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ABSTRACT

We extend a recently developed relation between the master equation describing the Parrondo’s games and the
formalism of the Fokker–Planck equation to the case in which the games are modified with the introduction of
“self–transition probabilities”. This accounts for the possibility that the capital can neither increase nor decrease
during a game. Using this exact relation, we obtain expressions for the stationary probability and current (games
gain) in terms of an effective potential. We also demonstrate that the expressions obtained are nothing but a
discretised version of the equivalent expressions in terms of the solution of the Fokker–Planck equation with
multiplicative noise.
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1. INTRODUCTION

Parrondo’s paradox is a counter–intuitive effect that has attracted much attention in the last years.1 It is based
upon the ratchet effect2: the combination of two dynamics, both negatively biased, leading to a positively biased
dynamics. Briefly speaking, the Parrondo’s paradox combines simple coin-tossing losing games to produce a
winning game. This paradoxical result has been widely studied in its fundamental aspects3–9 and also in relation
to some sociological applications,10, 11 control theory,12, 13 pattern formation,14–16 molecular motors17, 18 and
economics.19

In previous work20, 21 (see also reference22) we established a closed relation between the parameters defining
a Parrondo game and its physical Brownian ratchet. We were able to obtain a set of equations relating the drift
F (x) and diffusion D(x) characterizing a Brownian ratchet with the probabilities pi defining a Parrondo game.
A simplifying feature used in that work is that we consider only games whose output is a win or a lose, i.e.
we did not accept draw as a result. This fact translates into a constant diffusion function D(x) = D. In the
language of stochastic processes,23 this implies that the noise term in the Langevin equation describing these
games is additive.

Recently a new set of Parrondo games have been presented.24 These games introduce a self–transition
probability which denotes the probability of the player to remain with the same amount of capital after a
round is played. We will show that the existence of this so-called self–transition probability allows the diffusion
term D(x) to vary in space, and so the Fokker–Planck equation corresponding to these games corresponds to a
Langevin equation with a multiplicative noise term.

The outline of the paper is as follows: In Section 2 we review the main results concerning the additive noise
approach. In Section 3 we show how the expressions obtained in the previous section vary due to the inclusion of
the self–transition probability and both approaches are compared in Section 4. Finally, in Section 5 we present
our main conclusions.
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2. ADDITIVE NOISE

A master equation can be written for a game if we consider it as a discrete process, in which both the time and
“space” (the capital owned by the player) are both discretised with a step size ∆ = 1. If τ denotes the discretised
time and Pi(τ) the probability that at time τ the capital is i, then we have the following master equation

Pi(τ + 1) = ai
−1Pi−1(τ) + ai

0Pi(τ) + ai
1Pi+1(τ) (1)

where ai
−1 ≡ pi−1 is the probability of winning when the capital is i − 1, ai

0 ≡ ri is the probability of remaining
with the same capital when the capital is i and ai

1 ≡ qi+1 is the probability of losing when the capital is i + 1.
These terms must fulfill the normalization condition: ai+1

−1 + ai
0 + ai−1

1 = 1 or pi + ri + qi = 1.

An straightforward algebra shows that this equation can be rewritten as a continuity equation

Pi(τ + 1) − Pi(τ) = − [Ji+1(τ) − Ji(τ)] (2)

where
Ji(τ) =

1
2
[FiPi(τ) + Fi−1Pi−1(τ)] − [DiPi(τ) − Di−1Pi−1(τ)] (3)

and
Di =

1
2
(ai+1

−1 + ai−1
1 ) =

1
2
(1 − ai

0) Fi = ai+1
−1 − ai−1

1 . (4)

Eq.(1) can be compared with a consistent discretization of the Fokker–Planck equation of general form23

∂P (x, t)
∂t

= −∂J(x, t)
∂x

(5)

where

J(x, t) = F (x)P (x, t) − ∂D(x)P (x, t)
∂x

(6)

is the probability current with drift F (x) and diffusion D(x). When the diffusion term is constant, D(x) =
D0, it is known that the equivalent Langevin equation has an additive noise term, otherwise noise appears
multiplicatively.

In the remainder of this section, we impose ai
0 = 0, that is, we can only win or lose when playing the games.

This condition implies a constant diffusion term Di = D = 1
2 and a drift given by Fi = 2pi − 1. It is typical of

the games that the probabilities ai
j (j = −1, 0, 1) are defined as a function of the capital i modulus a number L,

i.e. ai
j = ai mod L

j .

