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We have performed extensive molecular dynamic simulations on a simple bead-

spring model for block copolymers with comb-like architecture. Monomers located at

the main chain and at the arms are respectively denoted as S (‘slow’) and F (‘fast’).

The model parameters are selected in order to induce segregation in domains rich in

one component and poor in the other. In particular we investigate the case in which

the linear homopolymer of F-monomers exhibits much faster intrinsic dynamics than

the S-counterpart. As a consequence, a strong dynamic asymmetry between both

components is still present in the self-assembled copolymer system. We investigate

static and dynamic properties as a function of arm length and temperature. The fast

component exhibits decoupling of self- and collective dynamics, as well as strongly

stretched relaxation. Stretching is an intrinsic feature and is not necessarily related

to gradients of mobility. The observed qualitative trends are fully consistent with

recent neutron scattering experiments on poly(n-alkyl methacrylates), suggesting

that they are generic in comb copolymers with strong dynamic asymmetry.
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I. INTRODUCTION

During the last decades the structure and dynamics of comb-like polymers have been

extensively studied by different experimental techniques. In most of the investigated sys-

tems the side-group (‘arm’) contains an alkyl chain of varying length, and the main-chain

backbone is much more rigid. This is the case of the families of poly(n-alkyl methacry-

lates) (PnMAs) [1–22], poly(n-alkyl acrylates) [2, 16, 23], poly(di-n-alkyl itaconates) [24–

26], poly(3-alkyl thiophenes) (P3ATs) [27, 28], rod polyimides [29], polyazomethynes [30],

poly(p-phenylene-terephthalates) [31, 32], or poly(α-n-alkyl β-L-aspartates) [33]. Other

comb copolymers with polar conformationally versatile arms including phenyl rings have

also been investigated [34]. Some of the above mentioned systems show some degree of crys-

tallinity, and their structural and dynamical properties naturally differ from those charac-

teristic for amorphous main-chain polymers or amorphous polymers with small side-groups.

However, even in absence of crystallinity, some structural and dynamical peculiarities emerge

in comb-like polymers. From X-ray experiments, a kind of nanophase separation has been

suggested in the systems with alkyl side groups: arm- and main-chain units tend to aggre-

gate separately, forming self-assembled nanodomains [12, 16, 25]. Apparently, this nanophase

separation also occurs in comb copolymers with chemically more complex arms [34]. Con-

cerning dynamic properties, the presence of long or bulky arms has also a strong impact

on the relaxation processes of polymer chains. On the one hand, a strong plasticization

for the main-chain dynamics is observed. This effect, discussed already in the 1960’s [1]

is enhanced by increasing the arm length, leading to important shifts in the associated

glass-transition temperature [21, 22]. On the other hand, mainly based on calorimetric,

mechanical and dielectric spectroscopy studies, the appearance of an independent dynam-

ics within the side-group nanodomains has been suggested for polymers with long alkyl

side-chains [9, 16, 17, 27]. Interestingly enough, this process seems to be independent of

the packing of the main chains, since similar associated relaxation spectra are observed

in the case of P3ATs with either crystalline or amorphous main-chains [28]. Employing

complementary NMR techniques –that are selective for the different molecular groups in

the system– further evidences for the scenario of independent main-chain and side-group

dynamics were brought forward [17]. The need of techniques selective at molecular level

for the investigation of the structure and the dynamics of this kind of systems turns to be
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clearly imperative.

Recently, neutron scattering combined with isotopic labelling was employed to selec-

tively study the two components (main chain and arms) in some PnMAs [21, 22]. The

neutron diffraction experiments provided strong support to the existence of a nanosegre-

gated structure (note that in X-ray diffraction mostly carbons and oxygens are highlighted,

without the possibility of distinguishing main-chain and arm contributions to the diffraction

patterns). Moreover, while the structural relaxation of the main chains showed standard

features, anomalous behavior emerged for the dynamics of the alkyl units in systems with

long arms. This includes extremely stretched functional forms, Arrhenius-like behavior and

decoupling of self- and collective motions [21, 22]. To rationalize these observations two main

possible ingredients were invoked: distributions of relaxation times along the arms and con-

finement by the much slower relaxation of the rigid main-chain matrix. In this framework,

the dynamic asymmetry between the two subsystems would play an essential role. Several

questions remain unsolved, namely: is nanosegregation induced by incompatibility of main

chains and arms, as usually assumed [16], or can it be entropically driven by the comb-like

architecture of the polymer? Does the main-chain component show ‘standard’ behavior also

at length scales smaller than the average inter-molecular distances? Are the distributions

of mobilities within the arms as broad as those obtained by a phenomenological analysis of

the experimental data? [22]

In this work we aim to shed light on these questions by means of molecular dynamics

simulations. These provide a direct calculation, from the atomic trajectories, of observables

that cannot be accessed in experiments or that are indirectly obtained from them on the basis

of approximations or model assumptions. The main limitations of simulation techniques are

given by the accuracy of the used force field and by the computational resources. Even by

parallel computation in standard modern machines, it is demanding to simulate polymer

melts with fully atomistic force fields for, e.g., time scales of 100 nanoseconds and cell

dimensions of 50 Å. This constitutes a clear limitation for the case of nanostructured phases,

as those investigated in this work, and in particular for a systematic investigation of the

structure and dynamics by varying several control parameters (e.g., temperature and arm

length).

Simulations of bead-spring models of macromolecules allow to access much larger time

and length scales, at the expense of substituting the chemical structure by simple chain
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backbones, and reducing the force field to a few contributions describing the basic ingredients

of the interactions (e.g., excluded volume and connectivity). Despite its simplicity they

usually provide an excellent description of qualitative structural and dynamic features of

polymer-based systems in very different and complex physical situations [35–37]. Due the

generic character of the interactions, bead-spring models are also very useful for tests of

theories and predictions of universal properties present in polymer systems of very different

chemical composition.

