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Characterizing the community structure of complex networks is a key challenge in many scientific fields.
Very diverse algorithms and methods have been proposed to this end, many working reasonably well in specific
situations. However, no consensus has emerged on which of these methods is the best to use in practice. In part,
this is due to the fact that testing their performance requires the generation of a comprehensive, standard set of
synthetic benchmarks, a goal not yet fully achieved. Here, we present a type of benchmark that we call “closed,”
in which an initial network of known community structure is progressively converted into a second network
whose communities are also known. This approach differs from all previously published ones, in which networks
evolve toward randomness. The use of this type of benchmark allows us to monitor the transformation of the
community structure of a network. Moreover, we can predict the optimal behavior of the variation of information,
a measure of the quality of the partitions obtained, at any moment of the process. This enables us in many cases to
determine the best partition among those suggested by different algorithms. Also, since any network can be used
as a starting point, extensive studies and comparisons can be performed using a heterogeneous set of structures,
including random ones. These properties make our benchmarks a general standard for comparing community
detection algorithms.
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I. INTRODUCTION

Network analysis offers a powerful approach to solve
problems in many scientific fields, including physics, biology,
and sociology [1–4]. Community structure is a significant
property of these networks. A community can be loosely
defined as a set of nodes that are more densely connected
among themselves than with the rest of the network. The
importance of community structure characterization derives
from the fact that all nodes in a community are expected to
share common attributes, features, or functional connections
(reviewed in [5]). Many algorithms and methods have been
proposed for extracting the optimal partition of a network into
communities. While some of them try to improve a global
quality function such as its modularity [6] or surprise [7],
others search for the optimal partition by minimizing the
compression of the information that best describes the network
[8], minimizing the Hamiltonian of a Potts-like spin model that
represents the graph [9], or deducing the maximum-likelihood
model that best fits the structure of the network [10], to
name just a few examples. However, none of these algorithms
achieves maximal results in all situations. Their performance
varies greatly, depending on the topological parameters of the
analyzed network [7,11].

In order to compare the performance of community de-
tection algorithms, several benchmarks have been proposed.
The first ones were based on the planted one-partition model
[12]. The most popular among them is the Girvan and
Newman (GN) benchmark [13], in which a network of 128
nodes is divided into four communities of equal size where
each node is connected with 16 other members of its own
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community. This starting graph can then be progressively
degraded by replacing links within communities with links
between them, keeping constant the average node degree. The
relaxed caveman (RC) benchmarks [7,14,15] are similar in
concept. In them, the starting network is formed by a set of
cliques of variable sizes, and a degradation process identical
to that already described for the GN benchmark is performed.
Notice that GN and RC communities are, by definition,
Erdős-Rényi subgraphs [16] in which, all throughout the
degradation process, each pair of nodes is linked with the
same probability p. This makes those benchmarks rather
inappropriate for representing real-world networks since the
latter exhibit much more heterogeneous degree distributions
[17,18]. With this idea in mind, Lancichinetti, Fortunato,
and Radicchi developed a novel type of benchmark, called
LFR [19], in which both the sizes of the communities and the
distribution of node degrees are adjusted to follow power laws.
In LFR benchmarks, the fraction of links μ that a node shares
with nodes in other communities is tunable. Increasing μ

(often called the “mixing parameter”) generates an analogous
behavior to that of the degradation process described for GN
and RC benchmarks, i.e., the proportion of intercommunity
links grows and the original communities gradually disappear.
We refer to all of these benchmarks (GN, RC, and LFR)
as “open,” given that the final outcome is “open-ended”
(i.e., the precise final community structure of the network is
undetermined).

In this paper, we describe in detail a novel type of
benchmark (referred to as “closed”) that is based on the
conversion of a network of known community structure
into a second network whose communities are also known.
We already introduced the concept of a closed benchmark
in a previous work [7], and we showed how this type of
benchmark can be successfully used to compare community
detection algorithms. Here, we explain it in detail, give some

026109-11539-3755/2012/85(2)/026109(8) ©2012 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36057705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevE.85.026109
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examples of its performance, and discuss its potential and
the significant advantages it presents over the aforementioned
open benchmarks. We show that the guided evolution of the
networks to a closed end enables us to accurately monitor
the transformation progress and to evaluate the goodness of a
partition at any moment of the process.

