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We study the thermal and mechanical behaviors of DNA denaturation in the frame of the mesoscopic
Peyrard-Bishop-Dauxois model with the inclusion of solvent interaction. By analyzing the melting transition of
a homogeneous A-T sequence, we are able to set suitable values of the parameters of the model and study the
formation and stability of bubbles in the system. Then, we focus on the case of the P5 promoter sequence and
use the principal component analysis of the trajectories to extract the main information on the dynamical
behavior of the system. We find that this analysis method gives an excellent agreement with previous biological
results.
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I. INTRODUCTION

In the last years there exist an increasing interest in the
description of complex biological systems using simple
physical models �1�. Physical models for biological problems
should contain the key ingredients to explain their basic phe-
nomenology. In this sense, DNA melting can be modeled
using very simple statistical-mechanics models �2�. One of
the most successful is the one-dimensional Peyrard-Bishop-
Dauxois �PBD� model �3,4�, which with very few assump-
tions is able to reproduce the melting curves for different
DNA sequences. The PBD model undergoes an entropic
phase transition between the native closed state and a dena-
tured one in which the DNA strands are separated. The na-
ture of this transition strongly depends on model parameter,
so different versions of the model have been proposed in the
last years.

A virtue of the PBD model is that it allows us to study not
only the equilibrium properties of the molecule but also dy-
namical ones, for instance, the formation and stability of the
so-called DNA bubbles �short open segments of the DNA
chain� �5,6�. Due to its versatility, this simple model has been
applied in other contexts beyond the study of the equilibrium
melting curves. Thus, it has been used to investigate the
DNA mechanical denaturation �7,8�, and it has been espe-
cially successful in the modeling of the open regions in short
DNA hairpins �6,9,10�. This fact has motivated to extend the
model to study nonhomogeneous sequences and to try to
correlate the dynamical behavior of the model to functional
aspects of the DNA chain. To be specific, it has been sug-
gested that the localized dynamical excitations �bubbles� of
the model are directly related to the protein-DNA binding
sites �11,12�. This point has been controversial due to the
simplicity of the PBD model assumptions �13,14�.

One of the most interesting improvements to the model is
the inclusion of a barrier in the intrabase interaction term
�15�. Such a barrier accounts for solvent interactions in the
system. The addition of barriers modifies deeply the nature
of the denaturation transition and the dynamics of the mol-
ecule. Depending on the parameter values, the transition be-
come sharper, even in the harmonic stacking energy version.

The transition width is not a trivial behavior and it deserves
a more careful study. On the dynamical side, the bubble life-
time increases dramatically with the inclusion of this term
and approaches the experimental observations.

The purpose of this paper is twofold. First, we character-
ize the melting transition of homogeneous sequences and the
formation of bubble phenomenon for a wide range of param-
eters �Sec. IV�. This allows us to set suitable parameter val-
ues for next research. Then, we focus on the problem of the
relation between dynamics and function. In Sec. V, we study
a heterogeneous sequence which contains known informa-
tion on the transcription process of DNA to messenger RNA
�mRNA� �a P5 virus promoter�. We use principal component
analysis �PCA� of trajectories to identify the regions in the
sequence which mostly contribute to the dynamical fluctua-
tions of the molecule. These regions are the softest ones,
from a mechanical point of view, and they correlate fairly
well with the relevant biological sites. Given its simplicity
and efficiency, we propose to extend this analysis to other
sequences in order to get insight over functionality of the
different genome regions.

II. MODEL

We study a modification of the Peyrard-Bishop-Dauxois
model. In the PBD model the complexity of DNA is reduced
to the study of the dynamics of the N base pairs of the mol-
ecule. For each base pair we define the variable yn associated
with the distance between the bases. The total energy of the
system is then approached by

H = �
n=1

N � pn
2

2m
+ V�yn� + W�yn,yn−1�� . �1�

Here, pn=mdyn /dt, n is the index of a base pair, and m is its
reduced mass.

