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Cavity solitons are stationary self-organized bright intensity peaks which form over a homogeneous back-
ground in the section of broad area radiation beams. They are generated by shining a writing/erasing laser pulse
into a nonlinear optical cavity, driven by a holding beam. The ability to control their location and their motion
by introducing phase or amplitude gradients in the holding beam makes them interesting as mobile pixels for
all-optical processing units. We show the generation of a number of cavity solitons in broad-area vertical cavity
semiconductor microresonators electrically pumped above transparency but slightly below threshold. We ana-
lyze the switching process in details. The observed spots can be written, erased, and manipulated as indepen-
dent objects, as predicted by the theoretical model. An especially tailored one is used to simulate the studied
phenomena and to compare our simulations to the experimental findings with good agreement.
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I. INTRODUCTION

The analysis of unstable and chaotic phenomena[1,2]
found a fertile ground in the field of nonlinear optics. In the
late eighties, the main focus shifted from temporal effects to
spatial pattern formation in the structure of the electromag-
netic (e.m.) field in the transverse sections of broad-area ra-
diation beams, when they interact with nonlinear media(see
Refs. [3–5] and references quoted therein). The investiga-
tions in this domain offer an approach to parallel optical
information processing, by encoding information in the
transverse structure of the field. The idea is of considering
the transverse planes as a blackboard on which light spots
can be written and erased in any desired location and in a
controlled way. Optical patterns may display an array of light
spots, but are unsuitable for this task becausethe intensity
peaks are strongly correlated with one another, so that they
cannot be manipulated as independent objects. This task be-
comes possible, instead, using cavity solitons(CSs), a pecu-
liar type of spatial solitons[6] which arise in a dissipative
environment. They belong to the class of localized structures,
which were discovered in other fields(see, e.g., Refs.[7,8]
and for a general theory[9]) and arise under conditions of
coexistence, in a nonlinear dynamical system, of a homoge-
neous stationary state and a patterned stationary state: for the
same values of the parameters, according to the initial con-
dition, the system may approach the homogeneous or the
pattern state. Localized structures are intermediate between

the two, in the sense that they coincide with the pattern state
in a certain restricted region of the plane, and with the ho-
mogeneous state outside. By definition, localized structures
must be independent of the boundary. A cavity soliton corre-
sponds to a localized structure with a single peak. After pio-
neering works in the eighties[10–12], noteworthy attention
was focussed on CSs since the midnineties[5,13–17]. They
are generated in optical resonators containing nonlinear ma-
terials and driven by a broad area, coherent, and stationary
holding beam(Fig. 1). The device is operated under paramet-
ric conditions such that the output is basically uniform over
an extended region. However, by injecting a localized laser
pulse one can write a CS where the pulse passes(at the
location in the device cross section where the pulse im-
pinges) and the CS persists after the pulse. The CSs written
in this way can be erased by injecting again pulses in the
locations where they lie; these pulses must be coherent and
out of phase with respect to the holding beam[15]. Cavity
solitons are not standard optical spatial solitons which arise
from the balance of nonlinear self-focusing and diffraction or
from nonlinear phase modulation, such as those considered
in Ref. [6]. As a matter of fact, CSs may emerge even in
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FIG. 1. A coherent, stationary, quasi-plane-wave holding field
drives an optical cavity containing a nonlinear medium. The injec-
tion of narrow laser pulses creates persistent localized intensity
peaks in the output(cavity solitons).
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presence of moderate self-defocusing, provided the carrier
diffusion is large enough. They manifest a condition of bi-
stability between an “on” localized state(induced by the
writing beam) and an “off” low intensity state.

In presence of a phase(intensity) modulation in the hold-
ing beam, CSs tend to move to the nearest local maximum of
the phase(intensity) profile [14]; for instance, by introducing
a periodic phase modulation it is possible to create a recon-
figurable array of CSs, which act as binary pixels. Experi-
mental observations of localized structures in macroscopic
cavities have been obtained[18–20]. Similar phenomena
have been observed in systems with feedback[21–23] and
recent works on control of large solitons arrays have been
reported[24,25]. On the other hand, the observation of CSs
in semiconductor microresonators is an important issue not
only for fundamental physics but also for developing useful
devices; theories for this configuration have been formulated
in Refs.[26–31]. Optical patterns in semiconductor cavities
have been observed in Refs.[32–36]. Phenomena of light
localization, i.e., precursors or candidates for CSs, have been
reported[33,37,38]; thermal effects play an important role in
these observations. A clear-cut demonstration of objects that
can be manipulated independently of each other and of the
boundary, as it must be for CSs, has been obtained recently
[39], using broad-area vertical cavity semiconductor laser,
driven above transparency but slightly below threshold. A
recent review on the topic of cavity solitons, with a rich list
of references, can be found in Ref.[40]. In this paper we
provide a more detailed description of some results briefly
described in Ref.[39] and extend them. Especially, in the
experimental part we demonstrate the generation of quite a
number of CSs in the transverse section, whereas Ref.[39]
reported on the writing/erasing of two solitons. In addition,
we perform a careful analysis of the switching process of
CSs. Furthermore, we provide a detailed description of the
model used to simulate the experiment and present an ex-
tended comparison between the results of the numerical
simulations and those of the experiment. These results arose
from the close collaboration of the experimental group in
Nice and the theoretical groups in Como and Bari. In Sec. II
we present the experimental results, while in Sec. III we
describe the theoretical and numerical results comparing
them to the experimental evidences. The conclusions and
perspectives are outlined in Sec. IV.