II. FEATURES OF THE CLOSED BENCHMARKS

The main concept behind the closed benchmarks is the
directed conversion of a network into another one by means
of edge rewiring. The starting point is a network whose
community structure is known a priori. Any type of graph
and community structure is valid as an initial network. The
algorithm then generates a second, “final” network. The initial
and final networks are precisely related. The community
structure of the final network is identical to the initial one, but
the labels of the nodes are randomly mapped from the former
to the latter. Converting the initial network into the final one
involves rewiring links in a directed manner, a process depicted
in Fig. 1. The details of the procedure are as follows:

(i) Links present in both the initial and the final networks
will not be rewired.

(ii) At each step, one of the rewirable links is removed and
subsequently a new link is added between two nodes connected
only in the final network. Conversion (C) is defined as the
percentage of rewirable links modified at a particular point of
the process of converting the initial network structure into the
final one.

(iii) At any point of this conversion process, the network
can be saved for later analyses. Therefore, a wide set of
intermediate structures to test the behavior of community
detection algorithms can be obtained.

(iv) The process stops when the final structure is reached.
A significant feature of the closed benchmarks is that,

during the conversion process and because of the directed
rewiring of the links, we are approaching the final structure
at the same rate that we are leaving the initial one. Calling
D the distance between both networks, we can assert that the
structure at a distance x from the start is also at a distance D −
x from the end of the benchmark. This fact, together with the
identical topology of both ends, produces a set of structures
that is symmetrical about the 50% conversion point. That is,
when C = 50%, the structure of the network is, on average, at
the same distance from both the initial and the final networks.
Given these patterns of network evolution, we can assume that
its community structure undergoes a similar behavior. As we
will describe below, this behavior is central to the evaluation
of partitions in closed benchmarks.

Any benchmark is associated with one or several mea-
sures of performance. In the case of clustering comparison,
several methods, based on counting pairs, cluster matching,
or information-theory based indexes, have been developed
(reviewed in [5,20]). Among the latter type, the variation of
information (V ) [21] is an information-based distance useful
for measuring the dissimilarity between two partitions, A

and B (VAB). In our context, we consider that it has clear
advantages over other criteria, especially its metric nature.
This property implies that V is positive-definite, a symmetric
distance (which is a highly desirable property when comparing

FIG. 1. (Color online) Transformation process in a closed bench-
mark. In this case, the starting network is the GN benchmark. Links
are progressively rewired from the initial (C = 0%) to the final
network (C = 100%). Nodes color is defined by the initial community
to which they belong, whereas their shape corresponds to the final
community in which they are contained.
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clusterings), and, more important for our purposes, it satisfies
the triangle inequality [21]. This last fact turns out to be very
useful for closed benchmarks evaluation. In these benchmarks,
we have two known community structures, those of the
initial (I ) and final (F ) networks. Moreover, the method
generates a set of intermediate, estimated structures (E) whose
communities can also be determined. We can deduce from the
V triangle inequality the following formula:

VIE + VEF � VIF . (1)

Hence, the sum of VIE and VEF is lower bounded by VIF ,
which is constant, given that the partitions of the initial and
final networks are fixed. If the rewiring of the network has
not yet started, the optimal estimated partition is the same as
the initial one, I = E, and therefore VIE = 0 and VEF =
VIF , satisfying the equality in Eq. (1). When the conversion
starts, and because the network approaches the final structure
at the same rate that it leaves the initial one, VIE should
increase as much as VEF decreases. Therefore, unless the
structure of the network becomes very different from both
the initial and final structures along the conversion process
(e.g., as described in the next paragraph), this should make
the equality VIE + VEF = VIF true all along the conversion
of the initial into the final structure. A significant deduction is
that if, for a given estimated partition E, the sum of VIE and
VEF deviates from the constant value VIF , then E may not be
the optimal partition [7]. Thus, deviation from the expected
VIF value may indicate a suboptimal performance of a given
algorithm.

If third-party structures, very different from the initial and
final ones, are formed along the conversion process, we can
find VIE + VEF > VIF even if the partition is optimal. This
can be illustrated assuming that the intermediate structure
becomes fully random. Two situations are then possible,
depending on the density of links in the graph. If, at some
point of the rewiring, the intermediate structure becomes a
single community containing all the nodes—as expected in a
random graph with a high density of links—then VIE = H (I )
and VEF = H (F ), where H (I ) and H (F ) are the entropies
of the initial and final partitions. Given that VIF = H (I ) +
H (F ) − 2M(I,F ), where M(I,F ) is the mutual information
between the initial and final partitions, we have that VIE +
VEF must be somewhat larger than VIF . This derives from
the fact that M(I,F ) = 0 only if I and F are independent,
which is not the case here. On the other hand, if the density of
links is low and the network is randomized, the community
structure may approach a situation in which each node is
isolated in a different community. If this is true, it can be
shown that VIE = log N − H (I ) and VEF = log N − H (F ),
where N is the total number of nodes. In this case, we will
find VIE + VEF � VIF . Thus, if an algorithm is performing
perfectly well (VIE +VEF = VIF ) until a certain conversion
percentage, and if, when conversion progresses further, we find
VIE + VEF > VIF , this may be due to two reasons: (i) a bad
performance of the algorithm with poorly defined community
structures, (ii), the emergence of a third-party, potentially
random, community structure. This interesting situation will
be illustrated in a particular case below.