In this equation, we identify two energy potential terms:
V�yn�, an on-site potential one, and W�yn ,yn−1�, which ac-
counts for interpair interactions. The standard PBD model
corresponds to a particular choice for these energy terms.

The potential V�yn� describes the interaction between the
two bases of a pair. The PBD model uses a Morse potential
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to account for such an interaction �see Fig. 1�. This is a
standard approximation for chemical bonds,

V�y� = D�e−�y − 1�2, �2�

where D corresponds to the dissociation energy of the pair
�V�0�=0 and V���=D� and � sets the amplitude of the po-
tential well �V��0�=2D�2�. See also that the variable y mea-
sures deviations of the base distance with respect to equilib-
rium; thus, V�y� has a minimum for y=0.

An important contribution to the stability of DNA mol-
ecule comes from the stacking of the bases. The potential
W�yn ,yn−1� describes the interaction between base pairs
along the DNA strand. The simplest approximation is to con-
sider just harmonic interaction between adjacent pairs in the
molecule. However, this choice does not reproduce the ob-
servation of a sharp thermal denaturation curve. To solve
this, the PBD model includes a position-dependent nonlinear
coupling constant

W�yn,yn−1� = 1
2K�1 + �e−��yn+yn−1���yn − yn−1�2. �3�

The effect of this term, whose intensity is governed by �, is
to change the effective coupling constant from K�1+�� to K
when one of the base pairs is displaced away from its equi-
librium position. The parameter � sets the scale length for
this behavior.

DNA melting or denaturation refers to the separation of
the two strands of the DNA molecule to generate two single
strands. The great merit of the PBD model defined in Eqs.
�2� and �3� is to reproduce the different melting curves ob-
served in DNA molecules. Thus, it has been used as a solid
starting point for many other statistical-mechanics studies of
DNA.

The melting process involves the breaking of hydrogen
bonds between the bases. In order to study different DNA
sequences the PBD model also can include sequence-

dependent Morse potential parameters: Dn and �n. It can be
intuitively deduced from the fact that A-T pairs are linked by
two hydrogen bonds; meanwhile, C-G ones are linked by
three, thus forming a more stable link. Following �16� in our
simulations we will use DCG=1.5DAT and �CG=1.5�AT. Al-
though recent works have considered more complex se-
quence dependence �6,17�, we will not introduce more com-
plexity at this level in the model.

We will work with a modified version of the PBD model
to include solvent interaction. Solvent interaction stabilizes
open pair states by means of the hydrogen bonds that the
base pairs may form with the solvent when opened �15�.
Such bonds have to be broken before the pair closes again.
This effect can be included in a simple way with an effective
barrier in the Morse potential. The addition of the barrier has
to avoid, as much as possible, any other effects in the Morse
well. Hence, we have chosen the following definition for the
on-site potential V�y�:

V�y� = D�e−�y − 1�2 + Ge−�y − y0�2/b. �4�

This potential results from the addition of a Gaussian barrier,
whose height is controlled by G, the position is given by y0,
and its width is given by b. A reasonable selection for such
parameters is G=3D, y0=2 /�, and b=1 /2�2. Figure 1 plots
the intrabase potential V for an A-T and a C-G base pair.

III. METHODS

A. Langevin dynamics simulations

In order to study the behavior of the system we have
performed molecular-dynamics numerical simulations of the
Langevin equation

m
d2yn

dt2 + m�
dyn

dt
+

�V�yn�
�yn

+
��W�yn,yn−1� + W�yn+1,yn��

�yn

= �n�t� , �5�

where m is the mass of the pair, � is the effective damping of
the system and ��t� accounts for thermal noise, ��n�t�	=0,
and ��n�t��k�t��	=2m�kBT�nk��t− t��, with T as the bath tem-
perature.