With these ideas in mind we have performed extensive simulations of a bead-spring model

for comb copolymers with dynamic asymmetry, namely with the slow and fast components

located respectively at the main chain and at the arms. We investigate structural and

dynamic properties for a broad range of temperature and arm length. The static and dy-

namic correlators obtained from simulations reproduce the trends observed in experiments

on poly(n-alkyl methacrylates) [21, 22]. We confirm the proposed scenario of nanodomain

formation. Moreover we show that the latter can have a purely entropic origin, and takes

place even for homopolymer combs provided that the density of branch points is high enough.

It is found that the dynamics of the main-chain monomers is standard at all length scales.

In analogy with the experiments, the analysis of scattering functions reveals a decoupling

of self- and collective dynamics for the fast component in the arms, and strongly stretched

relaxation. Characterization of dynamic heterogeneity shows that stretching is an intrinsic

feature and is not necessarily related to gradients of mobility along the arms. Due to the

generic character of the bead-spring model, we suggest that the observed scenario will be a

general feature of comb copolymers with dynamic asymmetry.

The paper is organized as follows. Model and simulation details are given in Section

II. Structural and dynamic features are discussed respectively in Sections III and IV, in

comparison with experimental results in poly(n-alkyl methacrylates). Further details of

the experimental part can be found in the recent publication [22] and references therein.

Conclusions are given in Section V.

II. MODEL AND SIMULATIONS DETAILS

We have simulated melts of identical bead-spring macromolecules with comb-like archi-

tecture (see Figure 1). Monomers located at the main chain and at the arms are respectively
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FIG. 1: Architecture of the simulated SF-combs, for the case NF = 6. Light and dark spheres

correspond respectively to S- and F-monomers.

denoted as S (‘slow’) and F (‘fast’). For simplicity both type of monomers have identical

mass m = 1. The main chain consists of NS = 15 S-monomers, and Narm = 7 identical

F-arms regularly linked to the main chain. Specifically, by denoting the S-monomers as

i = 1, 2,...,15 from one end of the main chain to the other one (Figure 1), the F-arms are

linked to i = 2, 4, 6, 8, 10, 12, and 14. Each arm consists of NF F-monomers. We simulate

systems with NF = 2, 3, 4, 5, and 6. This corresponds to number fractions of F-monomers,

xF, ranging from 0.48 to 0.74. We have also simulated pure S-combs. These have the same

architecture as the respective S-F combs, i.e., each F-monomer in the arms is just substi-

tuted by an S-monomer. Additional simulations have been performed for pure linear S-

and F-homopolymers, with chains of 15 monomers in both cases. Details of the size of the

investigated systems are given in Table I.

The non-bonded interaction between any two given monomers of the species α and β

∈ {S,F} is given by the Weeks-Chandler-Andersen (WCA) potential [38]:

Vαβ(r) = 4ǫαβ

[

(σαβ

r

)12

−
(σαβ

r

)6

+
1

4

]

, (1)

for r < rc and Vαβ(r) = 0 for r ≥ rc. By using a value rc = 21/6σαβ , potential and forces are

continuous at the cutoff distance. The WCA potential is purely repulsive and has no local

minima, aiming to mimic excluded volume effects. Two bonded monomers in a same chain
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NF, Na Formula xF Nmac Nmon

2 S15F14 0.48 1000 29000

3 S15F21 0.58 1000 36000

4 S15F28 0.65 900 38700

5 S15F35 0.70 800 40000

6 S15F42 0.74 700 39900

2 S15S14 600 17400

3 S15S21 500 18000

4 S15S28 400 17200

5 S15S35 300 15000

6 S15S42 300 17100

S15 1206 18090

F15 1200 18000

TABLE I: Details of the size of the simulated systems. NF: number of F-monomers per arm

in SF-combs. Na: number of monomers per arm in pure S-combs. xF: fraction of F-monomers

in SF-combs. Nmac and Nmon: respectively, number of macromolecules and monomers in the

simulation box. Formulae S15Fa denote SF-combs, with 15 and a the number of, respectively, S-

and F-monomers per comb. Formulae S15Sa denote pure S-combs, with 15 and a the number of

monomers per comb in, respectively, the main chain and the arms. Formulae S15 and F15 denote

respectively linear S- and F-homopolymers, with 15 monomers per chain.

also interact through a finitely extensible nonlinear elastic potential (FENE) [39]:

V FENE
αβ (r) = −ǫαβKFR

2
0 ln

[

1−
(

r

R0σαβ

)2
]

, (2)

with KF = 15 and R0 = 1.5. The sum of eqs 1 and 2 yields an effective potential between

bonded monomers with a sharp minimum at r = 0.96σαβ and guarantees chain uncrossability

[39]. We use identical energy scales ǫαβ = 1 and distinct interaction diameters σSS = 1.6,

σFF = 1.0, and σSF = 1.3. With these selected values, at a fixed temperature T and pressure
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P , the F-homopolymer exhibits much faster dynamics than the S-homopolymer and dynamic

asymmetry arises in the SF-comb system (see below).

In the following, temperature T , number density ρ, pressure P , time t, distance, and

wave vector q will be given respectively in units of ǫ/kB (with kB the Boltzmann constant),

σ−3
FF, ǫσ

−3
FF, σFF(m/ǫ)1/2, σFF, and σ−1

FF. Cubic periodic boundary conditions are implemented.

Computation time is reduced by using a linked-cell method [40]. The simulations are per-

formed in the isothermal-isobaric (NPT ) ensemble, by using the Nosé-Hoover algorithm [40]

at external pressure P = 2.5. Equations of motion are integrated in the Martyna’s scheme

[40, 41], with a time step ranging from δt = 10−4 to 3 × 10−3, depending on the simulated

temperature.

The system is prepared by placing and growing the chains randomly at a low density,

with a constraint that avoids initial overlap of monomers within distances r < 0.8σαβ . We

start an NPT equilibration run with applied external pressure P = 2.5. The system is

considered to be equilibrated when no drift is observed for the volume of the simulation

box and the thermodynamic quantities (internal pressure, kinetic and potential energy).

Likewise no aging effects are observed for static and dynamic correlators. Then we start

a new NPT run, at the same P = 2.5, for production of configurations, from which we

compute static and dynamic correlators. Typical simulation times of both equilibration and

production runs are of 30 million time steps. Static correlators are averaged over typically

40 equispaced configurations. Dynamic correlators are averaged over 20 equispaced time

origins.

