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Abstract  

Novel heterofunctional glyoxyl-agarose supports were prepared. These 

supports contain a high concentration of groups (such as quaternary ammonium 

groups, carboxyl groups and metal chelates) that are capable of adsorbing proteins, 

physically or chemically, at neutral pH as well as a high concentration of glyoxyl groups 

that are unable to covalently immobilize proteins at neutral pH. By using these 

supports, a two-step immobilization protocol was developed. In the first step, enzymes 

were adsorbed at pH 7.0 through adsorption of surface regions which   are 

complementary to the adsorbing groups on the support, and in the second step, the 

immobilized derivatives were incubated under alkaline conditions to promote an 

intramolecular multipoint covalent attachment between the glyoxyl groups on the 

support and the amino groups on the enzyme surface. These new derivatives were 

compared with those obtained on a monofunctional glyoxyl support at pH 10, in which 

the region with the greatest amount of lysine residues participates in the first 

immobilization step. In some cases, multipoint immobilization on heterofunctional 

supports was much more efficient than what was achieved on the monofunctional 

support. For example, derivatives of tannase from Lactobacillus plantarum on an 

amino-glyoxyl heterofunctional support were 20-fold more stable than the best 

derivative on a monofunctional glyoxyl support. Derivatives of lipase from Geobacillus 

thermocatenulatus (BTL2) on the amino-glyoxyl supports were 2-fold more active and 

4-fold more enantioselective than the corresponding monofunctional glyoxyl support 

derivative.   



Introduction 

The development of simple protocols for the immobilization and stabilization of 

enzymes is an exciting goal in the field of enzyme biotechnology.1-6 Immobilization of 

enzymes by multipoint covalent attachment is one of the most interesting approaches 

to simultaneously immobilize and stabilize enzymes.3-4, 6-10 An enzyme molecule that is 

attached to a rigid support through many covalent linkages via short spacer arms 

should be highly stabilized. The residues that are involved in the covalent 

immobilization of the enzyme should maintain their relative positions when 

conformational changes are caused by different distorting agents, such as heat and 

organic solvents. Thus, the intensity of the conformational changes caused by these 

agents should be strongly attenuated.8, 11-13

Immobilization of enzymes on highly activated glyoxyl supports under alkaline 

conditions promotes an orientation on the support surface, in which the enzyme 

becomes immobilized through its surface region or regions containing the greatest 

amount of lysine residues. This favorable orientation results in an intense multipoint 

covalent immobilization 14-15 . In addition to promoting this enzyme orientation, glyoxyl 

groups have many other properties that result in an intense multipoint covalent 

immobilization. They are stable under alkaline conditions, they are reactive towards 

unprotonated primary amines and they do not exhibit steric hindrances for 

intramolecular reactions.16 In fact, many industrial enzymes have been stabilized by 

multipoint covalent attachment on glyoxyl-agarose gels.9,15

On the other hand, it would also be interesting to design new immobilization 

protocols in which multipoint covalent immobilization proceeds through regions of the 

enzyme that are more sensitive to denaturing agents. For example, these regions could 



encompass unstable loops, domains close to the active center and hydrophobic 

pockets (Scheme 1). Thus, their rigidification could result in a more stable attachment  

even though  the number of covalent links is lower that obtained through linkage with 

the lysine-rich regions. In addition to stabilization, rigidification of the enzyme through 

these key regions could also promote a higher recovery of activity after immobilization 

and an improved selectivity of the immobilized enzymes.  that are intended for the 

modification of non-natural substrates. 

Multipoint covalent attachment of enzymes on novel heterofunctional glyoxyl-

agarose supports is proposed here. The novel supports contain a high concentration of 

non-reactive groups that are able to adsorb proteins at neutral pH as well as a high 

concentration of glyoxyl groups that are unable to covalently immobilize the enzyme at 

neutral pH. The glyoxyl groups are much more reactive than traditionally-used epoxy-

groups. By using these supports, a two-step immobilization protocol was developed. In 

the first step, enzymes were adsorbed at neutral pH through surface regions that are 

complementary to the adsorbing groups on the supports, and in the second step, the 

adsorbed derivatives were incubated under alkaline conditions to promote an 

intramolecular multipoint covalent attachment between the glyoxyl groups of the 

support and the primary amino groups close to the adsorbed region of the enzyme 

(Scheme 2). The preparation of these heterofunctional supports is reported here 

(Schemes 3 and 4). 

