivided –and correspond-
ing nodes are inserted in the tree– until partitioning cannot be
performed any further due to the finite size of the original set
of surface points (Figure 1(a)). The cubic region defined by
the whole tree can grow by just embedding the root node as a
child of a new root node that encloses a bigger domain. This
type of data structure, known as an octree, has been used by the
computer graphics community in many different contexts (e.g.
space traversal acceleration in Ray Tracing, efficient collision
detection) or for scientific simulation purposes (e.g. adaptive
simulations, parallel dynamic decompositions, etc...).

The main two characteristics of octrees are (i) the ability to
provide data storage using reduced memory, since the space
portions without relevant information are kept undivided, and
(ii) a moderate cost O(dlog8(N)e) for accessing the leaf nodes at
the finest level, where N is the number of nodes. In other words,
an octree provides a good balance between memory use and
access time. As shown in Figure 1(b), these features are spe-
cially useful in order to store dynamic surfaces in the computer
memory since only the space surrounding the surface needs to
the partitioned in detail [10]. In particular, octrees have been
successfully used for the simulation of dynamic surface-based
models [14].

In our case, the minimum spatial region associated to the
leaf nodes of the octree is an orthorhombic unit cell contain-
ing a small number of silicon atoms, as shown in Figure 2(a).
This is based on the fact that any crystalline material, such
as silicon, can be constructed by repeating the unit cell along
three independent directions. An orthorhombic unit cell is a
stretched/squeezed cubic cell with all angles equal to 90 deg
and has the advantage that the three directions are orthogonal.
The size, aspect ratio and atom contents of this unit cell depend
on the crystallographic orientation of the simulated surface, e.g.
(100), (110), (221), etc..., where (hkl) are the Miller indices.
More generally, the minimum spatial region will contain points
from a discretization of the space where the physical model is
solved.

To improve the parallel computing efficiency, as considered
in Section 3.6, the concept of supercell is used in this study.
The name ”supercell”, which refers to a collection of several
(or many) adjoint unit cells, as described in Figure 2(b), is bor-
rowed from the well established computational field of Density
Functional Theory [18]. The term is used in this study to re-
fer indistinctively to both the crystallographic unit cell and any
multiple of it. In this manner, a supercell is the smallest space
partition associated to the leaf nodes of the octree, as shown on
the left-hand-side of Figure 2. Although generally each atom
is regarded as a cell in cellular automata applications, in this
work such identification is avoided in order to minimize confu-
sion with the unit cell and supercell concepts. For the cellular
automaton used in this work, the supercell is understood sim-
ply as a collection of atoms, as described in Figure 2(c). The
number of atoms in the supercell, regarded as M, is different for
different surface orientations.

2

Figure 1: (a) Space discretization and octree depth. (b) 3D surface as an interface between two phases and corresponding octree structure.

(100)

(221)

Octree

or

or

a) unit cell b) supercell as collection

of unit cells
c) supercell as collection

of atoms

Crystallography Cellular Automata

Leaf nodes

represent minimum

space partitions

Figure 2: Leaf nodes of the octree represent the minimum spatial region. For a crystalline structure, this minimum space region can be defined as: (a) an orthorhombic
unit cell or (b) as a group of unit cells, namely a supercell. (c) In a Cellular Automaton the supercell is simply a stretched-box-like collection of M atoms.

2.2. Using octrees in the GPU environment
In the last years, GPUs have demonstrated an affordable, yet

powerful architecture for the computation of massively parallel
algorithms. We choose the CUDA architecture as a general pur-
pose parallel computing platform, available for the latest gener-
ations of GPUs developed by Nvidia [23]. From the perspective
of CUDA, a GPU is abstracted as a device that contains an array
of independent cores, an interconnection network and a device
memory (DRAM). The actual structure of a GPU is far more
complex, with Scalar Processors (SPs) grouped into Streaming
Multiprocessors (SMs) grouped into Thread Processing Clus-
ters (TPCs), such that SMs and TPCs contain arithmetic units
and other resources (such as shared memory, caches, texture
fetch units, etc...) that not only vary with the GPU series model
but are also mainly hidden from the programmer. A ”core” can
typically be pictured as one SM. Each core is able to execute a
large number of threads simultaneously. A typical CUDA func-
tion, referred to as a kernel, is performed in parallel by a large
number of threads, all of which execute the same algorithm.

The threads, organized in blocks, are sent to the cores for ex-
ecution. Inside each core, on-chip shared memory allows fast
communication between the threads of a block. In addition, the
GPU has a global memory that enables persistent data storage
along application lifetime and a (slower) inter-thread commu-
nication between different thread blocks. Each core has fast
read access to both a texture memory cache, optimized for 2D
spatial locality, and a constant memory cache. The program-
mer can use reserved keywords, such as constant , shared ,
etc..., in order to control the storage of the variables in the
different memories. Finally, the CUDA environment provides
atomic read/write operations (on the shared and global memo-
ries), which guarantee that only one thread can access a certain
memory address until the operation is complete.

To maximize the performance in this environment, the pro-
gram code should exercise moderate access to the GPU global
memory and, when doing so, the access pattern should be opti-
mized in order to achieve memory coalescing (see Section 3.3).
In addition, the code should try to maximize the number of ac-

3

tive threads in each core as well as minimize the use of flow
control and atomic instructions, as these can easily disrupt the
parallel execution of the thousands of threads that should be
simultaneously handled. In general terms, as indicated below,
we use (i) the constant cache to store data that do not change
during the simulation, such as the silicon structure and the etch
rates for the chosen etchant; (ii) the global memory to store
most model data, using optimized access patterns; (iii) the tex-
ture cache for some model data, such as the neighbors of the
currently processed atom, in order to improve non-optimal read
access that has spatial locality; (iv) shared memory in some par-
ticular cases.

The computing strength of most parallel architectures is
based on massively concurrent execution of threads. Sequentia-
tion of any procedure results in slow and inefficient algorithms.
In principle, adaptation of the dynamic surfaces described in
Section 2.1 into many core architectures, such as a GPU, can
be done simply by grouping the surface points into tasks in or-
der to compute the tasks concurrently using multiple threads.
However, in a GPU the management of a surface using an oc-
tree suffers from one crucial restriction, namely, the allocation
and deallocation of space portions of the octree become criti-
cal sections in the program code. This means that uncontrolled
simultaneous execution by two or more threads can cause data
corruption. An example of this problem occurs when two con-
current threads proceed to allocate a new octree node. Without
any synchronization, a typical race condition may occur, where
both threads attempt to use the same memory region for stor-
ing model data belonging to different leaf nodes. Similarly, the
decision about the future state of any space portion can also be
considered as a critical section. As an example, if two threads
try to modify the state of the same space portion at the same
time, they can allocate or deallocate it twice, resulting in un-
known behavior. As a result, thread exclusion for octree man-
agement becomes mandatory. Although it is theoretically pos-
sible to implement intensive global thread exclusion through
atomic read/write operations, the read/write access to the stored
octree will become random, thus resulting in an inefficient ac-
cess pattern. Although both operations –atomic instructions and
random access– are possible on GPUs, they are far from the
ideal CUDA computing paradigm and their use will typically
lead to very inefficient implementations.

In order to efficiently implement concurrent thread execu-
tion, we propose to decouple the dynamic surface management
and the model calculations: the dynamic surface is completely
stored in the GPU global memory so that all the tasks related
to the model evolution can be quickly performed by the GPU,
while the underlying tree structure is stored in a classical CPU
so that the decisions related to the allocation and removal of oc-
tree regions can be properly carried out by the CPU. In order to
implement this approach, it is convenient that the data storage
is performed according to the following three guidelines:
• The GPU global memory is regarded as an array of Mem-

ory Clusters (MCs). Each MC is used to store model data
for one supercell (Figure 3(a)). Thus, the number of as-
signed MCs is equal to the number of currently used su-
percells.