We define the effective packing fraction as Φ = [π/(6L3
box)][N

S
monσ

3
SS + NF

monσ
3
FF], with

Nα
mon the total number of α-monomers in the simulation box, of size Lbox. Since all the

simulations are done at fixed P = 2.5, Φ depends on temperature. For temperatures of

interest we find typical values of Φ ranging from 0.52 to 0.57, which are characteristic of

melt conditions in bead-spring models of polymer systems [35–37, 39]. Finally, we note that

a direct mapping of the parameters corresponding to the simulated and the real systems is

not possible, preventing quantitative comparisons of the results on both kinds of systems.
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III. STRUCTURE

Studies by X-ray diffraction suggest nanophase formation in comb-like copolymers. This

hypothesis is based on the existence of a prepeak at low q-values, at a position qI that

shifts towards lower q-values with increasing arm length. This prepeak is also present in

the neutron diffraction results on fully deuterated PnMAs [21, 22] and exhibits the same

trend, as shown in the inset of Figure 2. There, data corresponding to polymers with

different number, nC, of alkyl C-atoms in the arm are compared (nC = 2, 4 and 6). The

coherent cross-section (∂σ/∂Ω)coh accessed in neutron scattering experiments is given by

[42] (∂σ/∂Ω)coh =
∑

αβ bαbβSαβ(q), where the partial static structure factors involving the

isotopes α and β are defined as

Sαβ(q) =
〈ρα

q
(0)ρβ

−q
(0)〉√

NαNβ
, (3)

with ρα
q
(t) =

∑Nα

j=1 exp[iq · rj(t)]. Here rj denotes the atomic coordinates for the atom j of

the species α, from which there are a total of Nα atoms in the sample. The brackets denote

thermal and orientational (over the directions of q) average.

The contribution of a given pair correlation involving isotopes α, β to the coherently

scattered intensity is weighted by the corresponding scattering lengths bα and bβ (see above).

In fully deuterated samples all the atomic pair correlations are almost identically weighted

(bC = 6.6511 fm ≃ bD = 6.671 fm, and bO = 5.803 fm). Thus, the coherently scattered

intensity provides a good approximation of the total static structure factor,

S(q) = 〈ρq(0)ρ−q(0)〉/Nat, (4)

with ρq(t) = ρα
q
(t) + ρβ

q
(t), and Nat = Nα + Nβ the total number of atoms in the sample.

Neutron diffraction with polarization analysis has been performed on partially deuterated

samples where the arm is protonated and the main chain is deuterated. Since bH = -3.7406

fm and bC = 6.6511 fm, the scattering length density of the methylene (−CH2−) groups

in the arms is negligible. Thus, with this partial deuteration the arms become practically

invisible for neutrons [42]. Figure 2 shows the measured coherent cross-section for poly(hexyl

methacrylate), PHMA (nC = 6), on a fully deuterated and a partially deuterated sample in

absolute units. The vanishment of the second peak at qII ∼ 1.3Å
−1

in the protonated-arm

sample demonstrates that this peak reflects pair correlations involving atoms in the arms.
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FIG. 2: Main panel: coherent scattering cross-section measured on fully deuterated (fd, full circles)

and partially deuterated (pd, empty squares) samples of PHMA (nC = 6). The inset shows the

static structure factors measured on the fully deuterated samples with nC = 6, 4 and 2 from top

to bottom. The different data sets in the inset are plotted in arbitrary units, and relative shifts

have been applied for clarity. Temperatures for each sample are about 75 K above the respective

calorimetric glass transition temperatures [21].

Moreover, its similarity with the intermolecular diffraction peak in molten polyethylene

(PE) [21] points to a PE-like environment for the arm units, supporting the proposed scenario

of alkyl nanodomains. On the other hand, the prepeak at 0.3Å
−1 <∼ qI <∼ 0.7Å

−1
remains

in the partially deuterated sample and therefore reflects pair correlations between atoms in

the main chain. On this basis, the origin of this prepeak has been attributed to correlations

between main chains delimiting the alkyl nanodomains [21, 22].

The former structural scenario is confirmed by the simulations. Figure 3 shows a typical

snapshot of the simulation box for SF-combs with arm length NF = 6. This provides

direct visual evidence of the formation of the nanodomains. It must be noted that the

starting configuration of the system is random (see above). Therefore, the domains are

formed spontaneously. The panel (a) of Figure 4 shows the total static structure factor
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FIG. 3: Partial snapshot of a typical configuration of the SF-system, with NF = 6. Light and dark

spheres corresponds respectively to S- and F-monomers.

S(q). The panels (b)-(d) display the different partial contributions Sαβ(q). The former

quantities are defined as above [43] (Equations 3 and 4), with the ‘isotopes’ α ∈ {S,F}.
Both total and partial structure factors exhibit a first peak, qI, in the range 1.1 <∼ qI <∼ 1.9.

It shifts to lower q, i.e., to larger length scales, on increasing the arm length. The peak is

negative in the case of SSF, revealing a strong anticorrelation between both species in the

associated length scale 2π/qI (of ≈ 3σBB for NF = 2 and ≈ 6σBB for NF = 6). The former

features around qI just reflect the formation of the nanodomains, which increase their size

on increasing the arm length. The observed shift of the peak to lower q for longer arms is in

agreement with the experimental observation (see inset of Figure 2). Thus, the prepeak at

qI is characteristic for inter-domain correlations, both reflected by main-chain/main-chain

or by arm/arm correlations. [? ]

At this point, we make a comment on the interpretation of the experiments in Ref. [21].

Simulation results of Figures 3 and 4 show that the interpretation in terms of nanodomain

formation is correct, but the assignment of qI to only correlations between main-chain units

has to be clarified. As shown in Figure 4, qI does characterize correlations between main-

chain units, but also correlations between arm units and cross-correlations. In fact, the
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FIG. 4: For SF-combs at T = 0.30, total and partial static structure factors for different arm length

NF [see legend in panel (a), same symbol codes for the other panels]. (a): total S(q); (b): SSS(q);

(c): SFF(q); (d): SSF(q).
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enhancement of the intensity of this peak in the partially deuterated sample (note that

Figure 2 is plotted in absolute units) is presumably due to the strong contribution corre-

sponding to the cross-correlations between main chains and arms, that add positively due

to the negative scattering length of the H-atoms in the arms. This provides an additional

evidence for the nanodomain structure in the real system. We suggest that the peak at qI

will also remain under partial deuteration of the arms, in this case mainly reflecting the

scattering arising from the correlations between domains of arm monomers and again the

positively added cross-terms.