The rigidification of several enzymes, incluing penicillin G acylase from 

Escherichia coli, porcine pancreas chymotrypsin, tannase from Lactobacillus plantarum

and lipase 2 from Geobacillus thermocatenulatus (BTL2), using this novel protocol was 



studied. The activity, stability and selectivity of the different derivatives were studied 

and compared to the properties of the derivatives that were obtained with 

monofunctional glyoxyl supports. 



Materials and methods 

Materials 

α-chymotrypsin type II from bovine pancreas was purchased from Sigma Chem. 

Co., G. thermocatenulatus lipase 2 was expressed in E. coli as previously described17, 

and tannase strain L. plantarum CECT 748T (ATCC 14917, DSMZ 20174), isolated from 

pickled cabbage was purchased from the Spanish Type Culture Collection. This strain 

was selected based on its high activity.18-21 Agarose 10BCL was purchased from 

Agarose Bead Technologies. Epichlorhydrine, iminodiacetic acid, p-aminophenyl 

boronic acid, triethylamine, mercaptoethanol and sodium metaperyodate were 

purchased from Sigma Chem. Co. Other reagents were of analytical grade. 

Methods 

Activation of the supports (Scheme 1): 

Activation of agarose with epoxy groups. For this work, 10 g of agarose 10 BCL was 

suspended in 44 mL water, 16 mL acetone, 3.28 g NaOH, 0.2 g NaBH4 and 11 mL 

epichlorhydrine. The suspension was stirred mildly for 16 hours and washed with an 

excess of water. For quantification of the activated epoxy groups, 1 g of the support 

was treated with 10 mL 0.5 M H2SO4 for 2 hours to hydrolyze the epoxy groups. Then, 

this hydrolyzed support was oxidized with NaIO4, as previously described.14 The 

number of epoxy groups was calculated by the difference in periodate consumption 

between the hydrolyzed support and the initial epoxy support. Periodate consumption 

was quantified using potassium iodide as previously described.22



Modification of agarose supports with different reactive groups. Agarose epoxy-

supports were modified with different moieties. In all cases, the ratio of the modifying 

reactive solution to the support was 1/10 (v/w). 

 Cationic supports. The epoxy-agarose support was modified with 1 M 

triethylamine in 50% water/acetone at pH 12 for 24 hours at 25ºC. 

 Anionic supports. The epoxy-agarose support was treated with 0.5 M 

iminodiacetic acid at pH 11 for 24 hours at 25ºC. 

 Metal chelate supports. The anionic supports were modified with a 30 mg/mL 

solution of 1 of 4 different metallic salts (CuSO4, NiCl2, ZnCl2 and CoCl2) at pH 7.0, 25 ºC 

for 1 hour.  

 Boronate supports: The epoxy-agarose support was modified with 5%  p-

aminophenyl boronic acid, dissolved in 20% dioxane at pH 11 for 24 hours at 25ºC. 

 Monofunctional supports: The epoxy-agarose supports were blocked with 5% 

mercaptoethanol at pH 8.7 and 25 ºC for 16 hours. 

Finally the supports were oxidized with sodium periodate, as previously described.14



Enzyme assays: 

BTL2 activity test. BTL2 activity was quantified by measuring the increase in 

absorbance at 348 nm caused by release of p-nitrophenol during hydrolysis of 0.4 mM 

pNPB.  The reaction was performed in 25 mM sodium phosphate at pH 7 and 25 oC 

under continuous magnetic stirring and was measured using a thermostatized 

spectrum. To initialize the reaction, 0.05 mL of a lipase solution or suspension were  

added to 2.5 mL of the substrate solution. The amount of enzyme or derivative used in 

the assays yielded a maximum increase in absorbance per minute of 0.15. One 

international unit (IU) of pNPB activity was defined as the amount of enzyme necessary 

to hydrolyze 1 μmol of pNPB per min,  under the conditions described above. 