• The CPU is provided with a repository of pointers to all
the currently available, non-used MCs (Figure 3(b)).

• Although the octree management is performed by the
CPU, the octree leaves that form the dynamic surface are
actually pointers to the assigned MCs (Figure 3(b)).

This means that each octree leaf stored in the CPU points to
a supercell, which contains M atoms and is stored as a MC in
the GPU. With this approach the surface is completely stored in
the GPU memory and the CPU has the necessary information
about the used and free MCs in the GPU, making possible to
adequately decide whether allocation and/or removal of spatial
regions is needed in the GPU.

The proposed decoupling requires continuous communica-
tion between both platforms. While processing the dynamic
surface, the algorithms executed in the GPU may decide that
a particular region needs to be updated (e.g. a supercell is not
needed anymore and can be eliminated). For this purpose, each
MC has a region for indicating, as a flag, if it needs any type
of update. The execution threads in the GPU will activate the
MC flags when needed, indicating what type of action the CPU
should perform on the corresponding MC. The CPU will re-
ceive and analyze the resulting flag array and, if any update is
detected, it will determine which supercell is affected from a
lookup table of assigned MCs. By knowing the supercell and
update type, the CPU is able to access the repository of used /

non-used pointers in order to add/remove an octree leaf node.
Finally, the CPU must inform back to the GPU about the newly
assigned and/or cleared MCs. Figure 3(c) shows a diagram of
this procedure. Using this method, all the calculations related
to the octree management are made in the CPU while the par-
allel calculations related to the model equations are performed
by the GPU.

Due to this decoupling, the positions of the supercells in 3D
space do not have any correlation to the locations of the corre-
sponding MCs in the GPU global memory. Since many phys-
ical/chemical models require inspecting the neighborhood of
each surface atom in order to decide the next series of events,
enabling fast access to the neighbor supercells becomes nec-
essary, especially for the atoms located close to the supercell
boundaries. Furthermore, keeping the number of memory reads
independent of the model complexity becomes a relevant fea-
ture when finding the neighbors. A data structure that can
achieve these two functionalities is a simple look-up table that
stores pointers to the neighbor supercells for each MC (see Sec-
tion 3.2). This table should be stored in the GPU global mem-
ory. In order to keep the information updated, changes in the
surface morphology during the simulation should be immedi-
ately reflected in this table. As the CPU keeps the information
about the spatial organization of the GPU clusters, the CPU is
responsible for sending the updates to the GPU.

Finally, regarding the repository of used / non-used MCs held
in the CPU, a stack data structure works well enough. Stack ac-
cess times are constant (O(1)) and, due to its LIFO (last in first
out) behavior, a recently released memory segment will be the
next one to be used. This feature prevents excessive dispersion
of the supercells along the GPU global memory. Keeping the
data essentially gathered together makes the parallel algorithms

4

10

Root node

Leaf nodes
01 02 03 04 05 06 07 08 09 00

(a) GPU architecture (b) CPU (master processor)

Octree-based surface manager

Pointers to unused

GPU clusters
00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

GPU global memory (divided in clusters)

28 29 30 31

24 25 26 27
20 21 22 23

16 17 18 19
12 13 14 15

10 11

(c) Procedure example, allocation of new areas

1. In the current time step, the GPU computes in parallel one of the algorithms over the

allocated surface.

02 03 04 05 06 07 08

12 13

10 11

update:

 8,9

02 03 04 05 06 07 08

12 13

Initialize: 10,11

Look-up table

updates

10 11

10

11

4. The GPU computes in parallel a new time step over the updated surface.3. The CPU decides the allocation of two new areas into the octree. Two pointers to the

GPU clusters are taken from the repository and added to the octree. The GPU receives

the order to initialize these two new areas and data for updating the look-up tables.

2. The GPU sends information about updates in allocated space regions.

Areas arround clusters 8 and 9 will soon be part of the surface and should be

allocated in the octree.

Allocated GPU cluster

Free GPU cluster

Pointer to GPU cluster

Octree (partial view) Unused clusters

(partial view)3D view of the surface,

showing the GPU cluster

numbers. The surface evolves

towards space regions under

clusters 8 and 9.

8 9 96 7
5

11 11

Now the surface has two

more regions allocated.

These are stored in

clusters 10 and 11.

10,11

8 9 96 7
5

GPU processors

S P SP

SP SP

SP SP

SP SP

S . Mem...

S P SP

SP SP

SP SP

SP SP

S . Mem

S P SP

SP SP

SP SP

SP SP

S . Mem

S P SP

SP SP

SP SP

SP SP

S . Mem

S P SP

SP SP

SP SP

SP SP

S . Mem

S P SP

SP SP

SP SP

SP SP

S . Mem

Figure 3: Proposed implementation for the efficient simulation of dynamic surfaces described using octrees on a GPU environment. (a) GPU memory divided into
clusters. (b) Data structures stored in the master processor memory (CPU). (c) Procedure example for the addition of new subregions into a simulated surface.

more efficient since full memory occupancy until a certain lo-
cation can be assumed and, thus, data processing needs to be
performed up to that point only.

3. Example application

The methodology presented in Section 2 to incorporate the
octree data structure in a GPU environment is applied to the
simulation of the evolving front during anisotropic wet chem-
ical etching of silicon using a Continuous Cellular Automaton
(CCA) for the time evolution.

3.1. Physical model for wet etching

Wet etching consists on the removal of material from a solid
sample immersed in an alkaline or acidic solution [19]. It is
the result of chemical reactions between the surface atoms and
the etchant phase molecules. Wet etching is a popular process
for the creation of microstructures in a wide range of applica-
tions, such as pressure sensors [20], gas-flow sensors [21] or
micro-switches [22]. In this process, the advancing front prop-
agates with a different rate depending on the crystallographic
direction. Certain crystallographic orientations, such as {111},
are etched at a lower rate than others. In simple terms, such
planes are etched slowly due to stronger atom bonds and/or

larger atom coordination. Combined with the use of mask pat-
terns, the etch-rate anisotropy becomes a valuable property as it
provides a low-cost, precise means for the production of three-
dimensional shapes delimited by smooth, shiny facets. Slow
etching planes are developed at concave features of the mask-
ing patterns while fast etching planes compete to reshape the
convex features. Due to dependencies on the composition of
the etchant, such as its concentration and temperature, the three-
dimensional etched shapes are difficult to grasp intuitively. Fur-
thermore, their correct description by means of simulations has
traditionally remained a challenge.