For a stationary state and constant current, i.e., Pi(τ) = Pi and Ji = J , the following expressions can be
obtained

P st
i = e−

Vi
D


P st

0 − J

D

i∑
j=1

e
Vj
D

1 − Fj


 (7)

J = D · P st
0

1 − e
VL
D

∑L
j=1

e
Vj
D

1−Fj

(8)

here the current J is obtained through periodicity conditions P0 = PL.

In the previous equations we have defined a potential in terms of the game probabilities as

Vi = −D
i∑

k=1

ln
[
1 + Fk−1

1 − Fk

]
= −1

2

i∑
k=1

ln
[

pk−1

1 − pk

]
(9)
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This definition assures periodicity of the potential when the set of probabilities {pi, qi} define a fair game.
Equivalently, imposing V0 = VL in Eq.(9) what we obtain is the well–known fairness condition1

∏L−1
k=1 pi =∏L−1

k=1 (1 − pi).

It can be checked that this discretised potential Vi is equivalent to a discretization of the physical potential
V (x) = − ∫ F (x)dx. For this purpose consider our discrete potential for a step size ∆ �= 1. After some
manipulation and expanding up to first order in ∆ we obtain

Vi = −1
2

i∑
k=1

ln
[
1 + ∆ · Fk−1

1 − ∆ · Fk

]

≈ −∆ ·
(

1
2
F0 +

i−1∑
k=1

Fk +
1
2
Fi

)
(10)

which is nothing but a discrete integral of the drift obtained with Simpson’s trapezoidal method.

We can also compare the discretised solutions obtained before (7) and (8) with the continuous solutions for
the Langevin equation with additive noise23 ẋ = F [x(t), t] + Dξ(t),

P (x) = e−
V (x)

D

[
P (0) − J

D
·
∫ x

0

e−
V (x′)

D dx′
]

(11)

J =
P (0) · D ·

[
1 − e

V (L)
D

]

∫ L

0
e−

V (x′)
D dx′

(12)

It is clear that both sets of equations (7–8) and (11–12) are equivalent. There is only one term that needs to
be analyzed in some detail, namely:

i∑
j=1

e
Vj
D

1 − Fj
=

i∑
j=1

e−
∑j

k=1
ln
[ 1+Fk−1

1−Fk

]
−ln(1−Fj) ≈

i∑
j=1

e−
F0
2 +
∑i

k=1
Fk+

Fj
2

D +Fj . (13)

This equation is the numerical approximation using Simpson’s rule to the integral
∫ x

0
e−

V (x′)
D dx′, except by

the presence of an extra term Fj . However, this latter term would tend to zero when ∆ → 0 (remember that we
have set ∆ = 1 in the previous equations) and Eq. (13) can be considered a consistent numerical discretization
of the corresponding integral in Eq.(11).

The inverse process can also be performed, i.e., for a given potential we can obtain its corresponding prob-
abilities defining a Parrondo game. This set of probabilities {pi, qi} for a given potential Vi can be obtained
inverting Eq.(9) for {pi}. The resulting expression is

Fi = (−1)ieVi/D



∑L

j=1(−1)j [e−Vj/D − e−Vj−1/D]

(−1)Le(V0−VL)/D − 1
+

i∑
j=1

(−1)j [e−Vj/D − e−Vj−1/D]


 (14)

which together with Fi = 2pi − 1 can be used for determining the probabilities pi.

In summary, we have developed a method for obtaining the stationary probability, current and potential that
correspond to a given set of probabilities defining a game as well as the inverse process of obtaining the game
probabilities {pi, qi} for a given potential Vi. This method is limited to the case ai

0 = 0, leading to a constant
diffusion coefficient, or an additive noise.
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3. MULTIPLICATIVE NOISE

We go now a step forward, and calculate how these previous expressions obtained for the stationary probability,
current and the defined potential vary when we consider the case ai

0 �= 0 (which is equivalent to ri �= 0). As we
stated before, considering this term implies that the player has now a certain probability of remaining with the
same capital after a round played.

