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Abstract. The possibility of observing factorized ground states in dimerized
spin systems is studied. A set of sufficient conditions is derived which allows one
to establish whether or not it is possible to have factorization both in nearest-
neighbor and long-range Hamiltonians. These conditions can be derived by forcing
factorization for each of the pairwise terms of the total Hamiltonian. Due to the
peculiar structure of a dimerized chain, an antiferromagnetic factorized ground
state of the kind | ↗〉, | ↗〉, | ↖〉, | ↖〉 (forbidden in regular chains) is possible.
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1. Introduction

Entanglement properties of many-body quantum critical systems are an attractive
research field [1, 2, 3, 4]. During last years, an increasing number of papers have
been concerned with the problem of the existence of fully factorizable ground states.
The phenomenon of ground-state factorization (GSF) in spin chains, first discovered
by Kurmann et al. [5], then observed in two-dimensional lattices through quantum
Monte Carlo methods [6, 7], has been analyzed by Giampaolo et al. in [8], where
the factorizing field has been determined for a quite general class of translationally-
invariant models through an appropriate measure of entanglement, the so-called
extremal single-qubit unitary operation (E-SQUO), which vanishes at the factorizing
point. As shown in [9], the critical point turns out to separate two regions with
qualitatively different bipartite entanglement. It has been shown in [10] that, in
the vicinity of the factorizing field, the range of concurrence diverges, and that such
divergence corresponds the appearance of a characteristic length scale in the system.
Factorization in generalized inhomogeneous ferrimagnets is discussed in [11].

The extension to dimerized chains has been done in [12]. It has been shown that,
in the case of the XY chain, the factorizing point represents an accidental degeneracy
point of the Hamiltonian. For every number of spins, at the factorizing field, the
Hamiltonian symmetry is broken. This consideration can be used in the opposite
direction. That is, there is factorization only if there is degeneracy, apart from special
cases, like the isotropic XX chain, are considered. In this paper, I will show that
sufficient conditions for the existence of GSF can be derived, without introducing
the E-SQUO, just exploiting the pairwise structure of the Hamiltonians, for a large
class of dimerized systems. In section 2, I will introduce the method to calculate the
factorizing field, and the sufficient conditions to get it. I will specialize the calculation
to nearest-neighbor Hamiltonians in section 3, and the results will be extended to
long-range systems in section 4. Conclusions are given in section 5.

2. Sufficient condition for GSF

To start the discussion, let us introduce the following Hamiltonian

H =
∑

α=x,y,z

N/2∑
l=1

2∑
i=1

Jαi σ
α
2l−2+iσ

α
2l−1+i − h

N∑
l=1

σzl , (1)

It describes a chain of spins 1/2 with nearest-neighbor interaction in the presence of
a transverse field (throughtout the paper only positive fields will be considered). This
chain is dimerized in the sense that the coupling coefficients between spins assume
alternate values. Boundary conditions are taken assuming σαN+1 = σα1 . The pairwise
structure of H allows us to decompose the Hamiltonian as a sum of two-body operators
H =

∑N/2
l=1 (H(1)

l +H
(2)
l ), with

H
(i)
l =

∑
α=x,y,z

Jαi σ
α
2l−2+iσ

α
2l−1+i − hi

(
σz2l−2+i + σz2l−1+i

)
(2)

with h1 and h2 such that h = h1 + h2. The decomposition of the transverse term
is arbitrary, but the form assumed in 2 is suggested by the overall symmetry of the
model. Note that the value of h1 and h2 is not specified.



Factorized ground state in dimerized spin chains 3

Now, let us assume that one eigenstate of H is factorized (|Ψ〉 = ⊗Nl=1|ψl〉). The
corresponding eigenvalue should be EΨ =

∑N/2
l=1

∑2
i=1E

l,i
Ψ , with

El,iΨ = 〈ψ2l−2+i|〈ψ2l−1+i|H(i)
l |ψ2l−2+i〉|ψ2l−1+i〉 (3)

It is easy to show that if El,iΨ is the minimun eigenvalue of H(i)
l , EΨ is the ground state

energy of H. In fact, given a whatever state |Φ〉, 〈Φ|H(i)
l |Φ〉 ≥ E

l,i
Ψ . As a consequence,

〈Φ|H|Φ〉 ≥ EΨ, and this ends the proof.

3. Short-range Hamiltonians

Coming back to the search for a factorized ground state of 1, we can divide our problem
in two steps. The first step will consist in the determination of the conditions under
which each H

(i)
l admits GSF, while in the second step we will check that the state

we find in this way is also eigenstate of the total Hamiltonian. Given the sufficient
criterion derived before, this is enough to ensure that this state is the ground state of
H.