Recently, however, anisotropic etching has been successfully
simulated using a CCA model [15]. Etching is considered as
a step-flow process where rows of silicon atoms located along
morphological steps are removed in an ordered manner. Under
closer inspection, the underlying theory makes a classification
of the silicon surface sites depending on the number of surface
nearest neighbors (n1s), interior nearest neighbors (n1b, where
”b” stands for ”bulk”, i.e. interior), surface next-nearest neigh-
bors (n2s) and interior next-nearest neighbors (n2b). Taking into
account this information, it is possible to exactly classify the
different atom configurations on the surface of a silicon sub-
strate. These configurations are used to determine the reaction
rates of the surface atoms. In particular, the removal rates for
all atom types can be obtained mathematically using the exper-

5

imental etch rates for several surface orientations [14, 15, 16].
Inside the model, the etching process is understood as a con-

tinuous decrease of a scalar field, referred to as the occupation
(Π), which is defined to take values at the locations of the sur-
face atoms (i.e. the surface sites). When an interior surface
atom becomes a surface atom, Π is initialized with value ’1’.
During the simulation, Π is gradually reduced until it reaches
value ’0’ (completely removed). At each time step (k), the re-
duction in the occupation of the i-th surface site is equal to the
current value of the removal rate of the atom that populates the
site (ri), multiplied by the time step (∆t):

Πi(k + 1) = Πi(k) − ∆t · ri(k),

where ri(k) = R(n1s
i (k), n1b

i (k), n2s
i (k), n2b

i (k)).
(1)

The atom removal rates ri depend on the number of neighbors,
as indicated in the second line of Equation 1. Here, R is a
function that depends on the simulated etchant type (such as
KOH, TMAH, etc...), including its concentration and tempera-
ture. Since n1s and n1b can take values from 0 to 3, and n2s and
n2b from 0 to 11 for surface atoms, R can be thought as a table.
Most of the table entries are meaningless and only a subset of
33 removal rates is typically needed [15, 16]. Until a surface
atom is completely removed, its removal rate keeps changing
as the numbers of surface and interior nearest and next-nearest
neighbors are modified due to the removals of nearby atoms.
For this reason, ri and n1s

i , n1b
i ,... are written as functions of k in

Equation 1.
Although the CCA method seems to be reliable and accu-

rate, the present academic and commercial simulators that use
this model have limited functionality due to the relatively low
efficiency of the calculations when performed on a traditional
CPU environment.

3.2. GPU implementation: Main variables

We consider the previous CCA model for wet etching as a
particular example of an evolving dynamic surface. By def-
inition, CA methods are memory-access intensive. For every
atom, the state of all the neighbor atoms has to be read and
the new state has to be determined and stored in each time
step. It has been already reported that, for mathematical models
with similar memory access patterns, such as Finite-Difference
Time-Domain, the performance bottleneck for their implemen-
tation in GPU architectures is the GPU global memory band-
width [24]. Thus, we focus on algorithm optimizations that can
reduce the global memory bandwidth usage.

Our proposed implementation is able to simulate a wide
range of different supercells that can vary in size and inner
structure. We label all the atoms inside the supercell from 1
to M = size(supercell) or, equivalently, from 0 to M − 1, and
refer to any atom in the silicon crystal by using four coordinates
(n1, n2, n3, m), where the trio (n1, n2, n3) designates the super-
cell location and the ”m-coordinate” (m ∈ [0,M−1]) designates
the atom number inside the supercell. As an example, (2,4,-5,7)
designates the 8-th atom in the supercell that is located 2 super-
cells away to the right of–, 4 supercells away behind– and 5

supercells away below the center supercell. Since each super-
cell is stored as an MC, the array position p of atom m in the
K-th memory cluster is: p = m + M ∗ K.

Table 1 shows the main variables used in our GPU implemen-
tation. All the model data variables are stored as large contin-
uous arrays, allocated prior to the simulation. num Atoms and
num MC are, respectively, the maximum numbers of atoms and
MCs that can be used during the simulation. The variables Occ
and Erate denote the occupation Πi and the current value of the
removal rate ri for every surface atom i on the surface, as de-
scribed in Equation 1. Similarly, TRate denotes the removal rate
table R and N1sb stores the two variables n1s and n1b together in
the same byte. In addition, the variables CellInfo, UCInfo and
TArea refer to the look-up tables that enable the threads (being
executed for each surface atom) to access the neighbor atoms,
as described below. A set of additional variables, including Syb,
MCstate and TBuf is also used.

The look-up table CellInfo can be pictured as a 2D matrix
with 4 columns and (at most) 4096 rows, where column j of
row i stores the m-coordinate of the j-th neighbor of [the i-th
atom in the (0,0,0) supercell]. Correspondingly, UCInfo is also
a 2D matrix with 4 columns and (at most) 4096 rows, where
column j of row i stores the trio (n1, n2, n3) of the j-th neighbor
of [the i-th atom in the (0,0,0) supercell], compacting the three
nk values in the same byte by using one bit per axis per direc-
tion (totaling 6 bits < one byte). The look-up tables CellInfo
and UCInfo are complementary in the sense that both are re-
quired in order to know the location of a neighbor of a surface
atom. The two arrays are stored in the GPU constant memory.
For comparison, the look-up table TArea has a different struc-
ture, which can be pictured as a 2D matrix with 6 columns and
num MC rows, storing memory pointers to the front, back, east,
west, north and south neighbor supercells, using one pointer per
axis and direction. This second lookup table, already mentioned
in Section 2.2, is stored in the GPU global memory and is used
in order to recover the 3D location of any supercell, thus com-
pensating the fact that neighboring supercells in 3D space are
typically stored at distant MCs in the GPU memory.

It is useful to picture the silicon etching process as occasional
atom removals from the surface. Only a small amount of atoms
is removed in each time step and, as a result, the neighborhoods
and removal rates of most atoms will remain invariant in time
and do not need to be recalculated. As an example, the ratio of
the number of updated atoms to the number of visited atoms is
typically about 1/50 for constant time stepping simulations and
decreases down to O(1/1000) for variable time stepping simu-
lations, considering relatively large removal rates and small unit
cells in both cases. Thus, by keeping the neighborhood data n1s

and n1b for each surface atom in the GPU global memory (see
array N1sb in Table 1), the neighbors have to be updated only
when an atom is etched away and, thus, the number of global
memory accesses is reduced.

Furthermore, reading a single entry of table
R(n1s, n1b, n2s, n2b) in Equation 1 requires in principle as
many as 16 neighbor atom reads for every atom (4 nearest and
12 next-nearest neighbors). A way to reduce the number of
reads to 8 is to keep n1s and n1b stored for every surface atom,

6

Figure 4: Graphical representation of a Memory Group (MG): (a) implementation scheme to obtain coalesced access to the GPU global memory, (b) an example of
uncoalesced access.

and to compute n2s and n2b from the values of n1s and n1b of
the first neighbors:

n2s
i =

 3∑
j=0

n1s
j

 − 4; n2b
i =

3∑
j=0

n1b
j . (2)

Although n1s and n1b are stored in the global memory (array
N1sb in Table 1), R remains invariant along all the simulation
and, thus, it can be take advantage of GPU constant caches in
order to reduce global memory accesses.

3.3. GPU implementation: Coalesced memory access

As described in Section 2.1, a Memory Cluster (MC) stores
model data for one supercell (M atoms). In this study, a col-
lection of G contiguously stored MCs in the GPU memory is
referred to as a Memory Group (MG). For simplicity, we chose
G to be equal to the number of threads per thread block. A con-
ceptual example of an MG containing G = 12 MCs is given
at the top of Figure 4, where each MC stores data for M = 9
atoms. In practice, grouping the MCs into MGs is as easy as
choosing the global memory region to be processed: Block 0,
process from MC0 to MCG−1; Block 1, process from MCG to
MC2G−1; etc...

In our implementation, all threads execute a loop consisting
of M iterations: m = 0, 1, ..., M − 1. For each iteration, each
thread processes one atom and each thread block processes G
atoms stored contiguously in the same MG, as described in Fig-
ure 4(a). In order to process all the active MCs, the adequate
amount of thread blocks should be launched per kernel exe-
cution, this value is decided by the CPU, based on the total
number of MCs currently active in the GPU. Effectively, each
thread processes an amount of atoms equivalent to the size of
the supercell (M atoms), and each thread block processes a con-
tiguous collection of atoms in the GPU memory space. Thus,
this procedure provides a coalesced access pattern to the GPU
global memory within each thread block, reducing to a mini-
mum the read/write access latencies. For comparison, Figure
4(b) describes an example of non-coalesced access within each
thread block, which would lead to dramatically reduced com-
putational efficiency.