The drift and diffusion terms now read

Fi = ai+1
−1 − ai−1

1 = 2pi + ri − 1 (15)

Di =
1
2
(1 − ai

0) =
1
2
(1 − ri) (16)

It can be appreciated that now both terms, the diffusion Di as well as the drift Fi, may vary on every site. Using
Eq.(3) and considering the stationary case Pi(τ) = Pi together with a constant current Ji = J , we get

P st
i =

J
1
2Fi − Di

−
( 1

2Fi−1 + Di−1

1
2Fi − Di

)
· P st

i−1. (17)

The previous equation has a general form xi = ai + bixi−1, from which a solution can be derived as xn =
[
∏n

k=1 bk] · x0 +
∑n

j=1 aj ·
[∏n

k=j+1 bk

]
. Applying the latter result to the stationary probability we have

P st
n =

[
n∏

k=1

Dk−1 + 1
2Fk−1

Dk − 1
2Fk

]
· P st

0 − J

n∑
j=1

1
Dj − 1

2Fj




n∏
k=j+1

Dk−1 + 1
2Fk−1

Dk − 1
2Fk


 (18)

We can solve for the current J using Eq.(17) together with the periodic boundary condition P st
L = P st

0

J =
P st

0 ·
(∏L

k=1

[ 1
2 Fk−1+Dk−1

Dk− 1
2 Fk

]
− 1
)

∑L
j=1

1
Dj− 1

2 Fj

∏L
k=j+1

[ 1
2 Fk−1+Dk−1

Dk− 1
2 Fk

] (19)

An effective potential can be defined in a similar way to its continuous analog as

Vi = −
i∑

j=1

ln


1 + 1

2
Fj−1
Dj−1

1 − 1
2

Fj

Dj


 = −

i∑
j=1

ln

( pj−1
1−rj−1

1−pj−rj

1−rj

)
. (20)

It is important to note that, as in the previous case ai
0 = 0, the potential must verify periodic conditions

V0 = VL when the set of probabilities define a fair game. It is an easy task to check that using Eq.(20) together
with the periodic boundary condition, what we obtain is the fairness condition for a given set of probabilities
defining a game with self–transition,24 that is

L−1∏
k=1

pi =
L−1∏
k=1

qi =
L−1∏
k=1

(1 − pi − ri) (21)

By means of Eq.(20) we can obtain the stationary probability (18) and current (19) in terms of the defined
potential as

P st
n = e−Vn


D0 · P st

0

Dn
− J

n∑
j=1

eVj

Dn

(
1 − 1

2
Fj

Dj

)

 (22)
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J =
P st

0

[
D0 − DL · eVL

]
∑L

j=1
eVj(

1− 1
2

Fj
Dj

) (23)

These are the new expressions which, together with Eqs.(15) and (16) allow us to obtain the potential,
current and stationary probability for a given set of probabilities {pi, ri, qi} defining a Parrondo game with
self–transition. We will now show that the set of Eqs.(20),(22),(23) can be related in a consistent form with the
continuous solutions corresponding to the Fokker–Planck equation of a process with multiplicative noise.23

Given a Langevin equation with multiplicative noise

ẋ = F [x(t), t] +
√

B[x(t), t] · ξ(t) (24)

interpreted in the sense of Ito, we can obtain its associated Fokker–Planck equation given by Eq.(5) recalling
that D(x, t) = 1

2B(x, t). The general solution for the stationary probability density function P (x, t) is given by

P st(x) =
e
∫ x

Ψ(x)dx

D(x)
·
[
N − J

∫ x

e−
∫ x′

Ψ(x′′)dx′′
dx′
]

(25)

where N is a normalization constant and Ψ(x) = F (x)
D(x) . Making use of the periodicity and the normalization

conditionP (0) = P (L) and
∫ x

0
P (x)dx = 1 we obtain the following expressions for N and J

N = P (0) · D(0) J =
P (0) ·

(
D(0) − D(L)e

∫
L

0
Ψ(x)dx

)

∫ L

0 e−
∫

x′
0

Ψ(x′′)dx′′
dx′

(26)

Comparing the discrete equations for the current and stationary probability (22-23) with the continuous
solutions (25-26) we have the following equivalences

P st
0 · D0 ≡ P (0) · D(0) (27)

Dj ≡ D(x) (28)

eVn ≡ e
∫

x
Ψ(x)dx (29)

n∑
j=1

eVj(
1 − 1

2
Fj

Dj

) ≡
∫ x

e−
∫

x′
Ψ(x′′)dx′′

dx′ (30)