Tannase activity test. The esterase activity of tannase was determined using a 

rhodamine assay specific for gallic acid, as previously described.23 One unit of tannase 

activity was defined as the amount of enzyme required to release 1 μmol of gallic acid 

per minute, under standard reaction conditions. 

Chymotrypsine assay. The chymotrypsine assay was performed by recording 

the increase in absorbance at 405 nm and 25ºC  promoted by the release of p-

nitrophenol produced by the hydrolysis of 0.3 mM of N-Benzoyl-L-tyrosine p-

nitroanilide (BTNA) dissolved in 50 mM phosphate in the presence of 40% ethanol at 

pH 7 during the enzyme-catalyzed reaction. One IU of BTNA activity was defined as the 

amount of enzyme necessary to hydrolyze 1 μmol of BTNA per minute,  under the 

conditions described above.  

Enzyme immobilization: 



The enzymes were solubilized in a sodium phosphate buffer (5 mM phosphate 

for use with ionic supports or 50 mM phosphate for use with boronate and metal-

chelate supports), at pH 7 and a temperature of 25oC.  Then, 1 g of support (ionic, 

boronate or metal-chelate) was suspended in 10 mL of the solution, with a maximum 

enzyme activity of 1 IU/mL. Periodically, samples of the supernatants and suspensions 

were withdrawn, and the enzyme activity was measured. After the immobilization was 

complete, the preparations were washed with the phosphate buffer, dried under 

vacuum and resuspended in 10 mL sodium hydrogen carbonate (5 mM for ionic 

supports and 50 mM for the other supports) at pH 10 for 3 hours. When non-oxidized 

supports were used, this alkaline incubation was not performed. Finally, the 

preparations were reduced by addition of 10 mg sodium borohydride. The metal 

chelate supports were washed with 5 volumes of 50 mM EDTA at pH 7 before the 

reduction step. These suspensions were stirred mildly for 30 minutes and then washed 

with water. 

When monofunctional glyoxyl supports were used, the immobilization was 

performed in a 50 mM sodium bicarbonate solution at pH 10 for at least 3 hours, and 

they were reduced for 30 minutes using 1 mg/mL sodium borohydride.  

Enantioselectivity

The asymmetry of the different BTL2 preparations was measured using 

mandelyl butyrate as the substrate.24 For this experiment, 0.5 g of wet immobilized 

preparations was added to 3 mL of 1 mM substrate in 25 mM sodium phosphate at pH 

7 and 25ºC, and then the suspension was stirred mildly. During the reaction, the pH 



value was maintained at a constant level by automatic titration using pH-stat. Blank 

experiments were performed using suspensions of the different matrices without 

enzyme. 

The degree of hydrolysis was followed by reverse-phase high pressure liquid 

chromatography (HPLC) (Spectra Physics SP 100, coupled with a UV detector Spectra 

Physics SP 8450) on a Kromasil C18 (25 cm × 0.4 cm) column, supplied by Analisis 

Vinicos (Spain). Each assay was performed at least in triplicate. The experimental error 

was under 3%. The elution was performed using a mobile phase composed of 

acetonitrile (35%) and 10 mM ammonium phosphate buffer (65%) at pH 2.95 at a flow 

rate of 1.5 mL/min and was monitored by recording the absorbance at 225 nm. The 

retention time of the butyric acid was 3.7 min, and the retention time of the mandelyl 

butyrate  was 23 min. 

At different conversion degrees, the enantiomeric excess (eep) of the released 

acid was analyzed by chiral reverse phase HPLC. The column was a Chiracel OD-R, the 

mobile phase was an isocratic mixture of 5% acetonitrile and 95% 0.5 M NaClO4/HClO4

at pH 2.3 and the analyses were performed at a flow rate of 0.5 mL/min by recording 

the absorbance at 225 nm. The retention time of the S isomer was 39 min, and the 

retention time of the R isomer was 42 min. The asymmetry was measured as the ratio 

of the extent of hydrolysis of the R enantiomer compared to that of the S enantiomer.  



Results 

New generation of glyoxyl heterofunctional supports. 