3.4. GPU implementation: Simulation pipeline

Figure 5 offers an abstracted view of the main simulation
pipeline. Based on the total amount of MCs currently in use for
storing the surface in the GPU memory, the CPU determines the
amount of required GPU threads before initiating the next time
step and then launches a thread grid composed of the adequate

7

Table 1: Main variables defined in the GPU memory space. (∗)These variables
are read using the texture fetch unit in those algorithms where the underlying
procedure is known to make frequent accesses to neighbor atoms/supercells.

Name Size(type) Memory Use of the variable
Occ num Atoms(f loat) global Store current site occupation Π.
Erate num Atoms(f loat) global Store current atom removal rate r.
Syb num Atoms(byte) global(∗) store atom type (bulk, surface,

masked...). One bit used as flag
for neighborhood updates.

N1sb num Atoms(byte) global(∗) Store n1s and n1b atom info (com-
pacted as one byte).

MCstate num MC(short) global Store number of remaining un-
etched atoms inside each MC.

TArea 6 · num MC(int) global(∗) 2nd level look-up table: pointers
to front, back, east, west, north
and south neighbor supercells.

TBuf K ·num MC(uint) global Buffer for data transfer between
CPU and GPU.

TRate 4096(f loat) constant Precalculated etch rate table R.
CellInfo ≤ 4 · 4096(short) constant 1st level look-up table: m-

coordinates of the four neighbors.
UCInfo ≤ 4 · 4096(byte) constant 1st level look-up table: one-byte-

compacted (n1, n2, n3) for the
four neighbors.

number of blocks. In both parts a) and b), each thread block
operates over an MG.

Part a) of Figure 5 has the purpose of updating the removal
rates of the surface atoms. This is performed by running two
similar kernels sequentially so that tasks (1)-(4) are carried out
by the second kernel only after they have been completed by
the first kernel. First of all, either kernel checks if updates are
needed by reading the array Syb, which has a one-bit flag to
indicate if changes have occurred in the neighborhood. If the
evaluated atoms have the ’updated’ flag activated, then: (i) the
first kernel reads the state of the neighbor atoms, calculates n1s

and n1b, and stores them into N1sb; and (ii) the second kernel
reads the N1sb variable for the current atom and the N1sb vari-
ables of the neighbors, calculates n2s and n2b using Equation
2, reads the new removal rate R(n1s, n1b, n2s, n2b) from the cor-
responding element of TRate and stores it in Erate. The two
kernels are used to reduce the number of memory accesses, as
described in the context of Equation 2. The first kernel updates
the neighborhood and the second the removal rate.

Since each surface atom is processed by one thread at a time,
the global memory access can be easily tuned to obtain coa-
lesced read/writes, e.g. by enforcing contiguous threads to pro-
cess contiguous atoms. However, the data reads for the neigh-
bor atoms are harder to optimize. This is mainly due to two
factors: (i) the set of atoms contained in the supercells (stored
as MCs) varies depending on the simulated crystallographic ori-
entation (Section 2.1), and (ii) the locations of the MCs where
the neighbors are stored are not known a priori but, rather, are
decided during execution, as the MCs are constantly freed and
assigned in the GPU, depending on the actual shape and evo-
lution of the surface itself. For atoms located at the supercell
boundaries, it is rather likely that their nearest neighbors (in 3D
space) will be stored at distant MCs (in the GPU). However,
for the atoms located in the supercell interior the neighbors are
located in the same MC. In this context, we choose to perform

texture fetches of the Syb, N1sb and TArea variables in order to
improve the overall read performance over that of raw uncoa-
lesced access to the global memory.

Part b) of Figure 5 has the purpose of updating the occupa-
tion of the surface sites and monitoring which atoms reach zero
occupation. The removal of these atoms provides the atomistic
origin of the macroscopic propagation of the surface. In ad-
dition, the MCs whose atom occupations have been depleted
to zero are flagged for later re-use and/or deallocation from the
GPU memory. Steps (1)-(3) follow a computing procedure sim-
ilar to that of part a). For this case, each thread checks if the pro-
cessed atom is a surface atom by reading the Syb value. If so,
Equation 1 is applied to reduce the occupation value (stored in
Occ) using the value of the etch rate (stored in Erate). If the oc-
cupation is totally depleted, then: (i) the ’modified’ flag (stored
in Syb) is activated for the direct and indirect nearest and next-
nearest neighbors of the current atom, (ii) the state of the direct
neighbors is modified from ’bulk’ to ’surface’, and (iii) the MC-
state counter is decreased by one unit. This counter monitors
the amount of remaining unetched atoms. When MCstate = 0,
the whole MC has been depleted from its atom contents and can
thus be deallocated or re-used to store another supercell.

At first glance, write access to the previous flags will lead
to an expensive uncoalesced memory access pattern. However,
the action of setting the flags is performed only for a small frac-
tion of the large amount of processed occupation reductions,
thus resulting in low intensity memory access. On the other
hand, some of the neighbor atoms are also removed in the same
time step, thus requiring repeated flag writes for those neigh-
bors shared by nearby surface atoms. For this reason, we use
the shared memory as a buffer to pre-store the ’modified’ flags,
thus preventing multiple global activation of the same atom flag
and reducing global memory accesses.

Finally, part c) of Figure 5 performs the required computa-
tions related to the surface management. Since the neighbor-
hood state is used by the surface atoms in order to determine
their removal rates, the atoms located at the supercell bound-
aries must be able to access their neighbors. Thus, the program
must ensure that a supercell containing at least one surface atom
can easily access the front, back, east, west, north and south
neighbor supercells. Since each supercell is stored in a MC,
access to the neighbor supercells is provided by always ensur-
ing that the corresponding MCs have been allocated. For this
purpose, the following three different states are defined for the
MCs:

• There is no need to perform any action (00).
• For the first time a bulk atom has become a surface atom in

this supercell. Etching has started in the current supercell
and the neighbor supercells must be allocated (01).

• All the atoms in the current supercell have been com-
pletely etched away and the neighbor supercells do not
have any surface atoms. The current supercell can be re-
moved (10).

When a change is detected (cases 01 and 10), the correspond-
ing thread activates the MC flag, which is stored in TBuf. The
CPU will analyze TBuf, perform the corresponding operations

8

For each time step

Determine amount of GPU threads depending on the number of allocated MC

 For each thread block

 (1) Use block id to get base memory address of the MCG to be processed

 (2) Check which atoms have a new neighborhood

 (3) For those, read state of neighborhood and update the etch rate

 (4) Store the updated rates.

 end For

 For each thread block

 (1) Use block id to get base memory address of the MCG to be processed

 (2) Reduce the occupation of surface atoms by the amount defined in their

 corresponding etch rate

 (3) If atom occupation ≤ 0 , change atom state from 'surface' to 'etched', activate

 'modified flag' for neighbour atoms and decrease MC atom counter.