II. THE EXPERIMENT

A. The experimental setup

The laser where we are intended to generate the cavity
solitons has been provided by Ulm university and is an oxi-
dized bottom-emitter vertical-cavity surface-emitting laser
(VCSEL) with Bragg mirrors consisting of 20.5 pairs on the
bottom side and 30 pairs on the top side, and three quantum
wells emitting around 970 nm at threshold[41]. Its diameter
is 150mm.

An external-cavity laser in Littrow configuration(Fig. 2)
provides the holding beam(HB), which can be tuned in the
range 960−980 nm by steps of 51 GHz(which corresponds
to the longitudinal mode separation of the laser) and, for

each step, it can be tuned continuously on a range of 6 GHz.
The measured linewidth is less than 1 MHz on long-time
acquisitions(larger than 1 min), while the maximum power
attainable is 100 mW. This beam is spatially filtered and it is
prepared by an optical system in order to obtain a collimated
beam having a waist of about 300mm. This beam, whose
intensity can be considered almost uniform across the whole
section of the VCSEL, is injected into the cavity along the
optical axis. An optical isolator(Gsänger modulator FR
500/1100, return loss.30 dB) is placed at the beam exit of
the external-cavity laser in order to avoid any disturbance
from back reflections and from the slave output. The inten-
sity of the injection beam entering in the VCSEL(before the
collimator) can be adjusted up to 33 mW. The holding beam
power is controlled by an acousto-optic modulator(maxi-
mum suppression 30%) together with a polarizer. The second
output coming from the external cavity laser is used as writ-
ing beam(WB). This beam is prepared to obtain a waist of
10–15mm while its maximum injectable power in the VC-
SEL is 1 mW. The writing beam power is controlled by an
acousto-optic modulator(maximum suppression 30%) and
by a polarizer. Writing beam phase relationship with respect
the HB is controlled by piezo positioning of a mirror on its
own path.

The reflected output of the VCSEL is monitored by a
charge-coupled device(CCD) camera Pulnix 765E, on which
we form the image of the emitted near field. A photodetector
Thorlabs D400(less than 100 ps rise time) monitor a small
portion of the VCSEL transverse plane in order to detect the
switching dynamics of a CS. A digital oscilloscope Lecroy
Wavemaster 8600 A(6 GHz analog bandwidth, 20 GHz
digital bandwidth) is used for monitoring the detector output.
For measuring the optical spectrum of the holding beam we
used three kinds of instruments: a large free spectral range
scanning Fabry-Perot interferometer(resolution 2 GHz, FSR
270 GHz), a high resolving Fabry Perot interferometer(reso-
lution 300 MHz, FSR 30 GHz), and a monochromator with a

FIG. 2. Experimental setup.M, high power edge emitter laser;I,
Current driver stabilized up to 0.01 mA;TO, Temperature control-
ler; G, grating; OI, optical diode; FP, Fabry-Perot resonators; AOM,
Acousto-optic modulators; SF1, Beam expander-configurator with
spatial filtering; SF2, Beam reducer configurator with spatial filter-
ing; S, broad-area vertical cavity surface emitting laser; C, collima-
tor; CCD, camera; PD, Photodetector; PZT, Piezoelectric ceramic;
M and BS, mirrors and beam splitters; PM, power meter(optional);
l /2, l /2 wave plates;P, polarizes; OF and MONO, optical fiber
and monochromator.
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resolution of 0.5 Å for having absolute estimation of the in-
jection wavelength. The same set of instruments have been
used to measure also the VCSEL output spectra. A power
meter can be inserted into the injections beam path just be-
fore the VCSEL in order to estimate the writing beam and
holding beam power.