As discussed in the introduction, supports activated with glyoxyl groups 

generally are not able to immobilize enzymes at neutral pH. For this reason, we set out 

to make new supports that are capable of immobilizing proteins via a two step 

mechanism: adsorption of the enzyme on the support at neutral pH under mild 

conditions, such as temperature and ionic strength, and incubation at alkaline pH to 

promote the reaction between the aldehyde groups of the support  and the lysine 

residues of the enzyme. To this end, we propose the use of agarose supports activated 

with epoxy groups that can be easily functionalized groups that are able to adsorb 

proteins via different mechanisms.25 In addition, during activation of the agarose with 

epoxy groups, a large amount with of diol groups are produced from hydrolysis of 

some of the epoxide groups, which can then be oxidized with sodium periodate to 

produce glyoxyl groups. The amount of diol groups was quantified and estimated to be 

approximately 60% of the total amount of epoxide groups initially activated (Table 1). 

In this way, the supports would contain a large amount of glyoxyl groups that are 

capable of establishing intense multipoint covalent linkages, and therefore, a stable 

immobilized preparation could be obtained. 

The mechanism of immobilization on these supports was evaluated using the 

enzyme BTL2 as a model. For this experiment, the enzyme was added to the 

monofunctional glyoxyl support at neutral pH, and it was found that immobilization 

was not promoted (Figure 1). As discussed in the introduction, The glyoxyl supports are 

generally not capable of immobilizing proteins because the lysine is deprotonated and 



reactive only at alkaline pH, and therefore, the required points of attachment cannot 

be made14 . In contrast, when the heterofunctional supports were used, 

immobilization of each of the enzymes was produced within several minutes with the 

exception of the support activated with carboxylic groups (Figure 1). Moreover, when 

the enzymes  was added to cationic supports at high ionic strength (1 M NaCl), 

immobilization did not occur. Similarly, immobilization was not measurable when 

bifunctional chelate-glyoxyl groups were added in the presence of high concentrations 

of imidazole or when boronate supports were added in the presence of high 

concentrations of mannitol (data not shown). This result shows that in general, 

enzymes are not immobilized on these bifunctional supports at neutral pH under 

conditions at which previous physical adsorption of the enzymes is not promoted. The 

supports developed in this work, however, allow immobilization of proteins under any 

conditions, such as mild pH, low or high ionic strength or cold temperatures. In fact, it 

was shown that in 30 minutes, 80% of the BTL2 was immobilized on the support that 

was activated with amino-glyoxyl groups, but after being incubated at a high salt 

concentration, all the immobilized enzyme was desorbed (Table 2). This confirms that 

the enzyme had only been physically adsorbed on the support. In addition, it was 

found that with an increase in contact time between the enzyme and support, the 

amount of released enzyme decreased rapidly. Thus, despite the absence of protein 

immobilization at neutral pH on monofuntional glyoxyl supports via an intermolecular 

reaction, the intramolecular protein-glyoxyl support reaction occurs if protein had 

been previously adsorbed. 

The thermal stability of different BTL2 preparations was studied. In the first 

preparation, the enzyme was adsorbed on amino-glyoxyl supports, in which the glyoxyl 



groups were previously reduced; in the second preparation, the enzyme was 

immobilized on bifunctional amino-glyoxyl supports at pH 8 for 12 hours and in the 

third preparation, the enzyme was immobilized at neutral pH and incubated for 3 

hours at pH 10 and 25ºC. As shown in Figure 2, the most stable derivative was the one 

that was immobilized on the bifunctional support and incubated at alkaline pH. This 

may be due to the increased reactivity of the lysine residues after incubation at pH 10. 

Additionally, it could be seen that the derivative adsorbed on the bifunctional supports 

at neutral pH was more stable than the one adsorbed on supports with only reactive 

amine groups. This suggests that even at neutral pH, a certain degree of covalent 

binding of the enzyme with the aldehyde groups of the support may be promoted.   

Once this new generation of glyoxyl-heterofunctional supports was developed, 

they were used for the immobilization of several enzymes to evaluate different 

properties of the immobilized derivatives. 

Activity of the enzyme preparations immobilized on mono- and heterofunctional 

glyoxyl supports. 