 (4) If the state of the MC has changed, activate the corresponding MC flag

 end For

 CPU reads array of MC flags from GPU global memory

 CPU performs octree-management calculations

 CPU sends a list of MCs that should be cleared/initialized

 GPU updates the MCs in the list and the 2nd level-look up table

GPU processing CPU processing Data transfer

a)

b)

c)

Figure 5: Pseudocode for the parallel implementation (wet etching). (a) Neigh-
bor and removal rate updates. (b) Occupation reduction and atom removal. (c)
Structure management.

for the octree management and inform the GPU about (i) the
required initialization of certain MCs, and (ii) updates to the
look-up tables. This process requires that a total information
of two bits per MC must be sent from the GPU to the CPU in
each time step. Although this transfer rate may seem small, the
total amount of transferred data depends directly on the size of
the MC (= supercell). Thus, the MC size should be a trade-
off between (i) reducing the number of unnecessary processed
atoms, which is obtained by using smaller supercells, and (ii)
preventing excessive GPU-CPU data transfers and CPU octree-
management calculations, which is obtained by using larger su-
percells. The effect of the supercell size on the efficiency of the
overall implementation is analyzed in detail in Section 3.6.

The ultimate purpose of part c) of Figure 5 is to update the
2nd level look-up table TArea stored in the GPU and to initial-
ize recently assigned MCs. The GPU kernel that performs this
function receives through TBuf (i) a list of removed and allo-
cated MCs and (ii) the new set of neighbor pointers for each
updated entry . Threads executing this kernel read data from
this list and update the corresponding locations in the look-up
table, one entry per thread. In addition, if the MC related to the
look-up table entry is meant to be initialized, the thread itself
will also perform this action, setting the type of all the atoms in
the supercell to ’bulk’ and their occupation to ’1’. The mem-
ory access pattern for updating the look-up table and initializing
the MCs is not specially optimized since the number of updated
MCs per time step is always small and, thus, mostly irrelevant.

3.5. Description of the computational tests
he main objectives of the tests performed in this work are:

(i) to study the impact of the supercell size (= MC size) on
the overall simulation time and GPU memory occupation, (ii)
to describe the scalability of the proposed implementation as a

Figure 6: Simulated structure for the study of the efficiency dependence on the
supercell size. 2000 time steps applied. Model calibrated for simulating wet
etching in 40wt% KOH at 70C.

function of the size of the simulated systems, and (iii) to present
typical execution times for a wide range of surface dimensions.
For comparison of the computational results to the experiments,
2000 time steps of chemical etching are simulated on a <100>-
oriented silicon wafer masked using a square pattern that par-
tially covers 45% of the surface in an aqueous solution of Potas-
sium Hydroxide (KOH) as the etchant at a concentration of 40
wt% and a temperature of 70 C. The atomistic etch rates used
by the CCA method are available in Ref. [16]. In this exper-
iment, the silicon regions under the square convex corners of
the masking pattern are etched away –as shown in Figure 6–
due to the development of fast etching planes. When observed
from the top, the shape of the etch front differs from that of the
original mask. This phenomenon is known as convex corner
undercutting, also referred to as underetching.

In order to study the impact of the supercell size on the com-
putational time and memory (objective (i)), we use the fact that
the smallest space partition at the leaf level of the octree corre-
sponds to an orthorhombic unit cell of the silicon crystal. By
choosing multiples of this minimum unit cell we can generate
increasingly larger supercells and thus analyze the impact that
the allocated MC size has on the overall GPU memory occupa-
tion and computational speed. Relevant parameters, such as the
execution time, GPU main memory use, total data transfer be-
tween CPU and GPU, and the amount of intructions performed
by the GPU are analyzed.

In order to determine the scalability of the proposed imple-
mentation (objective (ii)), surface sizes in the range of 216 ≈

6.6 × 104 up to 224 ≈ 1.7 × 107 silicon atoms are simulated,
doubling the size on every new simulation. In order to keep the
aspect ratio of the resulting three-dimensional shape, the etched
depth needs to be increased by a factor of

√
2 per surface dou-

bling. This results in a total increase of the occupied volume of
the system by a factor of

√
2 ×
√

2 ×
√

2 = 2
√

2 = 2.83 per
surface doubling. As shown in Section 3.6, this volume is di-
rectly related to the number of computations required to reach
the same final state for the larger of every two consecutive sys-
tems.

9

In addition, we also present typical execution times for the
proposed parallel implementation of the CCA model applied to
a total of six different systems (objective (iii)), and compare the
results to an already existing, fully sequential implementation
of the same model, known as VisualTAPAS [25]. The latter
is a well-known etching simulator using the same theoretical
model but implemented over a CPU-only environment without
any kind of parallelization. The six different systems, etched in
30 wt% KOH at 80 C, are described and simulated with Visu-
alTAPAS in Ref. [16]. Each system contains a different mask
pattern whose features have different aspect ratios and are ori-
entated along different crystallographic directions. This serves
to check the correctness of our GPU-based algorithm and test
whether substantial performance improvements can be obtained
independently of the resulting shapes of the surfaces.

The hardware used for the simulations consists on a Nvidia
9800GT graphics card with 512MB of memory as GPU and an
Intel Core i7 at 2.66GHz with 3 GB of PC1333 DDR3 SDRAM
as CPU.

3.6. Results
The data in Table 2 shows the improvement in several as-

pects of the GPU performance when the supercell size is re-
duced. This characterizes the effect of splitting the GPU mem-
ory into gradually smaller MCs. Reducing the size from 4096
atoms (last row) leads to a strong reduction in the amount of
occupied GPU memory (column 7). As the supercell size is re-
duced the active space region can be defined more accurately
by the octree, thus avoiding the storage of many bulk, useless
atoms far from the interface. This effect is also present in the
number of performed instructions by the GPU (column 5). On
the other hand, the supercell size does not affect significantly
the performance of the GPU algorithm, keeping a constant in-
struction throughput, namely, around 0.5 Instructions Per Cy-
cle (IPC, column 6). Reducing the MC size (column 2) while
maintaining the algorithm efficiency (column 6) leads to a re-
duction in the overall simulation time (column 3). According
to the timing results, the optimal supercell size for the imple-
mented model contains 64 atoms. Reducing the supercell size
further makes the simulations slower (column 3). This is due
to three effects: (1) the reduction in the amount of processed
bulk and surface atoms with decreasing supercell size becomes
less significant; (2) the octree complexity and the amount of
octree modifications become large enough to make the amount
of CPU processing relevant, as shown in Figure 7 (a); and, (3)
very small supercells require increased access to the look-up
tables stored in the GPU main memory. For supercell sizes of
4 and 8 atoms, the third effect is clearly observed in Table 2
as an increase in the number of instructions performed by the
GPU(column 4) and a reduction of the instruction throughput
(column 5).

The scalability of the presented implementation is presented
in Figure 7(b). As explained in Section 3.5, doubling the size
of each simulated surface represents a theoretical instruction
increase of 2

√
2. The increase factor in computational time per

surface doubling (T j/T j−1) is shown using diamond markers.
These values are obtained by dividing the computational time

obtained for one size (e.g. j = 7 for 4096 × 1024 atoms) by
the computational time for the previous size (e.g. j = 6 for
2048×1024 atoms). These values should approach the theorical
value (2

√
2). Lower values mean that the algorithm performs

better when applied to the bigger surface. The reason for this is
that a high amount of parallelism should be achieved in order
to keep all the GPU cores working and thus obtain the optimal
processing power. In our implementation, full use of the GPU
capabilities is achieved for initial surfaces with 2048 × 1024
atoms or larger, where 131072 threads or more are launched
simultaneously. The GPU is underused for smaller surfaces.
Such a large amount of threads is required since only a small
fraction of the visited atoms by all the threads will be removed
in each time step. Faster removal rates for the atoms and/or
bigger surfaces lead to larger amounts of atoms etched away per
time step and, thus, a higher amount of threads with substantial
computational work. Once this point is reached (e.g. a surface
bigger than 2048 × 1024 atoms), the increase in the processing
time agrees well with the theorical increase in the number of
calculations, this way demonstrating a good scalability of the
proposed implementation.

