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Abstract 

The complexity of the ZrO2-CeO2 phase diagram arises from several factors: the 

low solubility of each compound into the other one, the slow kinetics of cation 

diffusion, the occurrence of Ce reduction at high temperatures, and the existence of 

several metastable phases whose appearance and evolution depend on synthesis method 

and thermal history of the sample. Identification of phase content is moreover 

complicated because the X-ray diffractograms of some ZrO2-CeO2 phases are very close 

or even indistinguishable, which imposes the use of other techniques more sensitive to 

small oxygen displacements. In this work we present a Raman spectroscopic study of 

phase segregation in the ZrO2-CeO2 system between 1300 and 1650 ºC, focusing on the 

effect of Ce reduction at high temperatures and its relation with the appearance of 

metastable phases upon cooling. The nature of the high-temperature defective cubic 

phase is discussed. 
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1. Introduction 

 

Ce-based materials have a wide spectrum of technological applications, most of 

which are based on the well-known redox properties of the Ce
4+

/Ce
3+

 pair (see Ref.1 for 

a recent review). Among Ce-related capabilities, oxygen storage, which is the basis of 

operation of automotive catalysts,
2,3

 takes advantage of the simultaneous and reversible 

occurrence of oxygen loss (or retrapping) and Cerium reduction (or oxidation) in Ce-

based oxides. 

It is known that the addition of ZrO2 to ceria improves the oxygen storage 

capacity (OSC) of CeO2 as well as its stability against sintering.
4,5

 For catalysis, 

homogeneous Zr1-xCexO2 solid-solutions with high surface area are desirable.  These, 

however, are not equilibrium phases of the ZrO2-CeO2 (ZCO) system, except for close-

to-the-end compositions. The limited solubility of ZrO2 in CeO2 and vice-versa, 

together with the need of high surface materials, imposes the use of low temperature 

synthesis methods, which yield metastable Zr1-xCexO2 solid-solutions with the desired 

composition.
6
 An important issue in these cases is chemical inhomogeneity, since it 

affects the OSC and thermal stability.
7-9

 Even in samples that appear to be single-phase 

at the X-ray diffraction (XRD) level, there exists nanometer-scale inhomogeneity that 

favors unwanted crystallite growth and phase segregation upon heating at moderate 

temperatures (~900 ºC).
8-10

 

The strict conditions required for technical applications of the ZCO systems 

have led to intense research on the production, processing and characterization of these 

oxides. Some aspects of the ZrO2-CeO2 phase diagram (PD), however, are still under 

debate, despite an enormous number of studies. Several factors contribute to unexpected 

complexity:  
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First, the end compounds are not isomorphous: CeO2 adopts the well-known 

cubic fluorite phase (space group Fm-3m) at all temperatures, whereas the equilibrium 

phase of pure ZrO2 at RT is monoclinic with space group P21/c. There is no mutual 

solubility of CeO2 in ZrO2 at RT and viceversa, except for very low percentages. 

According to the widely accepted equilibrium PD established by Yashima et al. in a 

series of papers
11-16

 (see Fig. 1), phase separation occurs at intermediate compositions 

between a Ce-poor, monoclinic phase (x <5 %), and a Ce-rich, cubic fluorite phase, c, 

whose Ce concentration varies from a content above 95 % at RT to 85 % at 1050 ºC.  At 

that temperature there exists an eutectoid reaction; for T > 1050 ºC phase segregation 

occurs for nominal cerium contents above 15% in the form of a tetragonal phase, t, with 

~15-20% Ce content and a Ce-rich, cubic phase whose Ce composition decreases very 

fast with  increasing temperature. 

Intermediate Zr1-xCexO2 compositions may form as metastable phases, and these 

in turn may be cation ordered or disordered. Fluorite-like, cation disordered phases are 

obtained after long-period annealing at high temperature (above the t+c segregation 

field) in an oxidizing or slightly reducing atmosphere. As reported by Yashima et al., in 

these conditions defective cubic phases are formed, that may be quenched by fast 

cooling. Upon mild reoxidation treatments, oxygen stoichiometry is recovered but then 

the samples transform to metastable tetragonal structures t‟ or t”, or monoclinic m‟ 

phase, depending on the Ce content. The range of t‟ phase extends from 15 to 68 % at 