The second peak of Sαβ(q) at qII ∼ 4.7, 7.2 and 5.1 for respectively S-S, F-F and S-F

pairs, corresponds to nearest-neighbor distances between such pairs. Indeed the respective

values of 2π/qII correspond to ≈ 0.9σαβ , with σαβ the diameters of the WCA interactions

(eq 1). Moreover, the value of qII is almost independent of the arm length, as expected for

nearest-neighbor distances. The total structure factor S(q) just includes all these nearest-

neighbor correlations, which lead to a double peak for the largest values of NF (Figure 4a).

Finally, the observed oscillations at larger q-values have no major physical meaning and just

correspond to higher-order harmonics.

The peak at qII ∼ 1.3 Å
−1

in the experiments [21] (Figure 2) was enhanced by increasing

the arm length, and was supressed under protonation of the arms. On this basis, the

peak was assigned to correlations between arm monomers within the alkyl domains. The

counterpart of the former effects in the simulated systems is the emergence, on increasing

the arm length, of the peak at q ∼ 7.2 in S(q) (Figure 4a), and its absence in SSS(q)

(Figure 4b). As noted above, q ∼ 7.2 reflects correlations between nearest-neighbor F-

F pairs (Figure 4c). The corresponding peak at qII ∼ 4.7 for S-S correlations does not

have a clear direct counterpart in the experiments. In the simulated bead-spring model,

qII reflects nearest-neighbor distances of both intermolecular and intramolecular character.

In real systems, the intramolecular structure of the main chain is reflected by q-values

probing interatomic distances. A maximum in S(q) located at about 3 Å−1 usually appears

in chemically simple polymers (see, e. g. [45]), that is attributed to typical intramolecular

distances. Such q-values are much larger than the corresponding experimental peak for

correlations between arm units at qII ∼ 1.3 Å
−1
. This is not the case in the simulated comb

copolymers due to their coarse-grained character.

Segregation in block copolymer systems is usually understood in terms of energetic un-
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compatibility between the two components. However, the former can also be driven by

entropic effects [46, 47]. This is the case for the investigated SF-combs, for which we take

identical energy scales ǫαβ = ǫ, but distinct interaction diameters σαβ (see above). Now we

show that entropically driven segregation is possible even for one-component combs. Figure

5 shows static structure factors for pure S-combs of different arm length. We denote S-

monomers in the main chain and in the arms as respectively m and a. Panel (a) displays the

total S(q), i.e, including all correlations. Panels (b)-(d) show the partial contributions Sαβ

with α, β ∈ {m, a}. The total S(q) exhibits the same usual features of linear homopolymers.

No structure is present below the nearest-neighbor peak at q ∼ 4.5, and S(q) decreases

monotonically to S(q → 0) ∼ 10−2, reflecting a very weak compressibility. As expected for

a pure system, the position and intensity of the nearest-neighbor peak is esentially indepen-

dent on the macromolecular weight. Having noted the standard behavior of S(q), the partial

contributions of Sαβ instead reveal a striking feature. As for the case of the SF-combs, a

prepeak arises and exhibits the same qualitative trends on increasing the arm length. Thus,

it increases in intensity and shifts to lower q, from q ≈ 1.4 for arms of Na = 2 S-monomers

to q ≈ 0.9 for Na = 6. As in Figure 4d for SF-combs, Sma(q) exhibits an anticorrelation

peak for m-a pairs. This anticorrelation exactly cancels the positive correlations for m-m

and a-a pairs, and the prepeak is absent in the total S(q). This is not the case for the total

S(q) of the SF-combs (Figure 4a), where only partial cancelation occurs, due to a complex

interplay of the different interaction diameters involved in the partial correlations.

The former results clearly reflect the organization of the pure combs in ‘chemically identi-

cal’ domains constituted by main-chain monomers or by arm monomers, in full analogy with

the S- and F-domains observed for the SF-combs. This is confirmed by visual inspection of

snaphots of the system (not shown), which exhibit morphologies analogous to that of Figure

3. As noted above, segregation in this case is of purely entropic nature, since all monomers

in the system are identical. We suggest that it will generally arise in pure combs provided

that the density of branch points is large enough. This would be confirmed by comparing

neutron scattering structure factors in fully and partially deuterated samples. The prepeak,

absent in the fully deuterated sample, would arise under partial deuteration of the main

chain or of the arms.
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IV. DYNAMICS

A. General observations

Neutron spin echo (NSE) experiments were carried out on the fully deuterated PnMA

samples at the two maxima, qI characteristic for inter-domain correlations and qII revealing

inter-monomer correlations within the alkyl nanodomains. To a good approximation [48],

NSE measurements on fully deuterated samples access the normalized dynamic structure

factor F (q, t) = 〈ρq(t)ρ−q(0)〉/S(q). Additional NSE measurements were carried out on the

main-chain deuterated PHMA sample at q = 1.5Å
−1 ≈ qII. In this case, the NSE signal is

dominated [48] by the incoherent scattering function corresponding to the hydrogen atoms

in the arms, F s
Ha
(q, t) = 〈

∑NHa

j=1 exp[iq · (rj(t)− rj(0))]〉/NHa
, where NHa

is the total number

of protons in the arms.

By applying the rheological shift factors to the time scale [21], the NSE spectra at qI col-

lapse into a master curve that, for t > 5 ps, can be well described by a stretched exponential

function

F (q, t) = Aq exp[−(t/τ)β ]. (5)

In this equation Aq is the plateau height, τ is the relaxation time and β < 1 is the stretching

exponent. We find β-values close to 0.5 [21]. Such values are usually found for the structural

relaxation in regular real polymers [48]. On the contrary, the correlators for collective motion

at qII and for self-motions of the arm units show extremely stretched functional forms, as

can be seen in Figure 6. Free fits to eq 5 deliver unphysical values of Aq > 1 and β-values

of ≈ 0.1. By fixing Aq = 1, still very small β-values are obtained. Logarithmic-like decays

provide a similar or even better description of the data [21, 22] (dashed line in Figure 6).