Finally, Figure 8 demonstrates that, for a wide range of dif-
ferent mask designs, the etched structures obtained with the
proposed GPU-based implementation of the CCA model are
essentially identical to the ones obtained with a fully sequen-
tial implementation of the model, known as VisualTAPAS [16].
Furthermore, row 5 of the figure demonstrates that the GPU-
based algorithm is at least two orders of magnitude faster than
the purely sequential code for a wide range of test cases. The
differences in the parallel-to-sequential speedup factors for the
different mask patterns are due to the differences in the average
number of atom removals per time step. Small masked areas
lead to more atom removals, resulting in a more parallel be-
havior and a better adaptation to the GPU (as described in the
previous paragraph). As a matter of fact, a comparison of rows
5 and 6 of Figure 8 shows that the speedup factor is correlated
to the percentage of initial white pixels in each mask pattern.
The relative amount of white area directly determines the per-
centage of the initial area attacked by the etchant. Based on this
correlation, the speedup factor for column 3 of figure 8 seems
significantly larger than expected. This is explained by the fact
that this particular system presents a large amount of under-
etching (i.e. the removal of material below the original mask-
ing features) thus leading to a larger percentage of attacked area
than the initial white-pixel area estimate. Correspondingly, this
leads to an improved performance by the parallel algorithm on
this system.

3.7. Practical application
Finally, as a demonstration of the utility of the new imple-

mentation in practical simulations, a complex etching simula-
tion for the manufacture of a triple-axis micro-accelerometer is
shown in Figure 9. This accelerometer consists of three seis-
mic masses suspended by high aspect ratio beams acting as
springs, thus enabling the sensing of accelerations in the three
perpendicular directions [27]. The process uses two steps of
anisotropic etching in 40 wt% KOH at 70 C, each performed

10

Table 2: Performance of proposed GPU-based implementation vs supercell size. Each simulation consisted on 2000 time steps performed on a Nvidia 9800GT
graphics card with 512 MB of memory.

Supercell size Si atoms Execution GPU-CPU total GPU performed GPU instruction GPU global
(Å Å Å) in supercell time (sec) transfered data (MB) instructions throughput (IPC) memory usage (%)

(3.84 3.84 5.43) 4 30.27 572.76 2.370 × 109 0.36 18.51
(7.68 3.84 5.43) 8 22.60 296.67 2.159 × 109 0.36 15.49
(7.68 7.68 5.43) 16 15.82 153.13 1.938 × 109 0.43 14.18

(7.68 7.68 10.86) 32 15.19 121.96 2.634 × 109 0.55 22.85
(15.36 7.68 10.86) 64 14.71 63.65 2.549 × 109 0.52 23.54

(15.36 15.36 10.86) 128 14.82 33.09 2.564 × 109 0.54 24.64
(15.36 15.36 21.72) 256 18.34 27.84 3.867 × 109 0.61 42.25
(15.36 30.72 21.72) 512 21.48 14.75 3.888 × 109 0.52 45.27
(30.72 30.72 21.72) 1024 23.19 7.57 3.827 × 109 0.48 47.94
(30.72 30.72 43.44) 2048 30.87 6.59 6.196 × 109 0.57 84.25
(30.72 61.44 43.44) 4096 37.38 3.45 6.701 × 109 0.51 91.33

4 8 16 32 64 128 256 512 1024 2048 4096

0

5

10

15

20

25

30

35

40

Execution time vs supercell size

Supercell size (Si atoms)

C
o

m
p

u
ta

ti
o

n
a

l
ti
m

e
 (

s
)

GPU-CPU transfers

CPU processing

GPU processing

1

1,25

1,5

1,75

2

2,25

2,5

2,75

3

3,25

3,5

3,75

64 128 256 512 1024 2048 4096 8192 16384

0,25

0,5

1

2

4

8

16

32

64

128

256

512

Simulation time vs surface size

Surface size (Atoms x1024)

T
j-

T
j-

1
 (

D
o

u
b

lin
g

 f
a
c
to

r)

Simulation time

Doubling factor

Theorical doubling factor

C
o

m
p

u
ta

ti
o

n
a

l
ti
m

e
 (

s
)

a) b)

Figure 7: (a) Contributions to the overall computational time, including execution of various algorithms by the GPU (GPU processing), octree management by the
CPU (CPU processing) and GPU-CPU data transfers, for a wide range of supercell sizes. (b) Computational time increase factor per surface doubling (T j/T j−1).

using a different mask pattern that is applied to both the top and
bottom surfaces of the silicon wafer. The GPU implementation
not only enables accurate simulations in faster times, but also
makes possible the simulation of significantly larger systems
(containing more surface atoms). As compared to the CPU plat-
form, this can be used to significantly increase the resolution of
a simulation while keeping the system size fixed, thus offering
greater detail in the different features of the front, as shown in
Figure 7(b) for the corner regions. It is important to note that
these simulations are performed in the GPU environment in just
a few seconds instead of minutes when using a traditional CPU.
This is specially important since the number of engineering de-
sign iterations of a structure can be relatively large before a
satisfactory answer is obtained.

4. Discussion

Specialized parallel hardware, such as that of a GPU, has
been continuously introduced in recent years for the simula-
tion of a wide range modeling methods. Relevant examples of
this fact are parallel implementations of Level Set Method [28],
Finite-Difference Time-Domain (FDTD) method and the Finite
Element Method (FEM) [29, 30], Cellular Automata [17], La-
grangian Models [31], Monte Carlo simulations [32] and Mol-
lecular Dynamics [33]. Although in these examples the speed

of the simulations is improved by adapting the algorithms to the
new processors, adapting also the supporting data structures,
such as the octree, is an essential part of the optimization ef-
fort. Our results strongly indicate that the performance and effi-
ciency obtained with parallel processors can be increased even
further by performing this type of data structure modification.

Current level set models utilize the narrow band and sparse
field methods to avoid unnecessary processing of non-useful
space regions. The GPU implementations have mostly focused
on the narrow band method, partly due to the fact that the sparse
field approach relies heavily on the use of strongly-sequential,
hard-to-paralellize linked-lists in order to keep in memory the
active voxels during the calculation. As an example, a recent
GPU implementation of the narrow band has been proposed,
based on a list of active tiles, maintained in the GPU by ex-
tensively using atomic instructions [35]. Although this signifi-
cantly improves the performance as compared to purely sequen-
tial CPU implementations, the use of the atomic operations lim-
its unnecessarily the overall computational throughput. An ap-
proach closer to our work was presented by Lefhon et al. [34].
This approach gives a solution specifically oriented for level-
set algorithms, dividing the GPU memory in two-dimensional
pages and using the CPU to manage the allocation/removal of
these pages in order to reduce the computational domain.

Roberts et al. have recently presented a fast, work-

11

Applied Masks

Resulting Surfaces

Computing time

VisualTAPAS

GPU algorithm

Speedup

White percentage

3473umx3473um 1564umx1146um

Etch: 189 mins

2054umx1066um

Etch: 190 mins

2146umx2146um

Etch: 188 mins

4382umx4382um4479umx4510um

Etch: 193 minsEtch: 386 minsEtch: 194 mins

987 s

6,58 s

150.0 x

16.01%

3288 s

13.76 s

238.9 x

16.14%

529 s

3.53 s

149.8 x

17.58%

1284 s

7.79 s

164.8 x

34.31%

2362s

13.48 s

170.0 x

40.95%

6782 s

18.9 s

358.8 x

65.08%

1 2 3 4 5 6 7

1

2

3

4

5

6

Figure 8: Performance comparison between VisualTAPAS and the proposed GPU-based algorithm for different surfaces. Mask designs after Ref. [26].