The activities obtained after immobilizing the enzymes on the glyoxyl supports 

differed depending on the support and the enzyme used in the process. For example, 

the recovered activity of BTL2 immobilized on monofunctional supports at pH 10 was 

rather low (approximately 65%). The best result was obtained when the enzyme was 

immobilized on the heterofunctional amino-glyoxyl support, with 90% of the activity 

recovered with respect to the activity of the soluble enzyme (Table 3). This suggests 



that the type of support on which the enzyme is immobilized could affect the surface 

regions that are involved in the process.  

Stability of the enzyme derivatives immobilized on mono- and heterofunctional 

glyoxyl supports. 

In addition, the stability, against heat or against exposure to organic solvents, 

of the derivatives obtained after immobilizing the enzymes on the battery of 

previously synthesized glyoxyl supports was studied. In all cases, each preparation had 

different stability against the distorting agents. For example, tannase derivatives 

immobilized on amino-glyoxyl supports were the most stable against temperature and 

organic co-solvents (figure 3 A and B). Similarly, the most stable chymotrypsin 

derivative was the one immobilized on boronate-glyoxyl agarose (Figure 4). This is 

interesting because when the enzymes are immobilized on glyoxyl supports they react 

through the area that is richest in lysines, which are, in principle, the most rigidifying 

because of their high reactivity with glyoxyl groups. On the contrary, protein 

derivatives on bifunctional supports have other places on the surface that can be 

rigidified; this surface could be the most sensitive to distortion (e.g., containing 

unstable loops or being close to the active center). This is further evidence of how 

immobilizing enzymes on different supports rigidifies different regions of the protein, 

yielding preparations with different stability against factors such as temperature and 

organic co-solvents. 



Enantioselectivity of the enzyme derivatives immobilized on mono- and 

heterofunctional glyoxyl supports. 

The selectivity of the derivatives of BTL2 was also studied, with mandelyl 

butyrate as a model substrate. The enzyme immobilized on amino-glyoxyl supports 

exhibited a higher greatest asymmetry which was more than 3 times higher the 

asymmetry of the derivative from the monofunctional glyoxyl supports (Table 4). This 

may be further demonstration that the enzyme is immobilized at different regions, 

allowing the derivatives to have different activity, stability and selectivity. 

DISCUSION 

Novel heterofunctional glyoxyl supports are easy to prepare. Agarose gels or 

other hydroxylic supports can be carefully activated with epiclorhydrin. The activated 

supports have 40% epoxy groups, which are able to react with high concentrations of 

many small ligands bearing nucleophilic groups, such as amino groups and thiols.25 The 

activated supports also have 60% glyceryl groups, which can be converted into glyoxyl 

groups via periodate oxidation.14 At first glance, it appears that epiclorhydrin could 

produce 100% epoxy groups through reaction with all of the hydroxyl groups on the 

support, but the strong alkaline conditions required for activation promote the 

hydrolysis of a large number of epoxy groups into glyceryl groups instead.  

These novel heterofunctional supports allow the design of novel two-step 

immobilizations. The first step is a physical adsorption of the enzyme by adsorbing 

groups on the support surface; the enzyme is immobilized at neutral pH in spite of the 



negligible covalent immobilization on the glyoxyl groups. In addition, the enzyme is not 

immobilized if adsorption is not possible, such as in the presence of high ionic strength 

for ionic exchange bifunctional supports,  in the presence of imidazol for adsorption on 

metal chelate bifunctional supports or in the presence of glycerol or mannitol for 

adsorption on boronate bifunctional supports. Boronate groups have been reported to 

adsorb glycoproteins through their cis-diol moieties;26-27 however, a crude extract of 

non-glycosylated proteins from E. coli were also able to be adsorbed on boronate 

supports,25 perhaps though the involvement of nitrogenated groups of the protein that 

are different from the α-amino and the trigonal boronate groups.28

The subsequent incubation of adsorbed enzymes under alkaline conditions 

seems to promote an intramolecular covalent immobilization. In fact, enzymes 

adsorbed via ion exchange are not desorbed at high ionic strength. On the other hand, 

a longer incubation under more alkaline conditions promotes an increased stabilization 

of the resulting derivatives. This is a clear indication that intramolecular multipoint 

covalent attachment was carried out. The stability of each derivative strongly depends 

on the first adsorption and on the second intramolecular covalent attachment or on 

the rigidification of the optimal orientation.  