III. TESTS

A. Configuration

As mentioned above, the particular features of a network
can greatly influence the ability of a given algorithm to
detect its community structure. For this reason, we performed
tests on computer-generated networks that varied in size,
node degree distribution, number of communities, and also
community sizes. This last parameter has been shown to
be crucial in community detection [7,11]. There are two
main reasons for the significant effect of community size
variation. First, networks presenting a skewed distribution of
community sizes are more rapidly degraded than those with
equally sized communities because of the quick destruction
of small clusters. Second, a skewed distribution may greatly
affect the performance of particular algorithms. For example,
any algorithm maximizing a popular global measure for
community detection, Newman and Girvan’s modularity (Q),
will have trouble detecting small communities, given that Q is
affected by a resolution limit [22].

A suitable way to measure and compare the distribution of
community sizes is using Pielou’s index (P ), which quantifies
how similar are the groups into which a system is divided.
This index takes a value of 1 for equal-sized groups and
decreases with increasing size variance [23]. In this study,
we chose as starting points four different synthetic networks
with different P values that correspond to those of already
published open benchmarks. We will name them according
to the following convention: (i) Girvan-Newman (GN) [13]:
already mentioned above. A network of 128 nodes is divided
into four communities of equal size (P = 1). Nodes are
connected only with members of their own community with
an average degree of 16. (ii) Lancichinetti-Fortunato-Radicchi
network with small communities (LFRS) [11,19]: a network
of 5000 nodes. The average degree of the nodes is 20, their
maximum degree is 50, the exponent of the degree distribution
is −2, and the exponent of the community sizes distribution
is −1. The sizes of the communities vary between 10 and
50 nodes (hence the term “small communities”). Among the
many networks that can be generated with these parameters,
we chose one containing 195 communities of similar sizes
(P = 0.98). (iii) relaxed caveman [14] with Pielou’s index
= 0.75 (RC75): Because a more skewed distribution of
community sizes was required to analyze the behavior of
the algorithms in a wider range of network structures, we
generated a network of 512 nodes with P = 0.75, which
corresponds to a division into 16 communities, each of them
including from 2 to 196 nodes. In the RC75 configuration, the
initial network consisted of unconnected communities, each
one maximally connected internally, i.e., forming a clique. (iv)
Relaxed caveman, P = 0.50 (RC50): this has an even more
extreme variation in community sizes. The initial network is
also comprised of 512 nodes forming 16 cliques, but now
the largest one contains 354 nodes. Figure 2 graphically
displays the pattern of connections of each of these four initial
networks. Once obtained, they were progressively modified
by increasing C, finally obtaining from each one a set of
101 network structures spanning the whole range from C = 0
(initial structure present) to C = 100 (final structure present).
The corresponding open benchmarks, with the same starting
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FIG. 2. Graphical view of the adjacency matrices of the four initial networks used in the tests. Nodes are ordered according to the
communities to which they belong. Black indicates that two nodes are connected. Differences in relative community sizes are evident. In the
GN network, the nodes of the four equal-sized communities are sparsely connected. The groups in the LFRS are also sparse. However, there
are so many of them (195) that visualization is difficult at this resolution level. The RC initial networks (RC75 and RC50) are formed by 16
cliques and the distribution of community sizes is highly skewed, especially in RC50, where a single community dominates the network.

community structures and progressive degradation toward
randomness, were also analyzed following standard methods
described in previous papers (see, e.g., [13,14,19]). We also
discuss below in some detail closed benchmarks with random
initial structures.