RT, whereas the pseudocubic t” phase forms from 68 to 90 %. Upon fast heating (to 

prevent segregation), t” phase transforms to cubic phase, whereas t‟ phase transforms 

first into t” and then into cubic phase. These transitions are represented by dashed lines 

in Yashima‟s PD (Fig. 1).  
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Metastable t‟ and t‟‟ phases may also form after low temperature synthesis, due 

to surface/size effects. In that case the range of appearance of t‟ and t ‟‟ phases differs 

from that obtained through high temperature annealing, and pseudocubic phases may be 

found even for x=0.5 compositions.
 10,17

  

Severe reduction at high temperatures (typically higher than 1100 ºC) yields 

almost full Ce
4+

 to Ce
3+

 conversion and, for compositions close to x=0.5, cation order 

occurs to form pyrochlore-like Ce2Zr2O7+. Upon mild reoxidation at T  600 ºC, a fully 

stoichiometric Ce2Zr2O8 cubic phase is recovered, usually denoted as -Ce2Zr2O8.
18

 

Cation-ordered phases with intermediate compositions present improved OSC 

properties with respect to CeO2, notably at low temperature.
19

 A variety of other 

tetragonal metastable phases, such as those labeled t* and t‟-meta, can be found upon 

varying reduction and reoxidation temperatures.
18

 These cation disordered phases are 

hard to distinguish from the usual t‟ phase by XRD, since they differ only in slight 

differences of the oxygen z coordinate, but can be identified by Raman spectroscopy.
18

  

Since most applications of ZCO compounds involve Ce redox processes, it is 

mandatory to know how these materials behave in different environments; in particular 

which is the influence of Ce reduction in phase segregation at moderate or high 

temperatures. In this work we use Raman scattering to investigate phase separation for 

intermediate compositions of the ZrO2-CeO2 system sintered in the 1300-1650 ºC 

temperature range, focusing in reduction effects and their influence in the appearance of 

metastable phases. Though at these temperatures low surface area (LSA) materials are 

formed, less interesting for catalytic purposes than high surface area (HSA) systems, 

there are several aspects that justify this study. First, it has been shown that in mixed 

ZrO2-CeO2 oxides redox processes responsible for OSC are mediated by oxygen 

conduction and occur mostly in the bulk,
20

 so that studying reduction related features in 
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LSA samples, free from surface effects, is also useful, even if their catalytic activity is 

worse. Moreover, phase identification upon oxygen uptake or release may be 

complicated in HSA systems due to the broad diffractograms obtained in these samples. 

Size effects are also responsible for the appearance of metastable phases in HSA 

systems, which may obscure similar effects arising from Ce reduction. 

The usefulness of Raman scattering in ceria-zirconia systems is based on its 

sensitivity to small oxygen displacements, which allows distinguishing between phases 

that present almost identical XRD patterns, such as the already mentioned metastable t‟, 

t‟-meta or t* phases, or between the cubic and pseudocubic (t”) phases. Before the latter 

was identified by Yashima et al. by means of Raman spectroscopy, first in Zr1-xYxO2-x/2 

(Ref. 21) and then in the ZCO system,
12

 both phases were assumed to share similar, 

fluorite-like structure. Thus, in a previous XRD characterization of compositions with 

x≥0.6 annealed at 1650 ºC,
22

 a single cubic phase was found, though it was evident that 

some of those “cubic” phases where probably pseudocubic ones. Raman spectroscopy is 

also valuable in detecting nanoscale structural or chemical inhomogeneity. This is 

especially important in HSA systems, where diffractogram broadening may mask small 

tetragonal splittings, or even the coexistence of several phases with close lattice 

parameters. Moreover, the strong variation of Raman shifts and intensities along the 

Zr1-xCexO2 series allows using it to identify the composition and phase content of the 

sample. An alternative approach for phase identification is attempted in Ref. 23 by 

using Eu(III) luminescence as a probe of local symmetry. 

In this work, phase attribution is made on the basis of peak frequencies and 

relative intensities. Several bands are especially critical for phase identification, due to 

their strong (x) dependence. Thus, monoclinic ZrO2 is easily identified by a doublet at 

183-193 cm
-1

;
24

 tetragonal phase stable at high temperature presents always an intense 
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band around 250 cm
-1

, as well as a triplet of high frequency bands in the region of 630 

cm
-1

.
24

 At the Ce-rich end, cubic fluorite gives a huge peak at 465-472 cm
-1

, with a 

weak shoulder at higher frequency due to defects, and almost no intensity in the low 

frequency side.
12

 The metastable t‟ phase can be identified by the downward shift of the 

originally t-like band from 250 to 160 cm
-1

 as x is increased, and also by the aspect of 

the band at 455-470 cm
-1

 and its high frequency wing.
12

 The identification of the 

metastable t”-phase is more subtle, since it also results in an intense pseudocubic band 

close to that of cubic fluorite. However, the spectrum can be differentiated by the higher 

frequency of the pseudocubic band (473-480 cm
-1

) and also by the weak band that 

appears around 300 cm
-1

, due to oxygen off-center location.
12

 No cation-ordered phases 

were found in this study, neither other t‟-related phases such as t‟-meta or t*, so that the 

Raman spectra of these phases is not described here.  