The equations were numerically integrated using the sto-
chastic Runge-Kutta algorithm �18,19�. Simulation of large
A-T chain �Sec. IV� used periodic boundary conditions in
order to avoid any terminal effect. For the P5 promoter �Sec.
V� we used fixed boundary conditions which will be de-
scribed below.

To best characterize the phase transition we have com-
puted the mean energy �u	 and mean displacement �y	 de-
fined as

�u	 =
1

Nts
�
n,t

N,tS

�W�yn,yn−1� + V�yn�� , �6�

�y	 =
1

N
�
n=1

N

�yn	 =
1

Nts
�
n,t

N,tS

yn�t� . �7�

Here, N is the number of base pairs in the sequence to be
studied and ts is the total simulation time.

FIG. 1. �Color online� Morse potential with �solid lines� and
without �dashed lines� solvation barrier for A-T �black� and C-G
�orange/light gray� base pairs. For A-T pair without barrier
�=4 Å−1 and D=0.043 eV. For A-T with barrier �=4 Å−1,
D=0.051 85 eV, G=3D, y0=2 /�, and b=1 /2�2 �the value of D
has been adjusted in each case to give the desired melting tempera-
ture for the A-T uniform chain�. For C-G pairs DCG=1.5DAT and
�CG=1.5�AT.
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We are also interested in computing the probability of
being opened for each base. We define this as follows:

Pn�yth� =
1

ts
�

t

ts

�„yn�t� − yth… , �8�

where yth is a threshold for opening that we choose just be-
hind the barrier of the Morse potential and ��x� is the Heavi-
side step function ���x�=0 for x	0 and ��x�=1 for x
0�.
Thus, Pn indicates the fraction of time when the nth base is
opened during the time ts.

B. PCA

PCA is a statistical method to extract information from a
large set of data in a multidimensional phase space, allowing
us to reduce the dimensionality of the variables to those that
include most of the fluctuations of the original system �20�.
This is achieved by a change of coordinates in the phase
space, and the new coordinates are the so-called principal
components �PCs�. This method has become a standard tool

in the analysis of trajectories in “all-atom” simulations of
macromolecules �21�.

Operationally, we have to build the N�N correlation ma-
trix

C�i, j� = �yiyj	 − �yi	�yj	 . �9�

Diagonalizing this matrix we obtain an ordered set of eigen-
values ��1�2�3¯� with their corresponding eigenvec-
tors �v1 ,v2 ,v3 , . . .�. Eigenvalue �i gives the amount of fluc-
tuations, which corresponds to eigenvector vi; thus, the new
coordinates are ordered in such a way that the few first ones
retain most of the fluctuations of the system. It is useful to
define a frequency �i associated with each eigenvalue �i and
given by

�i =
kBT

�i
. �10�

From this point of view, the larger fluctuations will corre-
spond to the lowest frequencies. It can be proved that in the
low-temperature limit these frequencies converge to the
normal-mode frequencies of the system. Normal-mode
analysis has also used in the detection of relevant motions in
coarse-grained model of proteins �22�.

IV. UNIFORM CHAIN

A. Fitting the phase transition: Parameters of the model

In this section we will study the melting transition of a
homogeneous chain of A-T pair bases. Although there are
some studies on the influence of the different parameters in
the transition, up to our knowledge, there is no systematic
scan over the parameter space. In particular, when the barrier
is included on the Morse potential a clear narrowing of the
transition is observed �see Fig. 2�. The same effect is ex-
pected when the � parameter is increased. Thus, one of the
first problems when dealing with this modified PBD model is
to find suitable model parameters. This is mainly done by
adjusting the theoretical melting temperatures to the experi-
mental ones. The melting temperature Tm is usually defined

FIG. 2. �Color online� The melting transition. Mean energy and
displacement �inset� as functions of temperature of a homogeneous
chain for the standard �open circles� PBD model and the modified
one �full circles�. Parameters are given in the text.

FIG. 3. �Color online� Transition temperature versus the stack-
ing constant K for various � values.