Moreover, a marked decoupling between coherent and incoherent scattering is observed for

the arm units: self-motions are much faster than collective dynamics, clearly beyond the

standard de Gennes-like narrowing [42].

Finally, Figure 6 also shows the huge dynamic asymmetry present in the system. In the

temperature range where the arm dynamics is accessible to the NSE window, the struc-

tural relaxation observed at the peak qI = 0.4Å
−1

cannot be resolved. Based on the

time/temperature superposition principle (that works at this peak [21]), and starting from

the coherent data at qI and T = 480 K, we have estimated the curve corresponding to qI and
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FIG. 6: NSE signal measured on fully deuterated (fd, full symbols) and partially deuterated (pd,

empty squares) samples of PHMA. The data for the pd-sample corresponds to q = 1.5Å
−1 ≈ qII

and T = 310 K. The data for the fd-sample correspond to: i) qII = 1.3Å
−1

and T = 330 K (full

squares), ii) qI = 0.4Å
−1

and T = 480 K (full circles). The time scale of ii) has been shifted, by

applying time/temperature superposition (see [21]), in order to estimate the corresponding data at

T = 320 K. This allows for a direct comparison with the other data sets in the figure. Solid lines

are fits to stretched exponentials (eq 5). The obtained β-values are indicated. The dashed line is

a logarithmic description [21, 22].

T = 320 K. The difference in the characteristic times for the decays of the coherent functions

at qI and qII is of about 3 decades. Thus, a very large dynamic asymmetry is present in this

system. This asymmetry becomes more pronounced with decreasing temperature [21, 22].

Figure 7 shows simulated counterparts of the coherent functions in SF-combs, for

fixed arm length NF = 6. We present both the total coherent function F (q, t) =

〈ρq(t)ρ−q(0)〉/S(q) and the partial contributions Fαα(q, t) = 〈ρα
q
(t)ρα

−q
(0)〉/Sαα(q) (with

α ∈ {S,F}). The panel (a) shows data for q = 1.30, which approximately corresponds to the

peak at qI in the static structure factors. The panel (b) shows data for q = 7.00, which ap-

proximately corresponds to the peak at qII for nearest-neighbor F-F correlations (Figure 4).

The results for q ≈ qI show almost no differences between the (normalized) total and partial
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coherent scattering functions. This confirms that the experimental coherent function at qI is

a good approximation for the main-chain/main-chain dynamic structure factor, as pointed

out in [21, 22]. Having noted this and as discussed above for the statics, the peak at qI does

not only reflect collective correlations between main-chain units, but also between domains

of arm monomers. In fact, the respective coherent functions are almost identical at qI.

In the case of the second peak at qII ≈ 7.0 we find F (q, t) ≈ FFF(q, t), i.e., the total

coherent function at qII essentially reflects collective correlations between arm monomers,

confirming the experimental interpretation [21]. The coherent functions FSS(q, t) at qII ≈ 7.0

exhibit slower relaxation than the respective functions FFF(q, t) at the same temperature

(Figure 7b). Moreover the time scale separation between both functions increases on de-

creasing temperature. This reflects an increasing dynamic asymmetry in the SF-combs,

with the arm F-monomers showing faster dynamics. These features are also found in the

real systems (see above).

The decay from the plateau can be well described by a stretched exponential function

(eq 5). Figure 8a shows some representative fits for F (q, t) at qI ≈ 1.3 and qII ≈ 7.0.

In agreement with the experimental findings for the total coherent function, relaxation is

much more stretched at qII (β ≈ 0.4) than at qI (β ≈ 0.7). These β-values are larger

than those found in the experiments (see Figure 6). This difference with real polymers

is a general finding, even for linear homopolymers. Thus, at the q for the maximum of

S(q) one finds values β ≈ 0.7 for fully-flexible bead-spring chains [35–37], while β ≈ 0.5

is typically found in real homopolymers [48]. The difference is in part due to the absence

of intramolecular barriers in the simulated model. Indeed lower β-values are found when

barriers are implemented in the model [49]. Having noted this the former results show that,

as found in the experiments (see above), the structural relaxation monitored at the peak

qI exhibits ‘standard’ features, in the meaning that stretching (here β ≈ 0.7) is similar to

that found in homopolymers. This behavior applies for the collective relaxation of both the

main-chain and arm correlations at this inter-domain level. We also note that the decay

of FSS(qII, t) is also ‘standard’ (again β ≈ 0.7), an information that cannot be accessed

experimentally.

The experimental results at qII seem compatible with a quasi-logarithmic functional form

for arm relaxation [21, 22]. In view of the simulations, this conclusion must be taken with

care due to the limited statistics and time window of the data in Refs. [21, 22]. Panel (b) of
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FIG. 8: Coherent scattering functions F (q, t) for SF-combs of arm length NF = 6. Full symbols:

q = 7.00. Empty symbols: q = 1.30. Same symbol codes correspond to same temperatures (see

legend). Panel (a) shows data in the time window covered by the simulations, and averaged over

20 time origins. Panel (b) shows data for q = 7.00, averaged over a single time origin and in a

time window similar to that of experiments in Refs. [21, 22]. Straight lines in (b) correspond to

hypothetical logarithmic decays. Solid lines in (a) are fits to stretched exponentials, with β = 0.66

and 0.38 for respectively q = 1.30 and q = 7.00. The dashed line is a stretched exponential with

the same relaxation time τ of the former free fit for q = 7.00. The exponent for the dashed line is

β = 0.68, the same observed for the F-homopolymer at this q and at temperatures with similar τ .
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Figure 8 displays the same data sets of F (q, t) in panel (a), but in a representation aimed

to mimic the conditions of the experimental data. Whereas data in panel (a) are averaged

over 20 time origins (see Section II), data in panel (b) correspond to a single time origin,

with a statistical noise similar to the experimental data. In bead-spring models the time

unit (here τsim = σFF(m/ǫ)1/2) can be qualitatively mapped to τexp ∼ 1 ps [36]. Note that

both time scales are roughly the respective ones in bead-spring and real polymer melts for

the onset of the plateau regime [36, 48]. With the former transformation the results of panel

(b) are represented for an approximate time window of 5 ps < t < 10 ns, which corresponds

to the experimental data of Refs. [21, 22]. With the representation of Figure 8b, the data

are compatible with logarithmic decays, as proposed in [21, 22]. However, this feature is

discarded when data are represented with good statistics and over a broader time window

(Figure 8a). Having noted this, we confirm the experimental observation [21, 22] of a much

stronger stretching (β ≈ 0.4) at q = qII (where F (q, t) ≈ FFF(q, t)) than for the linear

F-homopolymer (β ≈ 0.7).