For the conditions used in this work the error in the determination of phase 

composition through Raman spectra is estimated to be approx. 2 %, i.e. the error bar for 

Ce content x is x ±0.02. Though Raman scattering provides accurate phase 

identification, quantitative determination of relative phase content is difficult, unless 

precise measurements with reference samples are available. This task has not been 

attempted in this work.  

 

2. Experimental details 

 

Standard ceramic synthesis was used, starting from the mixture of reagent oxides 

CeO2 and ZrO2. Pellets of nominal composition Zr1-xCexO2, with x = 0.2, 0.4, 0.5, 0.6, 

and 0.8, were annealed at 1500 and 1650 ºC during 12 or 24 hours. Two other 

compositions (x= 0.7, 0.9) were also annealed at 1650 ºC. [We shall use the notation 



 8 

Cex for material with the nominal composition (ZrO2)1-x(CeO2)x ]. A set of Ce0.4 

samples were further submitted to a sequence of annealing temperatures (Ta) during 12 

hours: Ta= 1300 ºC, 1350 ºC, 1400 ºC, 1450 ºC, 1500 ºC and 1650 ºC. Annealing at 

1300º C during 24 hours was also performed. The heating and cooling rates used in the 

thermal treatments were 1ºC min
-1

.  XRD patterns of most samples were recorded with 

the CuK radiation, by using the (/2) Bragg-Brentano geometry, in an X‟Pert Philips 

instrument equipped with a curved graphite monochromator. The diffractogram of the 

sample annealed at 1500 ºC was recorded in a D-Max Rigaku equipment using also 

CuK lines. 

Room temperature Raman spectra were recorded in a DILOR XY spectrometer 

equipped with a liquid nitrogen-cooled Charge-Coupled Device (CCD) detector. 

Excitation was performed through the 50X objective lens of a microscope, using the 

514.5 nm line of an Ar
+
 laser. The Si mode at 520 cm

-1
 was used for frequency 

calibration. 

 

3. Experimental results 

 

Figure 2 shows the X-ray diffractogram of Ce0.4 samples annealed at increasing 

temperatures, from 1350 to 1500 ºC. At a first glance it becomes evident that there is 

coexistence of at least two phases with significantly different lattice parameters, hence 

with different Ce content. For samples annealed at 1350 ºC and 1400 ºC we can easily 

identify diffraction peaks of a cubic (or pseudocubic) c phase and those of a tetragonal t 

phase that we ascribe, according to the ZrO2-CeO2 phase diagram, to Ce-rich and Ce-

poor segregated phases, respectively. Inspection of diffractograms of samples annealed 

at 1450 and 1500 ºC evidences some splitting in the region pertaining to the Ce-rich 
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phase that prevent interpreting them simply as a superposition of c+t phases. Lattice 

parameters obtained from fitting the diffractograms by means of Fullprof package
25

 are 

given in Table 1. Two phases, t+c, were used for Ta= 1350 and 1400 ºC, whereas t+t‟ 

phases were used for Ta= 1450 and 1500 ºC. (Some amount of unreacted ZrO2 and 

CeO2 oxides was still present in the sample annealed at 1300 ºC. On the other hand, the 

sample annealed at 1650 ºC contained a third, Ce-rich cubic phase, besides the 

t+t‟ones).  Figure 3 shows the pseudocubic lattice parameters, āc and āt, of the Ce-rich 

and Ce-poor segregated phases, respectively, as a function of annealing temperature. 