B. Algorithms

Two community detection algorithms that have shown
an excellent performance in recent studies, namely Infomap
[8] and SCluster [15], were used in this work. Infomap
understands finding the community structure of a network as
an information compression problem, detecting communities
while compressing the topology of the network. It has achieved
excellent results on the LFR benchmarks [7,11]. On the
other hand, SCluster uses a completely different approach.
Using iterative hierarchical clustering [15,24], the algorithm
computes the pairwise distances of the nodes from partial clus-
tering solutions. Subsequently, it constructs a hierarchical tree
from which the partition of maximum surprise [7] is chosen
as the optimal solution. Surprise is a quality function that
estimates the goodness of a partition based on the comparison
between the graph and the null model generated by a random
distribution of links [7,24]. SCluster has demonstrated an
ability to extract high-quality partitions when dealing with
networks whose communities strongly vary in size [7,15].
Moreover, as a third way to extract the best clustering of the
network, we selected from the Infomap and SCluster solutions
the one with the highest surprise, given that we showed before
that surprise maximization not only qualitatively outperformed
maximizing the most commonly used global index, namely
Newman and Girvan’s Q, but it also improved the solutions
generated by any single algorithm [7].

C. Results

Figure 3 illustrates the results of the three methods in
our four closed benchmarks. Each partition estimated along
the conversion process is compared, using the variation of
information, with both the initial (black circles) and the final
(red squares) community structures. V = 0 means that the
partitions compared are exactly the same. We previously
mentioned how the sum of the variation of information from an
estimated point to the initial and to the final optimal partitions

(VIE + VEF ) should optimally be constant and equal to
the V between the initial and the final partition (VIF ). For
visualization reasons, half of this sum (V = [VIE + VEF ]/2)
is shown in the figures as a dashed line. V = VIF /2 is expected
if the partition is optimal.

The plots show how different is the community detection
process, depending on both the algorithm applied and the
topology of the network analyzed. When using the GN network
as an input, Infomap performs very well [Fig. 3(a)]. The
variation of information between the initial and the estimated
partition (VIE , black dots) is zero or near zero along the
first half of the benchmark. Moreover, when the conversion
(C) breaks the 50% mark, the V between the estimated and
the final partition (VEF , gray squares) behaves in the same
way. That is, the algorithm recognizes the initial structure
until C = 49% and the final one above C = 51%. This
is not the case when applying SCluster [Fig. 3(e)], which
only recognizes the initial partition up to C = 30% and starts
recognizing the final partition beyond C = 70%. As expected,
V graphically shows this different quality in the performance
of both algorithms. While in the Infomap plot V falls in an
almost straight line, matching VIF /2, the partitions estimated
with SCluster produce a significant deviation from that line
in the interval 30−70%, where we already detected that the
communities were poorly estimated.

When the input of the benchmark is the LFRS network,
Infomap also produces a symmetrical plot, with V almost
perfectly matching VIF /2 [Fig. 3(b)]. SCluster also shows in
this case a symmetrical performance, although with a slight
deviation from the optimal values [Fig. 3(f)], i.e., working
again worse than Infomap. In these first two examples, the
sizes of the communities are equal or very similar (P ≈ 1),
and they are expected to be degraded, on average, at the
same time. The original partition is thus present during the
first half of the conversion (giving VIE ≈ 0), and then the
community structure suddenly swaps to the final one (and
then VIF ≈ 0). On the other hand, when analyzing networks
with a strongly skewed distribution of community sizes (RC75,
RC50), the performance of the algorithms radically changes.
In the RC75 test, Infomap exhibits a nonsymmetrical behavior
[Fig. 3(c)], with V > VIF /2 when C = 40–60%. On the
contrary, SCluster shows a symmetrical pattern with V =
VIF /2 [Fig. 3(g)]. We can see how the V between the initial
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FIG. 3. (Color online) Variation of information behavior in the four closed benchmarks used in this study. Black circles depict the V

between the initial and the estimated partition (VIE). Red (gray) squares show the V between the estimated and the final partition (VEF ).
V appears as a dashed line, which should follow a straight line if the performance of the algorithm is optimal during the whole process of
conversion (i.e., VIE + VEF = VIF ).