3.1. Step 1

The central feature of H(i)
l is the invariance under rotations of π around the z

axis. This is formalized by the vanishing of the commutator [H(i)
l , P

(i)
l ] = 0, where

P
(i)
l = σz2l−2+iσ

z
2l−1+i is the parity operator, since its eigenvalues are +1 or −1,

according to the number of down spins in the z direction being even or odd. The above
commutation relation then requires also the eigenstates of H(i)

l to have definite parity.
Now, since H(i)

l is not diagonal in the σz basis (↑, ↑〉, | ↓, ↓〉, | ↑, ↓〉, and | ↓, ↑〉 are not
eigenstates of H(i)

l ), |ψ2l−2+i〉|ψ2l−1+i〉 can be its ground state only if it can be written
as (cos θ2l−2+i| ↑〉+ sin θ2l−2+i| ↓〉)⊗ (cos θ2l−1+i| ↑〉+ sin θ2l−1+i| ↓〉). In other words,
the system cannot support a ground state which is at the same time both symmetric
and separable. Then, to try to observe GSF we must force symmetry breaking, by
imposing the degeneracy between the lower eigenstates of the two symmetry sectors:

E(ev) = E(odd), (4)

(E(ev) and E(odd) are, respectively, the lowest energies of the even and the odd sector
of H(i)

l ). Because of these symmetry properties, the matrix representation of H(i)
l in

the basis | ↑↑〉, | ↓↓〉, | ↑↓〉, | ↓↑〉 is block diagonal, each block being a 2×2 matrix. The
action of H(i)

l on the even parity basis vectors is given by

H
(i)
l |↑, ↑〉 = (Jxi − J

y
i ) |↓, ↓〉+ (Jzi − 2hi) |↑, ↑〉 (5)

H
(i)
l |↓, ↓〉 = (Jxi − J

y
i ) |↑, ↑〉+ (Jzi + 2hi) |↓, ↓〉 (6)

yielding the energy eigenvalues

E(ev) = Jzi ±
√

4h2
i + (Jxi − J

y
i )2. (7)

Obviously, the ground state will correspond to the sign −, while the sign + will
determine the excited state.

The analogous computation in the odd parity sector gives

H
(i)
l |↑, ↓〉 = (Jxi + Jyi ) |↓, ↑〉 − Jzi |↑, ↓〉 (8)

H
(i)
l |↓, ↑〉 = (Jxi + Jyi ) |↑, ↓〉 − Jzi |↓, ↑〉 (9)
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and the corresponding eigenvalues are

E(odd) = −Jzi ± (Jxi + Jyi ) (10)

In this case, the identification of the ground state cannot be done without fixing the
value of the coupling parameters. If (Jxi + Jyi ) > (<)0, the ground state corresponds
to the sign −(+), and it is characterized by an antiferromagnetic (ferromagnetic)
order. Since H

(1)
l is different from H

(2)
l , we could have, for instance, a situation

where (Jx1 + Jy1 ) > 0 and (Jx2 + Jy2 ) < 0. As seen in [12], this opens up the
possibility of observing an antiferromagnetic Neél-type ground state, whose unitary
cell is represented by a pair of spins.

Ferromagnetic case As said, it corresponds to (Jxi + Jyi ) < 0 both for i = 1 and
i = 2. The condition 4 implies for the two-spin factorizing field

h
(F )
i =

√
(Jzi − J

y
i )(Jzi − Jxi ). (11)

The parameteres defining the ground state are

tan θ2l−2+i = ±

√
Jxi + Jyi − 2Jzi + 2

√
(Jzi − J

y
i )(Jzi − Jxi )

Jxi − J
y
i

(12)

and θ2l−2+i = θ2l−1+i.
Antiferromagnetic case In this case, (Jxi + Jyi ) > 0 both for i = 1 and i = 2.

Under this constraint, 4 is satisfied if

h
(F )
i =

√
(Jzi + Jyi )(Jzi + Jxi ), (13)

while the eigenvectors are such that

tan θ2l−2+i = ±

√
Jxi + Jyi + 2Jzi − 2

√
(Jzi + Jyi )(Jzi + Jxi )

Jxi − J
y
i

(14)

and θ2l−2+i = −θ2l−1+i. It is equivalent to choose θ2l = −θ2l+1.
Mixed case Let us assume, for instance, (Jx1 + Jy1 ) > 0 and (Jx2 + Jy2 ) < 0. This

choice would allow to have different eigenstates and factorizing field depending on the
dimer we select. In fact, we find

h
(F )
1 =

√
(Jz1 + Jy1 )(Jz1 + Jx1 ) (15)

h
(F )
2 =

√
(Jz2 − J

y
2 )(Jz2 − Jx2 ) (16)

with

tan θ2l−1 = ±

√
Jx1 + Jy1 + 2Jz1 − 2

√
(Jz1 + Jy1 )(Jz1 + Jx1 )

Jx1 − J
y
1

(17)

tan θ2l = ±

√
Jx2 + Jy2 − 2Jz2 + 2

√
(Jz2 − J

y
2 )(Jz2 − Jx2 )

Jx2 − J
y
2

(18)

and θ2l−1 = −θ2l while θ2l = +θ2l+1.
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3.2. Step 2

So far, we listed the conditions under which every single two-spin Hamiltonian can get
factorized, and we calculated the relevant quantities. To go further, we need to merge
all dimers in the whole chain. Since each single spin belongs to two different dimers,
the angle θ corresponding to a given site should be independent on which of the two
dimers are taken into account.