FIG. 4. �Color online� Transition width versus the stacking con-
stant K for various � values.
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as the temperature at which the DNA strands are half-
denatured. For a homogeneous A-T chain, the melting tran-
sition has been reported to be around Tm=310 K �17,23�.

One should be aware that, in general, the melting tem-
perature depends on the length of the sequence, base compo-
sition, topological structure, and salt concentration. Thus, it
is difficult to predict the exact transition temperature of a
given sequence. In the case of the uniform chain the melting
temperature depends strongly on salt concentration, which is
not explicitly included in this mesoscopic model. Usual pa-
rameters for the standard PBD model can be found in Refs.
�16,17�, for instance. Following previous findings and guided
by our numerical simulation results we choose the following
set of values for studying the standard model: m=300 Da,
D=0.043 eV, �=4 Å−1, K=0.03 eV Å2, �=3, and
�=0.8 Å−1 �these values are slightly different from those
given in �17��. If a barrier is included we modify the value of
D to obtain the same Tm. Thus, in this case
D=0.051 85 eV, and G=3D=0.1556 eV, y0=2 /�=0.5 Å,
and b=1 /2�2=0.031 25 Å2.

The melting transition curve for the model with and with-
out solvation barrier is shown in Fig. 2 for a homogeneous
A-T sequence with N=220. At high temperature is observed
the expected linear behavior of a free Gaussian polymer
chain, i.e., the completely unzipped state.

The numerical determination of the melting temperature
is not a trivial issue. For the case of a uniform chain, we use
the following computational criteria to determine the melting
temperature and transition width from the �u�T�	 and �y�T�	
curves. First we define two temperatures. The larger one, T2,
gives the onset of the linear behavior in �u�T�	 which indi-
cates that the chain is completely melted. The other one, T1,
estimates the beginning of the transition defined as the tem-
perature for which �y�T�	=y0, i.e., when the chain can be
considered to be by average in the barrier position. Then we
define the transition width as �T=T2−T1 and the melting
temperature as Tm= �T1+T2� /2.

It is interesting to briefly discuss the effect of the main
model parameters in the melting transition and the dynamical
behavior of the system. High values of D, the Morse poten-

tial dissociation energy, produce also high Tm’s. Parameters
K and � set the stacking interaction between adjacent bases.
Its effect in Tm and �T can be seen in Figs. 3 and 4. Suitable
melting temperature and transition width are obtained at high
K values �thus, we chose K=0.03 eV/Å2� and moderate �’s
���3�. Moderate �’s are biologically satisfactory and avoid
the very narrow bubbles observed for high � values. With
respect to the solvation barrier its presence makes bubbles
live longer. Thus, a complete separation of the strands is also
facilitated leading to a decrease in the melting temperature
�this change can be counterbalanced by increasing the D
value�. The inclusion of the barrier also reduces the width of
the transition, allowing the choice of moderate � values.

B. PCA of the phase transition

PCA provide us another method to analyze the phase tran-
sition. Figure 5 shows the spectrum of effective frequencies
as defined in Eq. �10� for the uniform A-T chain. At low
temperatures, a sharp band of linear wave excitations close to
the ground state is clearly identified. At very low tempera-
tures, the frequencies are given by the dispersion relation
�24�

m�2 � 2D�2 + 2K�1 + ���1 − cos��n/N�� . �11�

Thus, the gap for the lowest mode is controlled by the intra-
base potential parameters. In this limit the PC eigenvectors
are the normal modes of a homogeneous array. As tempera-
ture increases, the nonlinear excitations are more important.
Such nonlinear modes are responsible of the larger fluctua-
tions and correspond to the larger eigenvalues or lower fre-
quencies. As we approach the melting temperature a soft
mode goes to zero �see Fig. 5�, the chain is not pinned by an
on-site potential, and every strand moves freely. Hence, at
high temperature the frequencies are those of a free Gaussian
chain with coupling given by the stacking parameter K:

FIG. 5. �Color online� PC frequency spectrum at different tem-
peratures between 120 and 330 K. Frequency units are
�D /m�1/2�=5.15�1012 s−1.