The variation of āt follows the Ce-content of the stable tetragonal phase in the 1300-

1650 ºC temperature interval, whereas the decreasing trend of āc agrees, at least 

qualitatively, with the decrease in Ce content of the Ce-rich phase in the same 

temperature interval. Though these data suggest that the sample composition has been 

preserved upon cooling from high temperature, analysis of phase symmetry and Ce 

content cannot be made exclusively from XRD data. First, XRD does not distinguish 

between cubic and t‟‟ phases. Second, the presence of tetragonal phases in the Ce-rich 

side is unexpected. Finally, a unique correspondence between lattice parameter, Ce 

content and temperature cannot be established.  We have included in figure 3 lattice 

parameters of samples produced by a modified Pechini method.
10

 Differences between 

both series of samples are attributed to incomplete segregation of Pechini samples, 

despite only two phases were found in this series. Difficulties inherent to the ZrO2-CeO2 

phase diagram mentioned in the introduction (small oxygen-induced distortions, 

metastable phases, possible reduction at high temperatures) recommend complementing 

phase identification by other means. As explained, Raman spectroscopy is one of the 

techniques most sensitive to the peculiarities of this system. 
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Figure 4 shows the spectra of Ce0.4 samples as a function of increasing 

annealing temperature, from 1300 to 1650 ºC. [The bands between 350 and 420 cm
-1

 are 

due to luminescence of Er
3+

 impurities.
26

] The following stages can be distinguished: 

At 1300 and 1350 ºC reaction already occurs but it is slow. The phase content of 

the final product depends on the annealing time, and contains typically weak peaks from 

the reagent oxides m-ZrO2, c-CeO2 as well as those of reacted phases t(x~0.18-0.2) and 

c(x~0.72-0.75).  

After 12 hours of annealing at 1400 ºC the spectra of the starting oxides have 

disappeared implying that full reaction has occurred. Phase segregation is still observed. 

However, the strong symmetric peak at 465-470 cm
-1

, typical of Ce-rich phases with 

cubic fluorite structure, turns into a broader, asymmetric band with maximum at ≈ 473 

cm
-1

 that, according to Yashima‟s reference data,
12

 is attributed to a t”-like phase with x 

close to 0.7. The most characteristic band of the low x, tetragonal phase is still observed 

at 245 cm
-1

, thus implying that segregation yields t+t” phases, instead of the t+c 

decomposition expected from equilibrium PD. 

On increasing Ta this trend is further enhanced. For Ta =1450 ºC, the spectral 

shape in the region 450-600 cm
-1

 is typical of t‟ phase with x=0.6, whereas the band of 

the t-phase is found at an almost fixed position, thus implying segregation into t(0.18-

0.2) + t‟(0.6) phases.For Ta =1500 ºC the band arising from the stable t phase has lost 

half of its intensity and the t‟-like spectrum corresponds to x≈0.5-0.55 content. Finally, 

for Ta = 1650 ºC, the stable t-phase is only weakly present, and a mostly t‟-like 

spectrum is found, pertaining to a Ce content (x ≈0.42) close to the nominal one.   

Instead of looking at a fixed composition and varying Ta, we may apply a 

“transverse” look and see how phases vary as a function of nominal composition for 

fixed Ta. Thus, for Ta = 1500 ºC we find the spectra shown in Fig. 5. No cubic, Ce-rich 
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phase is formed at this temperature, in apparent contradiction with the PD. Instead, and 

depending on composition, we find a t”-like spectrum as a single phase for Ce0.8, a t‟-

like spectrum pertaining to x =0.6, also as a single phase, for composition Ce0.6, and a 

weak segregation effect for Ce0.5 in the form of a minority t(0.18-0.2) phase plus a 

majority t‟(0.55) phase. Phase segregation also occurs for Ce0.4 into a (now more 

intense) t phase and a t‟ phase with x ≈0.52. Finally, almost pure t phase is found for 

Ce0.2, within the sensitivity limits of Raman experiments. 

The same type of experiment but with Ta =1650 ºC yields spectra shown in Fig. 

6. At this temperature, the Ce0.4 composition segregates into t(weak) + t‟(≈0.42). For 

higher Ce content, single phases are found with composition very close to the nominal 

one: t‟ for 0.5 and 0.6, and t” for 0.7 and 0.8. For Ce0.9 the intense band of cubic 

fluorite is found, with no intensity at 300 cm
-1

, suggesting that a true cubic phase is 

formed for this composition. 

The identification of the Ce-rich segregated phase is mainly based on the 

comparison of the shape and frequency of the cubic or pseudocubic band with reference 

data.
12

 This band appears at c= 465 cm
-1

 in pure CeO2 and its frequency increases with 

decreasing x as far as the structure remains cubic, due to lattice compression. Below 

x0.85, however, the structure becomes tetragonal and the band splits into three 

components. We shall use the notation c for the frequency of the most intense 

component, which is the one appearing at lowest frequency. For that band, the relation 

between c and Ce content is reversed, i.e. lower c corresponds to lower Ce-content.
12

 

The composition of the Ce-poor tetragonal phase can be determined from the 

frequency of the characteristic band around 250 cm
-1

 (t  263 cm
-1

 for pure t-ZrO2 at 

high temperature
27

) and the shape of the PD in the low Ce-content region.  
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c„s and t„s are plotted in Fig. 7 as a function of the annealing temperature. 