All resulting derivatives were more stable than those that had been mildly 

immobilized on cyanogen bromide-activated agarose (CNBr-activated agarose) and 

some were more stable than those immobilized on highly activated monofunctional 

glyoxyl supports at pH 10.0, in which the enzyme is immobilized through the region 

with the greatest amount of lysine residues, which should produce the most intense 

multipoint binding. 



The most interesting derivatives found in this work were as follows:  

a. Chymotrypsin-boronate glyoxyl agarose (BGA) and tannase-amino glyoxyl agarose 

(AGA) were 2-fold and 20-fold more stable, respectively, than the corresponding 

monofunctional glyoxyl derivatives (MGA). 

b. BTL2-AGA was 2-fold more active than BTL2-MGA in the hydrolysis of mandelyl 

butirate. 

c. BTL2-AGA was 3-fold more enantioselective than BTL2-MGA for the hydrolysis of 

mandelyl butirate.  

A similar strategy was previously proposed to immobilize enzymes on epoxy 

supports (e.g., Eupergit, Sephabeads). In this case, the use of heterofunctional 

supports was strictly necessary because of the very low intermolecular reactivity of the 

epoxy groups with the proteins.25 In fact, some of the covalent immobilizations 

described only take place at very high ionic strength on hydrophobic supports. In these 

cases, an initial hydrophobic adsorption of the enzyme though external hydrophobic 

pockets is the first event during immobilization.29 These immobilizations also promote 

different recovered activity and stabilization. However, these supports do not permit 

the establishment of very intense multipoint immobilization, as monofunctional epoxy 

supports do. On the contrary, monofunctional glyoxyl supports directly immobilize 

proteins under alkaline conditions (e.g., at pH 10). Interestingly, this immobilization 

occurs in the region of the enzyme having the greatest number of lysine groups, and at 

first glance, this region may undergo the most intense multipoint covalent 



immobilization. In addition, the glyoxyl groups seem to be more suitable for 

intramolecular multipoint attachment than the epoxy groups, as recently reported.30

The combination of the novel orientations reported here and others previously 

discussed clearly suggest that any enzyme can be covalently multipoint-immobilized 

via glyoxyl chemistry but with different orientations (see Table 5).  

The preparation of this set of enzyme derivatives may allow an improvement of 

enzyme properties through simple immobilization protocols. This strategy can be 

applied to any native enzyme without a known 3D structure and without knowing the 

exact mechanisms of catalytic action and inactivation. Logically, recombinant enzymes 

with a known 3D structure could be oriented and rigidified in a much more rational 

way and with very different enzyme orientations.  

Conclusions 

The design of these two-step immobilization protocols allows us to the perform 

oriented rigidification of native industrial enzymes and to prepare novel derivatives 

with different functional properties, such as activity, selectivity and stability. These 

achievements can be reached without knowing the 3D structure,  the catalytic 

mechanism or the inactivation mechanism of the target enzymes. The first 

immobilization step has to be an oriented physical adsorption, even a quite slow one, 

and hence, the additional chemically reactive groups have to exhibit some very special 

properties. They must be inert in the intermolecular reaction with proteins at neutral 



pH, stable under alkaline conditions and suitable for intramolecular reaction with 

amino groups placed on the surface of the adsorbed enzymes (e.g., absence of steric 

hindrances for the chemical reaction). Glyoxyl groups, which are not suitable for 

covalent immobilization of enzymes at pH 7.0, seem to be the most adequate 

chemically reactive groups for this novel type of immobilization protocol.   

Compared to the properties of the strongest multipoint covalently attached 

derivatives, immobilized on monofunctional glyoxyl groups at pH 10, some interesting 

results have been here reported for the novel oriented multipoint attached 

derivatives: improvement of the stability of tannase and chymotrypsin and 

improvement of the activity and enantioselectivity of a thermostable lipase.  
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Figure legends 

Scheme 1: Rigidification of different regions of enzymes. 

 Scheme 2: Mechanism of immobilization-stabilization using these new 

heterofunctional supports. 