FIG. 6. �Color online� Temperature dependence of the
lowest PC frequency. The straight line corresponds to the best fit
with the parameters given in the text. Frequency units are
�D /m�1/2�=5.15�1012 s−1.
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m�2 = 2K�1 − cos��n/N�� . �12�

Note that the zero mode corresponds to the largest wave-
length.

Figure 6 shows the temperature evolution of this mode
frequency. The curve can be fitted using a critical behavior
function �� �Tm−T��, with Tm=0.51 and �=2.2. The char-
acterization of the order of the phase transition is a difficult
issue �25,26�. To our knowledge dynamic exponents for this
family of models are not known.

C. Bubble formation

One of the more interesting aspects of DNA molecule
amenable to be studied in the framework of the PBD mode is
the formation and stability of the so-called DNA bubbles
�short open segments of the DNA chain�. The onset of such
states has an important role in the understanding of the op-
eration of DNA molecules.

We observe that the inclusion of a solvation barrier in the
model has a dramatic effect in the dynamics of the system,
increasing the lifetime of bubbles. Figure 7 compares
molecular-dynamics numerical simulations for a model with
barrier to another without barrier and at �=3. As expected
the presence of barriers modifies the kinetics of base opening
and further closing. The individual trajectories of the differ-
ent bases clearly show this behavior. Although the profile of
the bubbles is similar in the two cases, the nonbarrier dynam-
ics is completely different from that with barrier. Without a
barrier the opening of the base pair corresponds to a large-
amplitude oscillation along the Morse potential, and an easy
closing is favored. With a barrier, the kinetics is controlled
by the presence of two equilibrium states separated by the
solvation barrier. Closing events are more difficult, and
bubbles live longer. Although in this way we approach ex-
perimental values of lifetime bubbles �on the order of ns�,
this fact makes the simulations more difficult since it re-
quires very long runs to have good statistics.

FIG. 7. Typical molecular-
dynamics simulation trajectories
for the PBD model of a homoge-
neous sequence without �upper
figures� and with �lower ones� bar-
rier. Dark areas correspond to
open base pairs. Long-living
bubbles are clearly observed when
solvation barrier is included.
Small figures show a base pair
configuration at a given time �left�
and the trajectory of a given base
as a function of time �right�. Tra-
jectory time is 200 ns and yn is
given in units of �−1=0.25 Å.
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We see that parameter � affects the cooperativity between
open bases and then the bubble lifetime and width. A large �
produces long-live bubbles but extremely narrow ones �one
or two bases�, as those shown in Ref. �27� with �=25. With
this value of �, the transition is extremely narrow and, after a
long transient, bubbles nucleate to drive the unzipping of the
whole chain. A moderate value, �=3, is good enough to get
both longer and wider bubbles �four to ten bases�, as shown
in figures.

V. P5 PROMOTER SEQUENCE

A promoter is a region of the DNA sequence where the
transcription to mRNA is initiated and controlled. In
prokaryotic cells, regions of −10 and −35 bp �upstream from
the transcription start site� are the most important sites for
transcription regulation. In this section we analyze the P5
core promoter, which has been widely studied in the litera-
ture �12,28�. We show that the PCA of Langevin trajectories
of the molecule clearly identifies the biologically relevant
sites. The sequence of the P5 promoter is given by the 69 pb:

5�-GTGCCCATTTAGGGTATATATGGCCGAGTGAGCGAGC AGGATCTCCATTTTGACCGCAAATTTGAACG-3�.

We will perform numerical simulations of this sequence �pa-
rameter values for C-G and A-T base pairs have been given
previously�. In order to avoid unphysical denaturation events
at low temperature due to finite-size effects �6�, we apply the
following boundary conditions: First we add 10 C-G bp se-
quences to the ends of the promoter to create hard bound-
aries. Second, we set the extremes to zero �closed� to avoid
the complete opening of the chain.