Ferromagnetic case In the ferromagnetic case this condition this happens if the
parameter satisfy the conditions Jx2 = κJx1 , Jy2 = κJy1 , and Jz2 = κJz1 . As a result of
this assumption, all angles equal to each other. Because of the ± before the external
square root in 12, two solutions are possible which have the form |Ψ±〉 = ⊗Nl=1|ψ

±
l 〉,

with |ψ±l 〉 = cos θ| ↑〉 ± sin θ| ↓〉. The factorizing field is given as

h(F ) = (1 + κ)
√

(Jz1 − J
y
1 )(Jz1 − Jx1 ). (19)

Antiferromagnetic case The constraint θ2l = −θ2l+1 leads to two possible
factorized states whit the usual antiferromagnetic structure |Ψ±〉 = ⊗N/2l=1 |ψ

±
2l−1〉|ψ

∓
2l〉.

The consistency conditions are the same given in the presence of ferromagnetic
coupling (Jx1 = κJx2 , Jy1 = κJy2 , and Jz1 = κJz2 ) while factorization takes place if

h(F ) = (1 + κ)
√

(Jz1 + Jy1 )(Jz1 + Jx1 ). (20)

Mixed case With the assumptions (Jx1 + Jy1 ) > 0 and (Jx2 + Jy2 ) < 0, satisfying 17
and 18 under the constraints θ2l−1 = −θ2l and θ2l = θ2l+1 is possible only if we choose
Jx1 = −κJx2 , Jy1 = −κJy2 , and Jz1 = κJz2 . The factorizing field has the same value of
20. Even in this case two different factorized ground states can be buildt which are
|Ψ±〉 = ⊗N/4l=1 |ψ

±
4l−3〉|ψ

±
4l−2〉|ψ

∓
4l−1〉|ψ

∓
4l〉. Obviously, this structure can be coherently

assumed in a finite-size system only if N/4 is integer.

4. Long-range Hamiltonians

The problem of searching a factorized ground state in dimerized spin chains can
be extended to systems exhibiting longe-range correlations. They can be described
through

H =
∑
r

Hr − h
N∑
l=1

σzl , (21)

with

Hr =
∑

α=x,y,z

N/2∑
l=1

(
Jαr,1σ

α
2l−1σ

α
2l−1+r + Jαr,2σ

α
2lσ

α
2l+r

)
, (22)

where Jαr,i are the dimerized coupling constants between spin pairs at odd distance r.
The existence of alternate coupling on even distances cannot be univocally introduced,
and it will be dropped. For the sake of clarity, we will consider one-dimensional
chains, since the extension to multi-dimensional chains does not imply the emergence
of qualitatively new results. To avoid the appearance of frustation for finite chains,
N/r should be integer for any value of r appearing in H. As in the nearest-neighbor
case, we can split the Hamiltonian as a sum of two-body operators: H =

∑
l,r,iH

(i)
l,r ,

where
H

(i)
l,r =

∑
α

Jαr,iσ
α
2l−2+iσ

α
2l−2+i+r − hr,i

(
σz2l−2+i + σz2l−2+i+r

)
, (23)
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and hr,1, hr,2 such that h =
∑
r (hr,1 + hr,2).

Now, each single spin belongs to many different two-body terms, depending on
the range of interaction. To find the existence of the factorized ground state, we
shall repeat the two steps made in the previous section. While the diagonalization of
the two-spin Hamiltonian gives obviously the same results, the presence of long-range
coupling causes the appearence of new constraints on the Hamiltonian parameters.

4.1. Step 1

For reasons that will appear clear in the following, we make the following classification:
We say that the coupling is ferromagnetic if

(
Jx1,i + Jy1,i

)
< 0 both for i = 1 and i = 2.

When
(
Jx1,i + Jy1,i

)
> 0 for i = 1, 2, we are in the presence of antiferromagnetism. The

mixed case we will use is defined through
(
Jx1,1 + Jy1,1

)
> 0 and

(
Jx1,2 + Jy1,2

)
< 0.