Data from samples synthesized by a modified Pechini method
10

 are also included for 

comparison. Pechini samples, with nominal composition Zr0.5Ce0.5O2, were annealed for 

2 hours at temperatures from 1000 to 1500 ºC, i.e. in the t+c phase field. As Fig. 6 of 

Ref. 10 shows, between 1000 and 1300 ºC the Ce-rich segregated phase of Pechini 

samples has a cubic fluorite spectrum, whereas for Ta=1400 and 1500 ºC the metastable 

t” and t‟ phases form, respectively, in agreement with the trend of materials sintered by 

standard ceramic methods. Though the phases formed in these samples are qualitatively 

the same as in ceramic powders, Raman frequencies shown in Fig. 7 reveal small but 

significant shifts between both series. This behavior can be discussed in relation with 

the difference in lattice parameters determined from XRD (figure 3 and Ref.10).  

For all annealing temperatures used, ceramic samples show higher t‟s than 

Pechini samples, which, according to the relation between t and Ce content, would 

imply slightly lower Ce content in the ceramic samples. This behavior is in agreement 

with the smaller cell volume found for the Ce-poor phase in the ceramic samples and 

may be ascribed to incomplete phase segregation in Pechini samples, due to the short 

annealing times (2h) used in Ref.10. As reaction progresses with longer retention time, 

the Ce content of the Ce-poor phase is reduced, resulting in higher t in ceramic 

samples, as observed. 

The behavior of the characteristic frequency of the Ce-rich phase, c, is more 

subtle and is, apparently, not systematic. At 1300 ºC, c (ceramic) < c (Pechini); at 

1400 ºC the opposite is true and, at 1500 ºC, lower c is again found for ceramic 

samples.  The explanation has to be made point by point in relation with the PD and the 

behavior expected at increasing annealing temperatures. If incomplete segregation 

occurs in Pechini samples, one would expect lower Ce-content for the Ce-rich phase in 
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the Pechini series, and in fact at 1300 ºC the lattice parameter of the Pechini sample is 

smaller than that of the ceramic sample (see Fig. 3). Since at this temperature the Ce-

rich phase is still cubic, a smaller lattice parameter implies a higher frequency for the 

quasicubic mode, which explains why c (Pechini) > c (ceramic). On annealing at 1400 

ºC and above, however, the Ce-rich phase adopts the tetragonal t‟‟ phase, first, and then 

the t‟ phase, for which the relation between c and Ce content is reversed. Then, the 

higher c of the ceramic sample annealed at 1400 ºC agrees with the larger pseudocubic 

lattice parameter shown in Fig. 3 and thus a higher Ce content which is again attributed 

to incomplete equilibrium of Pechini samples. On further increasing Ta the lattice 

parameters of Pechini and ceramic samples tend to converge, despite the difference in 

annealing times, in agreement with the expectation that increasing temperature favors 

diffusion processes and thus enhances segregation. (The large error bar of the ceramic 

sample annealed at 1650 ºC is due to the presence of a third, cubic phase, which may 

arise from partial segregation of the Ce-rich phase upon cooling, thus modifying the 

composition and lattice parameter of the main t‟ phase). 

Determining the Ce content of the Ce-poor phase is difficult, since data for 

compositions below x0.2 are lacking in Ref.12. Moreover, the value given in that work 

for Ce0.2 (t = 230 cm
-1

) is much lower than those usually reported. According to the 

PD, in the 1300-1650 ºC temperature interval the composition of the Ce-poor phase 

hardly varies between 0.18 and 0.2. On the other hand, we find a significant variation of 

t of about 10 cm
-1

 in the same interval, which would imply either that the t(x) relation 

is very steep around x=0.2, or that the variation of Ce content is greater than only 2%. 

We shall discuss this point in next section. 

 

4. Discussion 
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According to the equilibrium phase diagram of the ZrO2-CeO2 system,
11

 above 

1050 ºC and for CeO2 content between 15 and 85 %, phase segregation is expected to 

give a Ce-poor phase, with the stable tetragonal structure and Ce composition varying 

only slightly between 15 % and 20 %, and a Ce-rich phase, with the cubic fluorite 

structure and Ce content decreasing quickly as temperature increases. 