B. Influence of the arm length

The influence of the arm length on the dynamics of each subsystem can be easily mon-

itored by calculating mean squared displacements (MSD, 〈∆r2(t)〉), which are not exper-

imentally accessible. Figure 9 shows results for the monomer MSD in SF-combs, at fixed

temperature, as a function of the arm length. Data for the S15 and F15 homopolymers are

included for comparison. Mixing with the other species have opposite effects for the S- and

F-monomers. In the system with the shortest arms, NF = 2, the fraction of F-monomers is

close to the 50 % (see Table I). In analogy with observations in polymer blends [50, 51], this

degree of mixing dramatically accelerates the dynamics of the S-monomers. This effect per-

sists on further increasing the arm length. The observed plasticization effect is in agreement

with the experimental finding for main chain dynamics in PnMAs on increasing the length

of the alkyl groups [22]. In the case of the F-monomers, the dynamics are instead strongly

slowed down respect to the F-homopolymer by increasing the concentration of the slow S-

monomers, i.e., by decreasing the arm length (see panel (b)). This is again in agreement

with the experimental observation [22].
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FIG. 9: (a): Symbols: mean squared displacement for the S-monomers in SF-combs of several

arm lengths (see legend) at fixed T = 0.30. The line represents the corresponding data for the

S-homopolymer. (b): as panel (a) for the F-monomers, at fixed T = 0.25

C. Temperature dependence

Figure 10 shows the temperature dependence of the MSD in SF-combs of fixed arm length

NF = 6. As usual in glass-forming systems, on decreasing temperature the caging regime

(i.e., the plateau arising at t ∼ 1) extends over longer time scales. At fixed T , caging is
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of the homopolymers S15 (dashed line) and F15 (dashed-dotted line). Straight lines represent

approximate power laws 〈∆r2β(t)〉 ∝ tx (exponents are indicated for each data set). Stars indicate

the times for the maxima of the respective non-Gaussian parameters (see below).

more pronounced for the slow S-component. For comparison, we include the MSD of the

homopolymers S15 and F15 at T = 0.30. As anticipated in Section II, at a same T the two

homopolymers exhibit very different dynamics. We can estimate a characteristic time scale

τ of the α-relaxation as 〈∆r2β(τ)〉 ∼ σ2
ββ (with β ∈ {S,F}). Thus, the α-time scales of both

homopolymers at T = 0.30 differ by more than four decades. Though much less pronounced,

this dynamic separation is also present in the SF-combs. In analogy with observations in

the scattering functions (Figure 7b) and in agreement with the experimental results on

PnMAs [21, 22], dynamic asymmetry in the combs is enhanced by decreasing temperature.

This effect is analogous to the general observation in polymer blends. However, unlike the

case of polymer blends [50], the two components in the combs are linked by permanent

chemical bonds. Due to this constraint, the MSD of the S- and F-monomers merge again

at long times. From data in Figure 4 we can estimate the domain size for NF = 6 as
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correlations at q = 7.00. Data are shown for arm lengths NF = 2, 4, and 6 (see legend). Lines

show effective Arrhenius descriptions.

d ≈ 2π/qI ≈ 6. We observe that the merging of the MSD of both species is almost complete

at 〈∆r2β〉 ∼ d2, i.e, at time scales probing the domain size. An analogous observation has

been recently reported from simulations of poly(vinyl pyrrolidone), a homopolymer with a

relatively simple but bulky side group [52]. Presumably, full merging of the MSD of S- and F-

monomers will take place at the onset of the diffusive regime 〈∆r2β(t)〉 ∝ t, which is beyond

the simulation time window. Prior to that, the MSD of both species shows subdiffusive

behavior, 〈∆r2β(t)〉 ∝ tx with x < 1. The effective exponents x seem to follow different

trends on decreasing temperature. Thus, x increases and decreases for respectively the S-

and F-component.

Subdiffusive power laws in the MSD are present in many physical situations. A well-

known example is given by chain dynamics in polymer systems. For the simple case of

linear chains, the decaging process is followed by Rouse dynamics [35–37]. Further sublinear

regimes arise after the Rouse regime in the case of strongly entangled chains [53]. In the
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limit of long chains, the Rouse model predicts an effective exponent x = 0.5. Due to finite

size effects [53], linear bead-spring chains of N ∼ 15 monomers show values x >∼ 0.6. Results

in Figure 10 for the S-monomers in the main chain show such values and seem compatible

with motions dominated by Rouse dynamics.

For the F-monomers, a rationalization of the subdiffusive regime in terms of Rouse dy-

namics does not seem plausible. Indeed we observe analogous features and similar exponents

x ∼ 0.5 even for arms of NF = 2. Clearly, this small length scale cannot be captured by the

Rouse model, which explicitly neglects excluded volume effects [53]. A different scenario for

the motion of the F-monomers may be invoked in relation with the problem of dynamics

in crowded environments. The motion along networks of interconnected channels in slow

matrixes usually displays subdiffusive behavior 〈∆r2β〉 ∝ tx, with x < 1, over several time

decades [54–58]. The morphology of the nanodomains (Figure 3) and the slow nature of the

domains rich in S-monomers suggests a related scenario for the motion of the F-monomers.