(a) (b)

Rounded corners

due to etch process

Figure 9: (a) Simulation (left) and experimental results of the fabrication of a 3-axis accelerometer. (b) Close view of the simulated surface. Experimental image
from Ref. [27].

efficient, race-condition-free, GPU implementation of the level
set method for volume segmentation applications, completely
avoiding atomic operations and fully independent from any
CPU processing [36]. This method makes two major contri-
butions, namely, (i) reducing the active computational domain
to a minimal set of changing voxels based on examining both
the temporal and spatial derivatives of the level set function,
and (ii) implementing a GPU-efficient procedure to update in
parallel a large number of elements of a 1D dense array that
stores the currently active voxels and serves as an alternative to
the linked-list data structure typically used in the sparse field
method. Although the improved overall efficiency justifies the
large bookkeeping effort (to maintain the 1D dense array), the
method makes excessive use of the GPU memory, with up to
three versions of the level set function entirely kept in the GPU
memory for the whole 3D computational grid and, seven ver-
sions of the 1D array (required to update in parallel the dense,
active-voxel list). In this respect, Roberts et al.’s implemen-
tation could benefit from the use of an octree data structure,
as presented in this study, in order to effectively reduce the
large memory consumption associated to maintaining the whole
computational grid. In fact, it has already been shown that the

octree implementation for level sets is a viable alternative to re-
duce the memory requirements and speed up the calculations,
comparable to the narrow band and sparse field methods in sin-
gle CPU environments [12, 13]. The present study strongly in-
dicates that not only the GPU memory use will be reduced but
also the overall computational speed will probably be increased
by optimizing the size of the supercells associated with the oc-
tree leaves (in this case containing grid points).

While the procedure of Ref. [36] to determine the minimal
set of active elements is irrelevant for typical CCA simulations
(as monitoring the active atoms is already a fundamental fea-
ture of the underlying method), the use of a similar 1D dense
array to tightly store the active atoms is likely to improve fur-
ther our results, as explained in this paragraph. According to
our experience, the most efficient implementation of a dynamic
surface that is modeled using a CA over a three-dimensional
(3D) array in a CPU-only environment is obtained by using a
complementary linked list of surface cells. Without the list,
typical searches for new events –or for updating the states of
neighboring cells– are made inside a volume (3D array) while
the same searches are effectively performed inside a 1D object
with far less elements when the linked list is used. Although

12

the use of an octree still allows the use of such a list, access-
ing the leaves of the octree has a larger computational cost than
the direct access of an equivalent 3D array. As a result, the
combination of the octree and the linked list results in lower
performance than the combination of a 3D array and the linked
list. Typically, however, the reduction in the memory require-
ments in our applications justifies the use of the octree. If the
linked list is not used, the overall performance becomes signif-
icantly better for the octree-based system, since the number of
searches at the leaf level of the octree remains much smaller
than inside the 3D array. In a parallel computing environment
where the computation freedom is reduced, such as for a GPU,
the use of a surface linked list is not traditionally suited to the
parallel computing methodology: the list management, like the
octree, can suffer race conditions (e.g. several threads adding a
new atom at the end of the list) and thread exclusion is necce-
sary. As a result, in our GPU implementation without linked
lists the octree not only uses less memory than a 3D array but
also increases the computational speed. The method presented
by Roberts et al. to track active points in level-set simulations
using the GPU environment [36] could provide a valuable ap-
proach for implementing a surface atom list in combination to
our octree management, possibly improving even more the ef-
ficiency of the calculations while keeping the current reduced
level of memory usage.

The computational times and speedup values presented in
figures 7 and 8 depend on the particular details of the GPU card
architecture used for the simulations. In this study we have
chosen a mid-price graphics card whose memory and compu-
tational power specifications fell grossly in the middle of the
range at the time of acquisition. If superior (inferior) GPU card
models are used, larger (smaller) speedups will be obtained.
The results presented in this study give a flavor of the signifi-
cant performance boost that can be obtained by using this type
of affordable many-core architecture and the proposed adapta-
tion of the octree data structure.

The term Many Core Architecture (MCA) has been re-
cently coined by consumer-driven, computer companies, such
as Nvidia and Intel, in order to refer to processors composed
of arrays with many computational units (or cores) and various
memory hierarchies (shared or not). Although Graphical Pro-
cessor Units (GPUs) are at this moment the most extended im-
plementation of this architecture, new processors conceived for
graphics-independent, massively parallel processing are grad-
ually entering the market and are expected to become popular
in the close future. As an example, the Nvidia Tesla c1060 is
a many-core processor exclusively dedicated to algorithm pro-
cessing, although the inner architecture is similar to that of
modern GPUs. This particular card has been classified as an
MCA because it cannot be directly used for graphical repre-
sentations. From this perspective, every reference to the term
’GPU’ in the present study can be understood as a reference to
the more general class of ’MCA’ processors.

During the different stages of this study we performed var-
ious modifications of the GPU wet etching algorithms in an
effort to optimize several aspects of the GPU global memory
management. This includes memory coalescing, the use of

shared memory for reutilizing data, the storage of data in dif-
ferent ways to improve texture fetching performance, etc. Al-
though the parallel algorithms can be optimized in many ways,
the particular details and modifications do not affect the CPU-
based octree implementation, which is very robust and was kept
unchanged. Based on the results shown on Table 2 and Figure 7,
the present study strongly indicates that the proposed dynamic
structure management using an octree is an effective procedure
for increasing the efficiency of parallel computations that are
focused on evolving surfaces.

5. Conclusions

The availability and constant development of new Many core
Architectures (MCA) in recent years enables the exploration of
novel implementation approaches for existing problems. As an
affordable example of the new architectures, Graphics Process-
ing Units (GPUs) stand out as an attractive option for various
scientific applications. In this study, we consider the simula-
tion of evolving dynamic surfaces that can be efficiently stored
using octree data structures and accurately propagated in time
using intrinsically parallel methods, such as cellular automata.
An octree subdivides the topologically-cubic computational do-
main into increasingly smaller octants, stopping the subdivision
at the octants that do not contain any surface points, thus result-
ing in a detailed partition of the space nearby the surface while
the bulk regions at both sides of the interface are described
by empty octants whose size becomes gradually larger as one
moves away from the surface. The main focus of the study is
on the determination of an optimized implementation for the
octree management in a parallel computing environment.

We conclude that the dynamic surface management and the
model calculations must be decoupled as follows, by: (i) storing
all the surface data and performing all the model calculations
in the GPU, and (ii) storing the underlying octree structure and
performing all the octree management tasks in the CPU. For this
purpose, the GPU memory is considered as an array of equally
sized Memory Clusters (MCs), and each MC is used to store
one supercell, i.e. the minimum space subdivision of the under-
lying crystal or computational grid. Conversation between the
GPU and the CPU is obtained by regarding the CPU octree leaf
nodes as pointers to the GPU memory clusters. In the event that
future GPU generations are able to efficiently manage an octree
structure, the programer can port the fragment of code from the
CPU to the GPU, leaving the rest of the program unchanged.
In this case, our proposed memory management algorithm for
a dynamic surface will still be valid.

The particular size of the MCs is chosen according to: (a)
the particular features of the underlying physical model –e.g.
in our case each MC must contain a crystallographic unit cell,
or a multiple of it– and (b) a trade-off between (b.1) reducing
the number of unnecessary processed bulk points by reducing
the size of the supercell, and (b.2) preventing excessive data
transfers between the GPU and the CPU, as well as excessive
octree-management calculations in the CPU by increasing the
size of the supercell.