It is clear the identification of the terms in Eqs.(27) and (28). Now we need to demonstrate the equivalence
given by Eqs.(29) and (30). If we define a discretised function as ψj = Fj−1

Dj−1
and we use the Taylor expansion

up to first order of the logarithm ln (1 + x) ≈ x already used in the previous section we get

Vn = −
n∑

j=1

ln
(

1 + 1
2ψj−1

1 − 1
2ψj

)
≈ −1

2

n∑
j=1

(ψj−1 + ψj) = −
(

1
2
ψ0 +

n−1∑
k=1

ψk +
1
2
ψn

)
(31)

n∑
j=1

eVj

1 − 1
2ψj

=
n∑

j=1

eVj−ln (1− 1
2 ψj) ≈

n∑
j=1

e−
1
2

(∑j

k=1
[ψk−1+ψk]−ψj

)
=

n∑
j=1

e−
(

1
2 ψ0+

∑j

k=1
ψk+ 1

2 ψj

)
+ 1

2 ψj (32)
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It can be clearly seen that Eq.(31) corresponds to the numerical integration of the function Ψ(x) defined
previously, but with a ∆ = 1 (the difference in the sign is due to the way we have defined our potential). It can
be demonstrated that when ∆ �= 1 both expressions agree up to first order in ∆,

Vn∆ = −∆

(
1
2
ψ0 +

n−1∑
k=1

ψk +
1
2
ψn

)
(33)

In the case of Eq.(32) what we obtain is nearly the Simpson’s numerical integration method but for an extra
term. As in the previous case, when ∆ �= 1 then we have up to a first order an extra ∆ term,

n∑
j=1

eVj∆

1 − 1
2ψj∆

≈ ∆ ·
n∑

j=1

e−∆
(

1
2 ψ0+

∑
j

k=1
ψk∆+ 1

2 ψj∆

)
+ 1

2 ∆ψj∆ (34)

So when ∆ → 0 the contribution of the extra term can be neglected as compared to that of the sum.

We can also perform the inverse process, that is, to obtain the set of probabilities {pi, ri, qi} for a given
potential Vi. If we call An = pn−qn

pn+qn
, we need only to solve Eq.(20) for An obtaining

An = (−1)n · eVn



∑L

j=1(−1)j(e−Vj − e−Vj−1)
(−1)L · eV0−VL − 1

+
n∑

j=1

(−1)j · (e−Vj − e−Vj−1
)

 (35)

Once these values are obtained, we must solve for the probabilities together with the normalization condition
pi + ri + qi = 1. As we have a free parameter in the set of solutions, we can fix the ri values on every site and
the rest of parameters can be obtained through

pi = 1
2 (1 + Ai)(1 − ri) (36)

qi = 1
2 (1 − Ai)(1 − ri). (37)

In this way what we have is a method for inverting an effective potential, fixing a parameter that in our case
is the diffusion in every site (remember that the parameter ri is related to the diffusion coefficient by Eq.(16))
or equivalently the temperature.

4. COMPARISON BETWEEN BOTH SYSTEMS

We have presented two methods for obtaining the potential defined by a set of game probabilities or vice versa.
If we suppose an additive noise what we get is a set of probabilities {pi, qi}, whereas if the noise is multiplicative
what we get is {pi, ri, qi}. We want to investigate which relation may exist between these two sets of probabilities.

Starting with the sets of probabilities of the original Parrondo’s games with periodicity L = 3, we will modify
them in order to introduce the new parameter r as follows





p′ = p · (1 − r) = 1
2 · (1 − r)

p′1 = p1 · (1 − r) = 1
10 · (1 − r)

p′2 = p2 · (1 − r) = 3
4 · (1 − r)

(38)

In Fig.1 we plot the current J vs r obtained varying the game probabilities in three different ways. In Fig.(1)a
we find the current when only the probabilities of game A are varied, keeping the probabilities of game B fixed.
In Fig.(1)b the probabilities of game B are varied instead of game A. Finally in Fig.(1)c both sets of probabilities
are changed using Eq.(38). In all three cases the current diminishes gradually with increasing r, although in the
first case the curve appears to be more convex, and in the second and third case the trend is more linear.
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Figure 1. The current is plotted for three different cases: a) The probabilities of game A are varied, keeping game B
probabilities fixed; b) now only game B probabilities are varied; c) both sets of probabilities are varied.