Figure 8 shows the evolution of the PC frequency spec-
trum with temperature. Several features distinguish these
curves from the homogeneous case. For low temperatures,
two bands corresponding to A-T �lower band� and C-G �up-
per band� links are clearly identified. The eigenvectors are
localized around rich regions in both kinds of complemen-
tary pairs. At intermediate temperatures the gap between
both bands disappears and the eigenvectors broaden. C-G
pairs surrounded by A-T ones are more likely to open and
frequencies diminish.

Close to transition �T345 K�, several modes detach to
low frequencies. The first three modes are strongly localized
and show peaks in four regions �see Fig. 9�. These modes
represent the “softest” regions of the sequence, are related to
high probability of opening, and drive the unzipping.

This picture is validated by the study of the first three
eigenvectors �the large eigenvalue or small frequency ones�.
Figure 9 shows the measured probability of opening in the
sequence, defined by Eq. �8�, and the computed eigenvectors.
An excellent correlation between both figures is observed.
Region +1 corresponds to the transition starting site �TSS�,
whereas regions −30 and −40 correspond to the binding sites

of transcription factors, i.e., a region rich in A-T pairs like
the TATA box. Localized eigenvectors span over regions of
ten base pairs, which fairly correspond to the width of the
bubbles.

Figure 10 plots a typical trajectory, showing a few
bubbles mainly at the regions pointed by the PC eigenvec-
tors. Note that at this temperature very few opening events
occur, so a precise statistics on bubble formation becomes
difficult. However, PC analysis gives a good account of these

FIG. 8. �Color online� PC frequency spectrum at different tem-
peratures for the P5 promoter sequence. Frequency units are
�D /m�1/2�=5.15�1012 s−1.

FIG. 9. �Color online� Top figure: probability �not normalized�
of opening for sequence of P5 promoter. Bottom figure: the three
first PC eigenvectors at T=290 K.
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sites even with the presence of a few bubbles. Interestingly,
the third eigenvalue shows a clear correlation between the
region close to the TATA box and the TSS. This represents
motion fluctuations that involve both regions. Thus, modifi-
cation of one of them could interfere in the fluctuations in the
other, opening a channel for the regulation of transcription.

VI. CONCLUDING REMARKS

We have studied the dynamics of a DNA molecule using
the PBD model with solvation interaction. Solvation interac-
tion is modeled by including a barrier in the usual on-site
Morse potential. First we have analyzed the melting transi-
tion in an A-T homogeneous chain. We conclude that the
inclusion of the barrier not only modifies the phase transition
but also has a great influence in the dynamics of localized
excitations �bubbles�. In combination with the nonlinear pa-
rameter �, the width and lifetime of bubbles can be tuned.
We find a set of parameters which will be suitable for future
studies with this model.

We have applied the model to an inhomogeneous se-
quence with biological meaning, a virus promoter. The study
of trajectories using principal component analysis allows us
to detect the biologically relevant sites without the need of

long molecular-dynamics runs. We have found that the soft-
est modes of the PC spectrum are highly localized in those
sites. Even more, these sites have been also detected as the
most likely to be opened in bubbles �29�. In this work we
cannot elucidate the controversy on whether the DNA can
direct its own transcription as was suggested in �12� and then
make use of theoretical methods to obtain the functional re-
gions. However, we can obtain from the mesoscopic PBD
model some regions which are more sensible to the forma-
tion of bubbles �as extracted from the eigenvectors of the
PCA�. Of course, the simplicity of the model cannot take
into account other effects, like the flexibility of DNA mol-
ecule, but it is able to tackle those related to the sequence.
Finally, we stress the use of a tool, the PCA, to the analysis
of statistical-mechanics simulations of simple models to ob-
tain useful information on linear and nonlinear excitations
and the relation to its phase transition.
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