and the estimated partition (VIE , black circles) is equal to
zero until around the 30%, at which point it starts to increase.
It is very significant that, in an open benchmark (see, e.g.,
Refs. [13,14,19]), this would be the only available information.
Thus we might conclude that from C = 30% on, these two
algorithms fail to recognize the optimal partition. However,
a bad algorithm performance is not the only explanation
for such patterns. Alternatively, it is possible that the initial
partition must not be detected as optimal anymore because
the community structure has changed. The closed benchmarks
offer a solid way to check if this latter hypothesis is correct.
In Figs. 3(c), 3(g), and 3(k), we can see that, although VIE

soon starts to grow, VEF begins to decrease at the same rate.
That is, the community structure of the initial partition is
shifting toward the final one much before the C = 50% mark
is passed, a pattern that is due to the rapid destruction of
small communities, typical of benchmarks with low P . This
behavior was impossible to check in any of the benchmarks
published so far, although it is critical for algorithm evaluation.
Now, we can assert that the behavior of SCluster is optimal,
given that V follows a straight line: it satisfies the equality in
Eq. (1) during the whole conversion process. In the last case,
RC50, the performance of the algorithms follows a pattern that
is a bit different from the rest of the benchmarks. Infomap
seems to rapidly collapse, with V moving away from the
optimal straight line, when C � 10–12% [Fig. 3(d)]. In the
case of SCluster [Fig. 3(h)], V values are close to the line
quite a bit longer (C around 30%), but then the algorithm
starts recognizing third-party structures, far away from both

the initial and final partitions (V > VIF /2). These behaviors
are due to the extremely skewed distribution of community
sizes, with a very large group that dominates the network
[Fig. 2(d)]. For these reasons, a quasirandom graph is formed
as the conversion process of the benchmark approaches 50%.
Infomap interprets this situation as if most of the network is
included into a single community. Hence, as we discussed
above, V approximates H (I ) (which in this example takes
a value of 1.38). SCluster, on the other hand, interprets the
network structure as including many singletons. Therefore,
V becomes much larger than VIF /2 for the reasons previously
discussed.

Figures 3(i)–3(l) show the evolution of each benchmark
using as the estimated partition that with the highest surprise
between the solutions provided by the two algorithms. As
expected [7], this approach always selects the best partition
between those two. The equality in Eq. (1) is satisfied all
along the first three networks. In the fourth case, the pattern is
identical to that produced by SCluster. The surprise values of
the RC50 benchmark suggest that the SCluster interpretation,
defining many small clusters of the quasirandom intermediate
structure generated when C > 30%, is preferable to the one
suggested by Infomap (dominated by a single huge cluster),
in good agreement with the fact that SCluster is, as already
indicated above, performing better in this benchmark than
Infomap in the adjacent conversion range (30% � C � 12%).

For comparative purposes, we also generated the cor-
responding open benchmarks, which start with the same
structures as those of our closed benchmarks but are then
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FIG. 4. (Color online) Open benchmarks with starting structures identical to the initial structures of the closed benchmarks shown in Fig. 3.
These structures are progressively degraded by randomly shuffling links. The percentage of rewired links is indicated on the x axis. The dashed
line indicates the VIF /2 value of the corresponding closed benchmark. Stars indicate the partitions with the highest surprise values.

progressively degraded toward undetermined, random struc-
tures by rewiring their links [13,14,19]. Figure 4 shows the
variation of information between the original partition and
those obtained by the SCluster and Infomap algorithms. The
partition with maximum surprise is marked with a star. We
have also depicted in Fig. 4 the value of V in the corresponding
closed benchmarks (dashed line). As found before in related
cases [7], neither of the two algorithms is the best in all
situations. If we use the surprise values as a guide, it can be
seen that SCluster improves upon Infomap when degradation
is very high and systematically in the benchmarks with the
lowest Pielou’s indices (RC75 and RC50), while Infomap
works better when degradation is low and Pielou’s index
is high (see GN and LFRS benchmarks). This situation is
fundamentally caused by Infomap solutions often consisting
in single communities (this happens in all the cases shown
in Fig. 4, in which the Infomap V values are above the
V dashed lines). These results for the open benchmarks are
fully compatible with those shown in Fig. 3 for closed
benchmarks.

The comparison of the values of V in Figs. 3 and 4 enables
us to precisely understand the relationships between both

types of benchmarks. Looking at the dashed lines in those
figures allows us to estimate the approximate difficulty of
reconstructing the community structure present in the closed
benchmarks when compared with the open ones. Thus, we can
see that C = 50% in the GN closed benchmark corresponds to
a rewiring percentage of more than 40% in the corresponding
open GN benchmark, while C = 50% in the LFRS, RC75,
and RC50 closed benchmarks may correspond, respectively,
to rewiring about 80%, 60%, and (this can be ascertained
less precisely) 50–70% of the links in the corresponding
open benchmark. Thus, the GN, LFRS, and RC75 closed
benchmarks always have a substantial level of structure, which
explains the good fit to the V value observed in Fig. 3.