The MSD is not accessible by neutron scattering experiments. However, the former

observations seem compatible with the strong stretching exhibited by the incoherent function

of the H-atoms in the alkyl group (see Figure 6). The MSD can be estimated by invoking the

Gaussian approximation [48], 〈∆r2Ha
(t)〉 = −(6/q2) ln[F s

Ha
(q, t)]. Deviations from Gaussian

behavior may be expected (they indeed become clear in the simulations, see below). Still, by

applying the Gaussian approximation as a crude estimation, strong stretching in F s
Ha
(q, t)

points to small x-values in the corresponding MSD.

Figure 11 shows for the two species in the simulated SF-combs, and for several arm

lengths, the temperature dependence of the relaxation times τ of the coherent scattering

functions at q = 1.30 and q = 7.00. For comparison with the experimental trends in poly(n-

alkyl methacrylates), we follow the same analysis as in Ref. [22]. Thus, we define τ as the

time for which the normalized scattering function decays to Fαα(q, τ) = Aqe
−1, with Aq the

plateau height. In Ref. [22] the latter was defined as the value of the function at a time t0

around the beginning of the plateau. Following this criterium, we use t0 = 2. As in Ref. [22],

we represent τ in logarithmic scale versus 1/T . Data for the F-monomers are compatible

with Arrhenius behavior τ ∝ exp(E/kBT ) over 3 decades in time, though we cannot assess

the validity of this description at lower temperatures. The apparent activation energy E

decreases on increasing the arm length, i.e., on increasing the fraction xF and size of the

F-domains. These trends are again consistent with the NSE experimental results in PnMAs,
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addressing the high temperature range [22].

D. Decoupling of self- and collective dynamics

We have shown that the decoupling between self- and collective dynamics is one of the

peculiarities exhibited by the arm units in PHMA (see Figure 6). Moreover, this effect is

enhanced with decreasing temperature [22]. Now we show that this feature is also reproduced

by the simulations. Figure 12 shows, for SF-combs of fixed NF = 6 at several temperatures,
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the q-dependence of the relaxation times τ of scattering functions, according to the former

definition of τ (see previous subsection). Data are presented for the incoherent scattering

functions of both species, F s
S(q, t) and F s

F(q, t), and for the respective coherent functions for

S-S and F-F correlations. The incoherent function is defined as F s
α(q, t) = 〈

∑Nα

mon

j=1 exp[iq ·
(rj(t) − rj(0)]〉/Nα

mon. For q < qI we observe a progressive deviation of the coherent times

below the incoherent ones. This is a general feature also present in linear homopolymers for

length scales far beyond nearest-neighbor distances. Its origin is not well understood [65]

and is beyond the scope of this work. For q > qII there is almost no separation between

coherent and incoherent times. This is not surprising, since qII reflects nearest-neighbor

distances, and therefore no relevant collective correlations are probed for q > qII. For the

range qI < q < qII, which probes the domain structure, the comparison between self- and

collective dynamics reveals very different features for S- and F-monomers. Coherent and

incoherent times for the S-monomers are very similar. By invoking theory of simple liquids,

this may be understood esentially in terms of de Gennes narrowing [42]. On the contrary,

a strong decoupling of self- and collective dynamics is observed for the F-monomers. In

agreement with experiments [22], the decoupling is enhanced on decreasing T . At the lowest

investigated temperatures coherent times are shifted by factors of up to 10 respect to the

incoherent ones.

This feature for the F-monomers can be understood as a consequence of the slow re-

arrangement of the network of domains. This induces slow collective correlations between

the F-monomers. However, the F-monomers explore their domains by fast self-motions,

leading to the observed differences between coherent and incoherent times. As temperature

decreases, rearrangement of the network becomes slower, and decoupling between self- and

collective dynamics of F-monomers is enhanced. This effect for the fast component is present

in other mixtures with strong dynamic asymmetry. Some examples are colloidal mixtures

of large and small particles [59, 60], polymer blends [50, 61], mixtures of big and small stars

[62], and alkali silicates [63, 64]. However, in these systems the observed decoupling is much

stronger, of even 3-4 decades for similar simulation windows. The reason is that, unlike

in the comb copolymers, dynamic asymmetry can be much stronger due to the absence of

permanent links between the two components. The fast component can even show a finite

diffusivity while the slow one is in the glassy state [62, 63]. This is clearly impossible for

block copolymers (see mean squared displacements in Figure 10).



27

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

0.0

0.3

0.6

0.9

1.2

1.5

T = 0.17
T = 0.18
T = 0.19
T = 0.20
T = 0.22
T = 0.25
T = 0.30

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

0.0

0.3

0.6

0.9

1.2

1.5

1.8

T = 0.17
T = 0.18
T = 0.19
T = 0.20
T = 0.22
T = 0.25
T = 0.30

t

t

α2(t)

α2(t)

(a)

(b)

S

F

FIG. 13: Temperature dependence of the non-Gaussian parameter for SF-combs of NF = 6. Panel

(a): data for S-monomers. Panel (b): data for F-monomers.

E. Dynamic heterogeneity

In the limit of Gaussian dynamics the incoherent scattering function of the α-species obeys

F s
α(q, t) = exp[−q2〈∆r2α(t)〉/6]. According to this, if the MSD follows subdiffusive behavior

〈∆r2α(t)〉 ∼ tx, the relaxation time τ defined above will depend on q as τ ∼ q−2/x. Figure 12

shows a test of this relation in SF-combs of NF = 6, by taking the effective exponents x of

the mean squared displacements of Figure 10. For the S-monomers approximate Gaussian
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behavior is reached for wave vectors smaller than q ∼ 2.5. The associated length scale 2π/q

is about 1.5σSS. In other words, approximate Gaussian behavior is reached when the S-

particles move over a distance similar to their own size. This is indeed the usual observation

in glass-forming systems [66]. Following these arguments, the crossover to Gaussian behavior

of the F-monomers might be expected to occur at q ∼ 2π/(1.5σFF) ≈ 4. However, it actually

occurs at larger length scales, namely close to the peak at qI ≈ 1.3 in the static structure

factor (Figure 4). Thus, the Gaussian limit for the F-monomers is only approached by

exploring the size of the nanodomains.