13

In order to improve the parallel processing efficiency, the data
in the GPU memory should be stored as contiguously as pos-
sible (proximity in memory space). This allows grouping the
GPU memory clusters so that each group can be efficiently pro-
cessed by the same thread block during execution. This leads
to dispersion of the data in real space –with neighboring super-
cells being stored in distant GPU clusters. As a result, the use of
a constantly updated, GPU-stored, look-up table that links the
real positions and the memory locations is recommended. This
minimizes the impact of multiple access to the neighbor points
required by the underlying physical model. In addition, a stack
data structure must be used as a repository of free GPU memory
locations so that the CPU can assign them to new space regions
during the creation of new octree nodes.

Considering wet etching of silicon as a computationally chal-
lenging process of wide interest in microengineering applica-
tions, we tested the efficiency of the previous guidelines for the
propagation of the etch front using a Graphics Processing Unit
(GPU) as a cost-efficient parallel architecture. The results show
that the decoupling of the model calculations and the surface
management can significantly improve the performance of par-
allel algorithms for the simulation of dynamic surfaces. In addi-
tion, the proposed approach shows good scalability, making the
simulation of complex surfaces affordable. As a result of this
study, the GPU implementation not only enables the realization
of accurate anisotropic wet etching simulations in faster times
but also makes possible the simulation of the same systems with
significantly larger resolutions.

Although the proposed GPU-CPU implementation has been
tested only on Nvidia GPUs in this study, the main guidelines in
Section 2 are very general and should be valid for other MCAs.
The most important feature that makes the presented approach
useful is the lack of an efficient global thread exclusion mecha-
nism. GPUs are a clear example, because the exclusion mech-
anism is based on atomic global memory access, which is very
slow and contrary to the GPU programming philosophy. We
strongly believe that other parallel hardware architectures can
also benefit from the presented approach.

Similarly, we believe that the implementation aspects are not
limited to cellular automata models and are probably valid for
other computational techniques, such as the finite element, fi-
nite difference or level-set methods. As an example, state-of-
the-art level-set simulations using 3D arrays to store the com-
plete computational domain in the GPU memory are likely to
benefit substantially from the use of octree data structures as a
replacement for the 3D arrays. In this context, CPU-GPU man-
agement procedures similar to the one presented in this study
can probably reduce significantly the amount of GPU memory
used in the simulations and markedly improve the overall com-
putational speed.

Acknowledgements

We thank the anonymous reviewers for their valuable com-
ments and suggestions. This work has been supported by Pro-
grama de Becas de Excelencia de la Universidad Politécnica de

Valencia (PAID-09-09), MEXT Grant in Aid Research (Kak-
enhi: Silicon etching (A) 19201026), and the Global COE pro-
gram of Japan (GCOE, Wakate JSPS Young Scientist Fund).

References

[1] K. Yee, IEEE Trans. Antenn. Propag. 14 (1966) 302.
[2] J. D. Anderson, Computational Fluid Dynamics : The Basics with Appli-

cations (McGraw Hill, 1995)
[3] T. Suntola, Handbook of Crystal Growth 3, Thin Films and Epitaxy, Part

B: Growth Mechanisms and Dynamics Ch. 14 (Elsevier Science Publish-
ers B.V., 1994)

[4] R. L. Puurunen, J. Appl. Phys. 97 (2005) 121.
[5] R. A. Wind, M. A. Hines, Surf. Sci. 460 (2000) 21.
[6] T. J. Hubbard, E. Antonsson, Sensor Mater. 9 (1997) 437.
[7] Z. Zhou, Q. Huang, W. Li, C. Zhu, J. Phys.: Conf. Ser. 34 (2006) 674.
[8] T. R. Halfhill, Microprocessor Report Newsletter (Published:

2008/01/28) (www.mdronline.com/mpr/mpr index.html, visited
14/12/2009).

[9] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips, Proc. of
IEEE 96 (2008) 879.

[10] D. Libes, Comput. Graph. Mag. 15 (1991) 383.
[11] M. A. Gosálvez, Y. Xing, K. Sato, R. M. Nieminen, J. Micromec. Micro-

eng. 18 (2008) 055029.
[12] J. Strain, J. of Comp. Phys. 151 (1999) 616.
[13] F. Losasso, F. Gibou, R. Fedkiw, ACM Trans. Graph., 23 (2004) 457.
[14] Y. Xing, M. A. Gosálvez, K. Sato, New J. Phys. 9 (2007) 436.
[15] M. A. Gosálvez, Y. Xing, K. Sato, J. microelectromech. syst. 17 (2008)

410.
[16] M. A. Gosálvez, Y. Xing, K. Sato, R. M. Nieminen, Sensor. Actuat. A

155 (2009) 98.
[17] S. Gobron, F. Devillard, B. Heit, Mach. Vis. Appl. 18 (2007) 331.
[18] D. Sholl, J. A. Steckel, Wiley-Interscience, 2009.
[19] M. A. Gosálvez, K. Sato, A. S. Foster, R. M. Nieminen, H. Tanaka, J.

Micromech. Microeng. 17 (2007) S1.
[20] C. Merveille, Sensor. Actuat. A 60 (1997) 244.
[21] L. Qiu, S. Hein, E. Obermeier, A. Schubert, Sensor Actuat. A 54 (1996)

547.
[22] J. D. Martinez, P. Blondy, A. Pothier, D. Bouyge, A. Crunteanu, M. Cha-

tras, Microwave Conf., 2007. European, (2007) 439.
[23] Nvidia CUDA home page, http://nvidia.com/cuda.
[24] S. Ryoo, C. L. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,

W. W. Hwu, Proc. of PPoPP (2008) 73.
[25] VisualTAPAS simulator home page,

http://tfy.tkk.fi/˜mag/VisualTAPAS/Home.html.
[26] SIMODE collection of examples (c) 2001, gesselschaft fur mikroelek-

tronikanwendung chemnitz mbh.
[27] G. Schröpfer, M. de Labachelerie, S. Ballandras, P. Blind, J. Micromech.

Microeng. 8 (1998) 77.
[28] J. E. Cates, A. E. Lefohn, R. T. Whitaker, Med. Im. Anal. 8 (2004) 217.
[29] P. Sypek, A. Dziekonski, M. Mrozowski, Magnetics, IEEE Trans. 45

(2009) 1324.
[30] D. Komatitsch, D. Micha, G. Erlebacher, J. Parallel Dist. Comp. 69 (2009)

451.
[31] F. M. Jr., T. Szakaly, R. Meszaros, I. Lagzi, Comput. Phys. Commun. 181

(2009) 105.
[32] P. Martinsen, J. Blaschke, R. Knnemeyer, R. Jordan, Comput. Phys. Com-

mun. 179 (2009) 1983.
[33] W. Liu, B. Schmidt, G. Voss, W. Mller-Wittig, Comput. Phys. Commun.

179 (2008) 634.
[34] A. E. Lefohn ,J. M. Kniss ,C. D. Hansen ,R. T. Whitaker , IEEE Trans. on

Vis. Comp. Graph. 10 (2004) 422.
[35] W. K. Jeong, J. Bayer, M. Hadwiger, A. Vazquez, H. Pfister, R. T.

Whitaker, IEEE Trans. Vis. Comput. Graph. 15 (2009) 1505.
[36] M. Roberts, M. C. Sousa, J. R. Mitchell, Proc. of High Perf. Graphics

(2010) 123

14