Random networks can also be used as starting points
for a closed benchmark. The comparison with these ran-
dom network-based benchmarks may contribute to determine
whether or not a given network has a statistically significant
community structure, a topic that has recently received some
attention [25,26]. To address this issue, we generated four
types of random graphs, each of them having the same
number of nodes and edges as one of the initial networks
described above (GN, LFRS, RC75, and RC50), but randomly

FIG. 5. (Color online) Random networks with the same number of nodes as the corresponding closed benchmarks indicated on top. As
in Fig. 3, the dashed line corresponds to the V value, while red (gray) dots correspond to VEF values and black squares to VIE values. The
values of VIE , VEF , and V largely/fully coincide in Infomap analyses, appearing as a single line or close parallel lines. Notice that as soon
as conversion starts, VIE + VEF � VIF . Differences between Infomap and SCluster are due to the different way they interpret the random
structures present, i.e., as a single cluster (Infomap) or as many individual clusters (SCluster).
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distributed. Given that, for generating a closed benchmark,
a community structure must be assumed a priori, Infomap
and SCluster were tested in those random networks and the
community structure with the highest surprise value was
selected. Figure 5 shows the results of closed benchmarks
generated using the four random networks. As occurred above,
Infomap returns partitions in which all nodes [Figs. 5(a)–5(c)],
or at least more than 90% of the nodes [Fig. 5(d)], belong
to one community. The V observed is the entropy of the
initial (or final) partition H (I ) = H (F ), given that, if all
nodes are in a single community, H (E) = 0. On the other
hand, SCluster generates solutions with a high number of
communities [Figs. 5(e)–5(h)], interpreting that even a random
graph contains a certain degree of community structure. In
these random graph benchmarks, an interesting point is to
appreciate the extremely fast degradation of the partitions
when only 1% of the links have been rewired (Fig. 5).
When compared with its analogous nonrandom network, VIE

rises instantaneously, which is the behavior expected for
networks in which communities are barely defined. This kind
of comparison between variation of information patterns may
enable us to evaluate the robustness of a network, similarly to
what has been done using other methods [25].

IV. DISCUSSION

The development of methods that can accurately detect
community structure in networks is critical in many scientific
fields, since they can reveal deep underlying relationships
among the elements of a system. Therefore, it is very important
to compare and evaluate such methods against a set of synthetic
benchmarks in order to select one method, or a combination
of methods, that can produce reliable results when analyzing
real-world networks. Several standard benchmarks for testing
community detection algorithms have been proposed, most of
them of the class we called open: they start with a network
of well-defined community structure and then the structure
is degraded by randomly rewiring links [13,14,19]. During
this process, the communities gradually disappear toward
an “open end” when the precise community structure is
undetermined. This type of benchmark is useful for comparing
the relative performance of algorithms but inadequate for
assessing their intrinsic quality (i.e., whether the solutions

provided are optimal or not). In this paper, we have fully
described the closed benchmarks, which also degrade an initial
network with defined communities, but this time evolving
toward a second, known network structure. This evolution
is produced by a directed rewiring of the links from the
initial to the final network, and it enables us to control the
progression of the structure between both ends. We have also
shown that the variation of information provides valuable
information about the goodness of a partition and its possible
optimality: the configuration of our closed benchmarks allows
us to lower bound the expected V value using the triangle
inequality that the metric must satisfy. Another relevant
improvement over the available open benchmarks is the fact
that any network can be used as input for the degradation
process, enabling us to carry out extensive studies over a wide
variety of network topologies. These features clearly represent
qualitative improvements over the benchmarks published so
far. The comparisons of open and closed benchmarks, or of
networks of known structure and random networks (Figs. 4
and 5), are also interesting ways to further develop this
methodology.

As we have shown, there may be scenarios with very skewed
distributions of community sizes, such as the RC50 network
(Fig. 3), where the equality in Eq. (1) is not satisfied during
the whole process of conversion. Nevertheless, this behavior
in such extreme networks does not diminish the potential of
our approach because, even then, there are several conditions
that a good algorithm must fulfill. First, when 50% of the links
have been rewired, VIE must be, on average, equal to VEF .
Second, the initial partition has to be recognized better than
the final one during the first half of the benchmark and, from
there on, the behavior should be exactly the opposite. Third,
a good algorithm will provide solutions with VIE + VEF =
VIF along a longer range of the conversion process than a
bad one. In summary, the properties of the closed benchmarks
make them highly valuable for the development and evaluation
of computational methods to effectively characterize the
community structure of a network.
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