Deviations of the distribution of displacements from the Gaussian approximation can

be quantified by means of the non-Gaussian parameter, αβ
2 (t) = 3〈∆r4β(t)〉/5〈∆r2β(t)〉2 − 1,

which is exactly zero for Gaussian dynamics. Figure 13 shows results for the non-Gaussian

parameter of S- and F-monomers in SF-combs of arm length NF = 6. A detailed comparison

with the data of Figure 12 shows that the approximate power-law behavior τ ∼ q−2/x is

reached at time scales for which αβ
2 decays to small values ∼ 0.1. This is consistent with

the interpretation of the former power law in terms of Gaussian behavior (see above). As

usually observed in glass-formers [66], αβ
2 increases from zero at t = 0 up to a maximum. This

maximum is located around the decaging time, i.e., at the crossover between the late caging

regime and the early structural relaxation (see MSD in Figure 10). It reflects significant

dynamic heterogeneity at that time scale [66, 67]. As usual, this effect is strongly enhanced

on decreasing temperature. At longer times dynamic heterogeneity is weaker and αβ
2 decays.

The Gaussian limit (αβ
2 = 0) is only reached within the simulation time window at the highest

investigated temperatures. Prior to the final decay to zero, a plateau regime arises for the

F-monomers. This effect is related to dynamic heterogeneity associated to the exploration

of the F-domains, as discussed above.

Now we characterize dynamic heterogeneity of the F-component in more detail by com-

puting dynamic correlators for specific monomers and bonds. Panels (a) and (b) of Figure

14 show, for SF-combs of NF = 6, mean squared displacements and incoherent scattering

functions of selected F-monomers. These are labeled as Fn with n = 1, 2, ..., 6 from the

SF-link to the free end of the F-arm. At times after the decaging regime, an increasing

dispersion is observed in the mobility of the F-monomers. For the highest investigated T ,

dispersion reaches a maximum at t ≈ 103, and data for the different F-monomers ap-

proach a common limit at long times. A final merging is also expected for lower T , at times
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FIG. 14: For SF-combs of NF = 6, dynamic correlators for specific locations (see text) of fast

monomers (Fn) and fast bonds (Fn-Fn+1). (a): MSD for T = 0.17 (black), T = 0.22 (red) and

T = 0.30 (blue). (b): incoherent scattering functions for q = 3.0 and T = 0.17. (c): orientational

bond correlators (symbols) for T = 0.17 (black), T = 0.22 (red) and T = 0.30 (blue). Also included

as solid lines are the correlators averaged over all F-F bonds. In panels (a) and (c) data sets at

different T with a same symbol code correspond to a same specific location.
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FIG. 15: For SF-combs of NF = 6, temperature dependence of the reorientation time of specific

bonds. Each set is rescaled by a factor f in order to obtain data overlap (f = 1 for bonds F5-F6).

The line indicates approximate Arrhenius behavior.

beyond the simulation window. At fixed temperature, the mobility of the F-monomers in-

creases monotonically from the SF-link to the arm end. The observed gradients of mobility

are however moderate at the investigated temperatures. Data in panels (a) and (b) show a

dispersion of less than one decade in characteristic times. The experimental data for poly(n-

alkyl methacrylates) [21, 22] were also analyzed in terms of gradients of mobility along the

arms. The phenomenological analysis provided distributions of relaxation times of up to

seven decades for temperatures qualitatively equivalent to those investigated here, i.e., with

equivalent time scales for the total F (q, t). The authors of Refs. [21, 22] suggested that such

a strong dispersion might be unrealistic and just an artifact of the assumed distribution.

The weak dispersion observed in the simulations seems to confirm this guess.

Bond reorientation can be quantified by the correlator P (t) = 〈b(t) · b(0)〉/〈b2(0)〉, with
b the considered bond vector. Figure 14c shows, for SF-combs of NF = 6, results for the

orientational correlator of the S-F bond and the different F-F bonds. These are denoted

as Fn-Fn+1, where the index n is defined as for the data of panels (a) and (b). In analogy

with the observations in such panels for translational dynamics, bond reorientation becomes
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faster as the arm end is approached. Reorientation for the S-F bonds is significantly slower

than for any of the F-F bonds. The dispersion in the reorientation times extends over about

one decade, and does not seem to increase with decreasing temperature in the investigated

range. This is suggested by results in Figure 15 for reorientation times τb of the S-F bonds

and all the different F-F bonds. We have estimated τb by the criterium P (τb) = 0.2. The

temperature dependence of τb is shown in Figure 15, where each data set corresponds to

a specific bond. Moreover each set has been rescaled by factor in order to obtain data

overlap. In analogy with the results of Figure 11, we use an Arrhenius representation.

Almost perfect overlap is observed for T <∼ 0.22, where data are compatible with Arrhenius

behavior τb = τ∞ exp(E/kBT ), and with a very similar activation energy. According to this,

the dispersion of about one decade in the reorientation times of Figure 14, is esentially due

to a similar dispersion in the prefactors τ∞ for the different bonds. These results may be

relevant for the interpretation of experiments by dielectric spectroscopy, which can probe

bond reorientation over much longer time scales at lower temperatures. If the extrapolation

of the apparent Arrhenius behavior is correct, gradients of mobility at lower temperatures

will not be stronger than those observed in Figure 14.

V. CONCLUSIONS

We have presented a computational investigation of a simple bead-spring model for self-

assembled comb copolymers, where monomers in the main chain and in the arms are segre-

gated in nanodomains. The observed structural and dynamic features have been discussed

in comparison with recent findings in poly(n-alkyl methacrylates). The generic character

of the bead-spring model suggests that the observed qualitative features are not specific

of these systems. On the contrary, we propose that the former will be general features of

self-assembled comb copolymers with dynamic asymmetry. These include a decoupling of

self- and collective dynamics for the arm monomers in the nanodomain scale. The latter also

exhibit strongly stretched relaxation. At least for time scales probed by neutron scattering

experiments, stretching seems to be an intrinsic feature, not related to strong gradients of

mobility along the arms. Finally, nanosegregation of main chains and arms can arise as a

purely entropic effect, provided that the density of branch points is large enough.
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