Scheme 3: Preparation of different heterofunctional  glyoxyl supports . 

Scheme 4.- Different ligands able to adsorb proteins at neutral pH 

Figure 1: Immobilization of BTL2 on heterofunctional glyoxyl supports. Experiments 

were performed at pH 7 as described in the methods. (♦) Glyoxyl-Cu agarose; (■) 

boronate glyoxyl agarose; (▲) amino-glyoxyl agarose (□) carboxy-glyoxyl agarose (●) 

monofunctional glyoxyl agarose (○) amino-glyoxyl agarose in the presence of 1 M 

NaCl. 

Figure 2:  Time-courses of thermal inactivation of different BTL2 immobilized 

derivatives.  Derivatives were incubated at 70ºC. (■) BTL2 immobilized on amine 

supports with previously reduced glyoxyl supports; (▲) BTL2 immobilized on amino-

glyoxyl supports at pH 8 for 12 hours; (♦) BTL2 immobilized on amino-glyoxyl supports 

at pH 8 and incubated for 3 hours at pH 10. 

Figure 3:  Time-course of inactivation of different tannase derivatives.    A) 

Inactivation was performed in 25 mM sodium phosphate at pH 7 and 55ºC. B) 

Inactivation was performed at 25ºC in 25 mM sodium phosphate and 30% methanol at 



pH 7. (♦) CNBr derivatives ; (▲) monofunctional glyoxyl derivatives; (■) amino-glyoxyl 

derivatives.  

Figure 4: Time-course of thermal inactivation of different immobilized derivatives  of 

chymotrypsin. Inactivation was performed by incubation of the different derivatives  in 

25 mM sodium phosphate at pH 7 and 70ºC. (♦) Glyoxyl-Cu agarose; (■) boronate 

glyoxyl agarose; (▲) amino-glyoxyl agarose (●) monofunctional glyoxyl agarose (○) 

soluble enzyme. 
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RIGIDIFICATION OF DIFFERENT ENZYME REGIONS
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Agarose Adsorbent groups
μμmol/mL

Glyoxyl groups
μμmol/mL

10BCL 70±±3 105±±5

6BCL 30±±1.5 45±±2

4BCL 16±±1 24±±1.5

Table 1: Quantification of the reactive groups



30 min, pH 7.0 2 h, pH 7.0 12 h, pH 8.0

Immobilized
enzyme (%) 80 100 100

Desorbed
enzyme after
incubation in
1 M NaCl (%)

80 50 10

Table 2: Immobilization of BTL on amine‐glyoxil supports



Support Immobilized BTL
(%)

Activity
(%)

Activity after
incubation at pH 10

(%)

Cu‐CHO 94 21 11

Amino‐CHO 100 90 90

Monofunctional
CHO 100 60 60

Boronate‐CHO 95 71 67

Table 3: Immobilization of BTL on different glyoxyl supports



Immobilized preparation Activity (UI/min) Asymmetry

Amino‐glyoxyl‐ BTL 0.0017 8

Monofunctional glyoxyl ‐BTL 0.00075 2

Table 4: Study of the enantioselectivity of different BTL derivatives. The
study was performed using mandelic butyrate as described in methods.



Table 5: Different glyoxyl supports

support
pH of immobilization Possible orientation of the 

enzyme

Monofunctional glyoxyl 10.0 Richest region on lysine

Monofunctional glyoxyl + 
thiols

7.0-8.0 Region with the most reactive 
amine group

Amine glyoxyl 7.0 Region with richest net negative 
charge

Chelate glyoxyl 7.0 Region richest in hystidine

Carboxylic glyoxyl 7.0 Region with richest net positive 
charge

Boronate glyoxyl 7.0 Region with highest affinity for 
boronate


	Número de diapositiva 1
	Número de diapositiva 2
	Número de diapositiva 3
	Número de diapositiva 4
	Número de diapositiva 5
	Número de diapositiva 6
	Número de diapositiva 7
	Número de diapositiva 8
	Número de diapositiva 9
	Número de diapositiva 10
	Número de diapositiva 11
	Número de diapositiva 12
	Número de diapositiva 13
	Número de diapositiva 14