The experimental results presented here indicate that for Ta = 1300 and 1350 ºC 

the segregated phases are those predicted by the equilibrium PD: the Ce-poor phase is a 

tetragonal phase with x ≈0.18, and the Ce-rich phase is a cubic fluorite whose Raman 

shift increases with increasing Zr amount, due to lattice contraction. However, for 

sintering temperatures at, or above, 1400 ºC, the Ce-rich phase is not the expected cubic 

fluorite: at 1400 ºC a metastable t”-phase is found, whereas for Ta = 1450, 1500 and 

1650 ºC the also metastable t‟ phase forms. The compositions of the Ce-rich segregated 

phases are plotted, together with the PD, in Fig.1. 

We ascribe the presence of metastable t‟ or t” phases in the Ce-rich side of the 

segregated phases to partial Ce reduction:  it is well-known that Ce
4+

 tends to be 

reduced to Ce
3+

 at high temperatures, typically above 1400 ºC in air atmosphere. To 

maintain charge neutrality, a corresponding percentage of oxygen vacancies must be 

formed. Ce
3+

, with its higher ionic radius, acts exactly as Y
3+

 in YSZ and produces a 

cubic, defective phase, which can be quenched upon fast cooling. (In this context, 

defective or non-defective refers to the presence or absence of oxygen vacancies).  

In Yashima‟s works this phase is labeled as c‟ and is ascribed to either the cubic 

fluorite or the pseudocubic t”-phase, that has c=a but with oxygen displacement O(z)≠0. 

In fact, we should distinguish between defective and non-defective c‟ phases, depending 

on whether the oxygen partial pressure may produce Ce reduction or not. Non-defective 
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c‟-phase can be, depending on sample composition and thermal history, either stable 

cubic fluorite or pseudocubic metastable t”-phase. On the other hand, defective c‟, 

which forms under partially reducing conditions, has random oxygen vacancies but no 

long-range ordered oxygen displacements, according to high temperature neutron 

scattering experiments on Zr0.5Ce0.5O2.
28

 Therefore, the defective c‟-phase must be 

ascribed to a defect fluorite (DF) phase.  

In consequence, for Ta < 1400 ºC the high temperature phase labeled as “cubic” 

will be a non-defective, though cation-disordered cubic fluorite, whereas for Ta > 1400 

ºC the cubic phase will be a defect fluorite with random distribution of Zr
4+

, Ce
4+

, Ce
3+

 

and oxygen vacancies.  

Though the ZrO2-CeO2 PD assumes that all Ce ions are in Ce
4+

 state, the ternary 

ZrO2-CeO2-Ce2O3 PD should be strictly considered. If reduction effects are weak, the 

binary diagram may be used, but having in mind that above a certain temperature the 

high temperature cubic phase will be a defective phase. 

At this point, it is worth to recall that XRD gives only the average structure, 

which may differ from the local structure if there exist short-range ordered regions with 

a correlation length smaller than that given by XRD. On the other hand, Raman 

scattering is sensitive to both long and short-range structures, so that Raman spectra 

frequently denote lower symmetry than XRD in disordered systems. Thus, the defective 

c‟-phase is assumed to be a defect fluorite at the XRD level, in the same sense as YSZ is 

assumed to be a cubic fluorite though its Raman spectrum is not characteristic of a cubic 

fluorite. In fact, a very defective Zr0.6Ce0.4O2- sample produced from the melt by the 

laser floating zone technique, with a cubic diffractogram, showed a broad Raman 

spectrum which, however, resembled more a tetragonal spectrum than a cubic one.
29

 It 

is thus very likely that t‟ or t”-like cation and/or oxygen displacements are already 
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present, at a short-range scale, in the defective c‟-phase, and that these displacements 

become long-range ordered on subsequent reoxidation. 

Based on these considerations, we propose the following picture to explain our 

results: during the annealing procedure above 1400 ºC, phase segregation occurs in the 

form of t + defective-c‟ (DF). Cooling rates used in this work are fast enough to 

maintain the phase compositions established at the annealing temperature but are slow 

enough to allow oxygen diffusion and reoxidation. Then, the defective phase segregated 

at Ta will transform upon cooling to either t‟ or t” phase, depending on its Ce content, so 

that we observe, at RT, t+t‟ or t+t” segregation. 