As noted in,24 another way of modifying the probabilities, where the winning probability is kept fixed and
varying the losing probability q (it can be considered as if q split into the new probability r and a new q value)
is the following




p′ = p, r′ = r, q′ = q − r
p′1 = p1, r′1 = r, q′1 = q1 − r
p′2 = p2, r′2 = r, q′2 = q2 − r

(39)

This alternative way of modifying the probabilities leads to a variation of the current presented in Fig.(2).
In all cases the current J increases because the losing probability diminishes with r, and so the winning rate at
a constant pi increases with r.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
r

0

0.01

0.02

0.03

0.04

0.05

0.06

J

0 0.05 0.1 0.15 0.2 0.25
r

0

0.01

0.02

0.03

0.04

J

0 0.05 0.1 0.15 0.2 0.25
r

0

0.01

0.02

0.03

0.04

0.05

0.06

J

Figure 2. As in the previous figure, we plot the current versus the self–transition probability r for three different cases:
a) we vary only the probabilities of game A; b) we only vary the probabilities of game B; c) we vary the probabilities of
both games using (39).

Another aspect to consider is the possibility of obtaining two different sets of probabilities that describe
the same discretised potential Vi. One way is through Eq.(14). What we have then is a set of probabilities
{pi, qi}. The second possibility involves using Eq.(35) together with (36) and (37) for obtaining the probabilities
{pi, ri, qi}. The potential used for finding these probabilities is asymmetric with periodicity L and amplitude A,

V (x) = A

[
sin
(

2πx

L

)
+

1
4

sin
(

4πx

L

)]
(40)

Proc. of SPIE Vol. 5471     413



0 1 2 3 4 5
i

-0.4

-0.2

0

0.2

0.4

V

Figure 3. Potential defined by Eq.(40) with A = 0.4 and L = 5.

This potential has been used widely in the literature as a ratchet potential .2 In Fig.(3) we have plotted the
potential with the parameter values L = 5 and A = 0.4 used for obtaining the following probability sets





p0 = 0.187, q0 = 0.81299
p1 = 0.70986, q1 = 0.29014
p2 = 0.473696, q2 = 0.52630
p3 = 0.6419944, q3 = 0.35801
p4 = 0.5240148, q4 = 0.47599

−→ J = 1.1288 · 10−3 (41)





p0 = 0.07480, r0 = 0.60, q0 = 0.3252
p1 = 0.28394, r1 = 0.60, q1 = 0.1161
p2 = 0.18948, r2 = 0.60, q2 = 0.2105
p3 = 0.25680, r3 = 0.60, q3 = 0.1432
p4 = 0.20961, r4 = 0.60, q4 = 0.1904

−→ J = 5.7677 · 10−4 (42)

As one of the three probabilities must be fixed (because there is a free parameter for every site i), we decide
to fix the ri = 0.6 ∀i in the sets of probabilities given by (42). The current J is obtained alternating with a game
A with probabilities p = 1

2 , q = 1
2 in the former case and p = 1

4 , r = 1
2 and q = 1

4 in the latter.

The fact that we can obtain different sets of probabilities, both describing different dynamics but coming
from the same potential V (x), it is not surprising if we take into account that a system with multiplicative noise
is equivalent, in the sense that both have the same stationary probability distribution, to another system with
additive noise

ẋ = F (x) + D(x) · ξ(t) −→ ẋ = F̄ (x) + ξ(t) (43)

but with a renormalized drift term F̄ (x) given by F̄ (x) = −∂V̄
∂x where F (x) = −∂V

∂x and V̄ =
∫ F (x)

D(x)dx+lnD(x).

5. CONCLUSION

We have presented a consistent way of relating the master equation for the Parrondo games with the formalism
of the Fokker–Planck equation describing Brownian ratchets. This relation works in two ways: we can obtain
the physical potential corresponding to a set of probabilities defining a Parrondo game, as well as the current
and its stationary probability distribution. Inversely, we can also obtain the probabilities corresponding to a
given physical potential. Our relations work both in the cases of additive noise or multiplicative noise. With the
new relations introduced for the case of multiplicative noise in this paper, we have now a precise and of general
validity connection between individual Brownian ratchets and single Parrondo’s games. We have also presented
a comparison of the efficiency of the games with and without self–transitions.
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