All the parameters being dependent on r, the field factorizing the two-body
Hamiltonian H

(i)
l,r is, in the ferromagnetic case

h
(F )
r,i =

√
(Jzr,i − J

y
r,i)(J

z
r,i − Jxr,i), (24)

while the angles defining the ground state are (in analogy with 12)

tan θr,2l+i = ±

√√√√Jxr,i + Jyr,i − 2Jzr,i + 2
√

(Jzr,i − J
y
r,i)(J

z
r,i − Jxr,i)

Jxr,i − J
y
r,i

(25)

with θr,2l+i = θr,2l+i+r.
In the purely antiferromagnetic case, we have to generalize 13, 14, and get

h
(F )
r,i =

√
(Jzr,i + Jyr,i)(J

z
r,i + Jxr,i) (26)

and

tan θr,2l+i = ±

√√√√Jxr,i + Jyr,i + 2Jzr,i − 2
√

(Jzr,i + Jyr,i)(J
z
r,i + Jxr,i)

Jxr,i − J
y
r,i

(27)

with θr,2l+i = −θr,2l+i+r.
Last generalization (in the mixed case) amounts to write

h
(F )
r,1 =

√
(Jzr,1 + Jyr,1)(Jzr,1 + Jxr,1) (28)

h
(F )
r,2 =

√
(Jzr,2 − J

y
r,2)(Jzr,2 − Jxr,2) (29)

with

tan θr,2l−1 = ±

√√√√Jxr,1 + Jyr,1 + 2Jzr,1 − 2
√

(Jzr,1 + Jyr,1)(Jzr,1 + Jxr,1)

Jxr,1 − J
y
r,1

(30)

tan θr,2l = ±

√√√√Jxr,2 + Jyr,2 − 2Jzr,2 + 2
√

(Jzr,2 − J
y
r,2)(Jzr,2 − Jxr,2)

Jxr,2 − J
y
r,2

(31)

and θr,2l−1 = −θr,2l−1+r while θr,2l = +θr,2l+r.
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4.2. Step 2

As said, each single spin belongs to more than two dimers. To have a factorized ground
state, we should find the same value of θ for each of the dimers of a given site. It
should be independent both on r and i.

Ferromagnetic case The independence of θ is achieved if the parameters are
such that Jαr,i = γrJ

α
1,i and Jαr,2 = κJαr,1. The value of the factorizing field is then

h(F ) = (1 + κ)
√

(J z1 − J x1 ) (J z1 − J
y
1 ), where the J α are the global interactions along

different axes: J αi =
∑
r J

α
r,i. The structure of the state is the same obtained with

short-range interaction: the solutions are |Ψ±〉 = ⊗Nl=1|ψ
±
l 〉.

Antiferromagnetic case The scaling conditions that ensure factorization are
Jαr,2 = κJαr,1, Jx,yr,i = (−1)r γrJ

x,y
1,i , and Jzr,i = γrJ

z
1,i. As said before, dimerization

on even distances is not comprised in our model. On the other hand, we could
introduce coupling putting J2r,1 = J2r,2. In this situation, the constraint on Jx,yr,i
is nesessary to guarantee forromagnetism on even distances, since the states we
obtain are |Ψ±〉 = ⊗N/2l=1 |ψ

±
2l−1〉|ψ

∓
2l〉. The factorized point amounts to h(F ) =

(1 + κ)
√

(J z1 − J x1 ) (J z1 − J
y
1 ), with J z1 =

∑
r J

z
r,1 and J x,y1 =

∑
r (−1)r Jx,yr,1 .

Mixed case In this last case, the possibility of having the eigensolutions |Ψ〉 =
⊗(N/4)−1
l=0 |ψ±4l+1〉|ψ

±
4l+2〉|ψ

∓
4l+3〉|ψ

∓
4l+4〉 is related to the conditions Jx,yr,2 = −κJx,yr,1 ,

Jzr,2 = κJzr,1, Jzr,i = γrJ
z
1,i, and Jx,yr,i = (−1)(r−1)/2

γrJ
x,y
1,i . The value of the factorizing

field is, as in the other cases, h(F ) = (1+κ)
√

(J z1 − J x1 ) (J z1 − J
y
1 ), with J z1 =

∑
r J

z
r,1

and J x,y1 =
∑
r (−1)(r−1)/2

Jx,yr,1 .

5. Conclusions

In summary, we discussed the existence of a fully unentangled ground state in a
class of dimerized spin chains. It has been shown that a sufficient condition for
factorization can be derived by exploiting the pairwise character of the Hamiltonian.
We applied this method both to nearest-neighbor and long-range Hamiltonians,
calculating the condition that should be satisfied by the parameters of the system to
observe factorization. Together with the usual ferromagnetic and antiferromagnetic
regimes, we studied a third case, with no analogous in translationally-invariant
systems, consisting of an antiferromagnetic Neél-type ground state where pairs of
adjacent spins represent the unitary cell.
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