The composition of the Ce-rich phase formed in the 1400-1650 ºC range is lower 

than would correspond to the non-defective cubic phase at each temperature, according 

to the equilibrium PD. This is reflected in Fig. 1, where we plot the compositions found 

in this work compared to the predictions of the PD. The shift of the Ce-rich phase 

composition is ascribed to partial Ce reduction, which widens the high-temperature 

cubic phase field toward lower Ce content and thus lowers the c t+c or c‟t‟ 

transition temperatures, as already noted by Yashima et al.
14

 Quite interestingly, for Ta 

=1650 ºC the shift of the Ce-rich phase composition is very small, indicating, in 

agreement with previous reports, that Ce can be reduced more easily at the intermediate 

than at the end compositions of Zr1-xCexO2.
4
 The explanation of that behavior is that Ce 

reduction requires oxygen diffusion, which is maximized in the highly disordered 

intermediate compositions. 

Though it seems that the stable tetragonal phase, with only 20 % cerium 

content, can afford a certain Ce
3+

 content quite easily, a priori some effect might be 

expected due to partial reduction at high temperatures. In fact, t  shifts from 253 cm
-1

 

for Ta = 1300 ºC to only 243 cm
-1 

for Ta = 1500 ºC (see figure 7), which might be 
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attributed to lattice expansion induced by Ce
3+

, if we assume that the composition of the 

stable t-phase remains almost fixed in this temperature range. In that case, however, the 

upturn of t for Ta = 1650 ºC would be difficult to explain. Alternatively, frequency 

shifts might also be attributed to small composition variation, as predicted by the PD, 

and subsequent change of lattice parameter. The downshift of t between 1300 and 1500 

ºC could be due to xt increasing, whereas the upturn of t at 1650 ºC can be ascribed to 

the shift of xt toward lower concentrations at higher temperatures (see the PD in Fig. 1).  

We now discuss our results in relation with Yashima‟s experiments and the 

stable/metastable PD. A first difference is the thermal treatment applied to the samples: 

whereas Yashima quenches the annealed samples from the cubic field of the PD, i.e. 

from regions with no phase segregation, and submits them afterwards to mild 

reoxidation, our samples are equilibrated for long annealing times at temperatures that 

correspond, for certain compositions, to within the t+c field, allowing for full phase 

separation in the form of t+DF or t+c, depending on whether Ta is higher or lower than 

1400 ºC. In Yashima‟s PD the transitions from t‟ to t” and then from t” to cubic phase 

are indicated by dashed lines. These temperatures were obtained by heating the non-

defective t‟ samples for short periods of only 3 min, in order to avoid phase separation 

and Ce reduction. In those conditions, non-defective c‟ phase (after identified as t”-

phase) is first formed, that subsequently will transform to either defective or non-

defective cubic fluorite phase.  In the present work, on the contrary, long annealing 

times are employed, so that full phase separation is let to occur. 

 

5. Summary and conclusions 

We have applied Raman spectroscopy to study phase segregation of Zr1-xCexO2 

samples submitted to long annealing times at temperatures between 1300 and 1650 ºC.  
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For Zr0.6Ce0.4O2, Raman spectra measured at RT show superposition of spectra 

corresponding to two phases: a tetragonal phase with Ce content around 0.18 and a Ce-

rich phase whose composition varies rapidly as a function of annealing temperature. If 

1300 ºC < Ta < 1400 ºC, spectra can be interpreted as arising from t+c segregation, in 

agreement with the equilibrium PD. However, for Ta ≥ 1400 ºC, the spectrum of the Ce-

rich phase is not that of a cubic fluorite. The following sequence of segregated phases is 

found: t+t”(0.7) at 1400ºC; t+t‟(0.6) at 1450 ºC, t+t‟(0.52) at 1500 ºC and almost single 

t‟(0.42) phase at 1650 ºC. The compositions of the Ce-rich metastable phases thus 

formed are lower than would correspond to the non-defective cubic fluorite phase.  

The presence of metastable phases in the Ce-rich side of the segregated phases 

and the shift of their compositions, as compared with the predictions of the equilibrium 

PD, are ascribed to partial Ce reduction above 1400 ºC.  Ce
3+ 

ions expand the lattice and 

allow oxygen displacements that drive the formation of metastable t‟ and t” phases upon 

reoxidation at low temperatures. In fact, lattice expansion is the common factor that 

leads to metastable phases either in low temperature synthesis or in samples annealed at 

high temperature under partially reducing atmosphere. In nano-sized systems expansion 

is due to surface effects and associated lattice strain, whereas in partially reduced 

compounds expansion comes from the higher ionic radius of Ce
3+

 compared to Ce
4+

. 

The following picture emerges: long annealing times within the t+c field allow 

for full phase separation in the form of t+DF or t+c, depending on whether Ta is higher 

or lower than 1400 ºC. The defect fluorite phases segregated when Ta ≥ 1400 ºC 

transform upon cooling to either t‟ or t” phase, depending on their Ce content. This 

explains the finding, at RT, of apparent segregation of the form t+t‟, t+t” or t+c.  
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No pyrochlore-like phases are detected in this work, suggesting that reduction 

conditions are not severe enough to yield, even at the highest temperatures used, 

Zr
4+

/Ce
3+

 cation ordered configurations.  

Our findings may have some implications in relation with the technological use 

of ZCO materials. In particular, they may help for an understanding of the mechanisms 

behind the phase conversion upon consecutive reduction and reoxidation treatments.
18,19

 

For increasingly reducing atmosphere, the composition of the Ce-rich metastable phase 

will shift toward lower Ce content, eventually leading, depending on the nominal 

composition and annealing temperature, to a single defective phase for compositions 

that would segregate in non-reducing atmospheres. In fact, this explains the formation 

of pyrochlore Ce2Zr2O7+ after severe reduction of t‟-Ce0.5Zr0.5O2 at 1300 ºC for as long 

as 10h without segregation.
18
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Figure Captions 

 

Figure 1: ZrO2-CeO2 phase diagram, according to Yashima et al.,
11-16

 (figure adapted 

from Ref. 16) and Ce content in the Ce-rich segregated phase derived from Raman 

results presented in this work. ○: t‟ phase; : t” phase; ●: cubic phase. Continuous and 

dashed lines represent the equilibrium and metastable phase diagrams, respectively. 

Dotted line is only a guide for the eye. The error in the determination of Ce 

concentration is approx. ±0.02. 

 

Figure 2:  XRD patterns of nominally Zr0.6Ce0.4O2 samples sintered during 12 h at 

increasing temperatures, from 1350 to 1500 ºC. The patterns can be interpreted as the 

superposition of two diffractograms, corresponding either to t+c (for Ta= 1350 and 1400 

ºC) or to two tetragonal phases t+t’, for Ta= 1450 and 1500 ºC. (See Table I for lattice 

parameters and phase compositions). 

 

Figure 3: Lattice parameters of the Ce-rich and Ce-poor phases segregated in samples 

produced by solid state reaction (black symbols) and by a modified Pechini method 

(open symbols) (Ref. 10). For tetragonal phases, the pseudocubic average is plotted. 

The error bar for the ceramic sample annealed at 1650 ºC is due to the presence of a 

third, cubic phase with large lattice parameter. 

 

Figure 4: Evolution of the Raman spectrum of nominally Zr0.6Ce0.4O2 oxide as a 

function of annealing temperature Ta. The phase content determined from Raman spectra 

is indicated on the right. The composition of the stable tetragonal varies weakly within xt 

≈ 0.18-0.2 (see text). 
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Figure 5: Raman spectra of Zr1-xCexO2 samples annealed at 1500 ºC. The Ce 

composition x is indicated on the right of the figure, together with the phase content 

determined from the spectra.  

 

Figure 6: Raman spectra of Zr1-xCexO2 samples of varying composition annealed at 

1650 ºC. 

 

Figure 7: The Raman shifts of the pseudocubic band of the Ce-rich phase (upper data) 

and of the band characteristic of the Ce-poor tetragonal phase (lower data) are plotted 

with filled symbols as a function of annealing temperature. Data from sol-gel produced 

samples (see Ref.10) are included for comparison (open symbols). Error bars in Raman 

shifts are ±1 cm
-1

. 
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Table 1: Lattice parameters obtained from fitting the X-ray diffractograms by means of 

Fullprof package. Data for annealing temperatures between 1300 and 1500 ºC are 

obtained from samples of nominal composition Ce0.4. Data for Ta = 1650ºC pertain to 

nominal composition Ce0.3; that diffractogram showed a third, cubic phase, with 

a=5.3031 Å. 

 

 

 

 Ce-poor phase Ce-rich phase 

Ta a c ā c/a a c ā c/a 

1300 3.6356 5.2324 3.6571 1.0176 5.3631   1 

1350 3.6363 5.2354 3.6582 1.0181 5.3458  3.7800 1 

1400 3.6393 5.2382 3.6608 1.0178 5.3288  3.7680 1 

1450 3.6441 5.2443 3.6655 1.0176 3.7440 5.3223 3.7505 1.0052 

1500 3.6424 5.2419 3.6638 1.0176 3.7229 5.3097 3.7335 1.0085 

1650 3.6371 5.2332 3.6582 1.0174 3.6997 5.2922 3.7138 1.0114 

Table