B. The solitary laser

The light intensity output of the solitary VCSEL as func-
tion of the pumping currentsJd is plotted in Fig. 3. Applying
the conventional definition of laser threshold, we inferJth
=175 mA. In fact, this definition of laser threshold, where
the intensity output is integrated through the whole trans-
verse plane of the device, is not meaningful when dealing
with such broad-area laser. Looking at the output profile at
Jth [inset (a) of Fig. 3] it is evident that the emission occurs
only around the boundaries of the device. This “ring” profile
for J=Jth is due to the current crowding close to the insulat-
ing boundaries. As the pumping current is increased, the la-
ser emission occurs progressively in the whole transverse
plane, but no emission is detected monitoring the central part
of the device up toJ=300 mA [inset(b) of Fig. 3]. In other
words, in such a broad-area VCSEL, every point in the trans-
verse section has an emission threshold depending on its
radial distance from the center of the device. It is useful to
monitor the local emission spectrum across a section of the
VCSEL. Figure 4(a) shows clearly that forJ=300 mA, there
is emission at several well defined frequencies only near the
boundary. ForJ,300 mA 80% of the transverse section of
the device does not emit. We will always operate at current
values for which the central region is not emitting. Another
important test in order to asses that we are operating the
VCSEL as an amplifier(at least in the transverse region of
interest) is to verify that, under injection of an external field,
the VCSEL emission frequency is locked to the injection
frequency. In Fig. 4(b) we show that up toJ=320 mA the
central region is indeed locked to the frequency of the exter-
nal field while the region close to the boundary shows emis-
sion at several frequencies.

C. The broad-area VCSEL under injection of an external field

The VCSEL output profile when we inject an external
monochromatic field is shown in Fig. 5. In order to maxi-
mize the VCSEL gain we operate it at a temperature for
which its cavity resonance frequency is close to the gain
curve peak. The VCSEL amplification of an external field is
maximum when the injected frequency is close to the cavity
resonance of the VCSEL cavity. In this situation the output
profile can be divided in two parts[Figs. 5(b)–5(g)]: a left
part where a patterned structure is formed, and a right part
where the reflected intensity is uniform and has a low inten-
sity level. We have here to emphasize that this asymmetry is
not due to misalignment of the injected beam which is par-
allel to the emission axis of the VCSEL. These two zones are
separated by a vertical line and the pitch of the spatial struc-
ture uniformly decreases to the left of the device.

These emission profiles can be understood considering
that broad-area VCSELs usually exhibit a strong gradient of

FIG. 3. Light intensity output vs pumping current for the soli-
tary VCSEL. inset:(a) Average intensity profile atJ=200 mA, (b)
emission profile atJ=300 mA. FIG. 4. Average intensity profile(top) and spatially resolved

optical spectra across a section of the VCSEL(bottom) for two
experimental situations: Free running laser pumped atJ=300 mA
(left) and VCSEL with injected fieldPhb=8 mW at J=320 mA
(right). The darker lines(high intensity) correspond to the fre-
quency of the injected field. The frequency interval between the two
dark lines corresponds to the free spectral range of the Fabry-Perot
resonator. No defined frequency is observed in the homogeneous
region because the intensity is not high enough to allow a measure-
ment with the sensitivity of our detectors.

FIG. 5. Average intensity profiles of the VCSEL under different
injection frequency around 970 nm. From(a) to (h) the frequency is
decreased by step of 50 GHz,J=180 mA, Phb=8 mW.
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the cavity length along the transverse section due to the non-
parallel layers forming the cavity, owing to the standard ep-
itaxial growth techniques. By consequence, in our system,
the cavity resonance varies along one direction of the trans-
verse plane. The line separating the pattern and the homoge-
neous field phase can be interpreted as the locus of the spa-
tial positions where the local values of the cavity resonance
and field intensity meet the condition for the onset of a
(pattern-inducing) modulational instability. We recall that in
a homogeneous system, for all other parameters fixed, this
boundary is definedin parameter space onlyby a critical
detuninguc between the injected field frequencysvid and the
longitudinal cavity resonancesvcd :u=svc−vid /k, being k
the cavity half-width. Foruuu. uucu a pattern develops. In-
stead, in our system, due to the gradient of the cavity reso-
nance, the modulational instability(MI ) occurs in the trans-
verse plane of the VCSEL and the instability boundary
manifests itself as a separation between a patterned spatial
region, and a uniform one. The numerical studies(see Sec.
III ) show that the critical detuninguc depends on the power
of the injected fieldsPhbd, as we show in Fig. 6. Varying the
injected field frequency while keeping fixed its intensity, we
observe a rigid shift of the whole pattern in the transverse
plane(Fig. 5). This is due to the shift of the MI boundary to
the new locus of points where the critical detuning condition
is satisfied. This observation can be used in order to estimate
the gradient of the cavity resonance in the VCSEL[42]. In
this particular device, a cavity resonance gradient of
2.34 GHzmm−1 is measured along the horizontal dimension,
which leads to a resonance frequency difference of 351 GHz
between one side and the other of the amplifier. This value is
in excellent agreement with the value found from wafer mea-
surements[43]. In Fig. 7 we show the near field output of
another VCSEL sample where the wafer growth process has
been improved in order to decrease the cavity resonance gra-
dient to 0.27 GHzmm−1.

D. The cavity solitons: control and parameter space

According to theoretical predictions(see Sec. III) CSs are
stable solution for a given range of values for the cavity
detuning uuu, uucu. Then, they can be observed experimen-
tally in the homogeneous region of the VCSEL under injec-
tion (see Fig. 7(c), for example). Moreover, the presence of

the cavity resonance gradient limits the existence of the CSs
to a small region around the vertical line separating the pat-
terned region from the homogeneous region. We choose the
sample with the smallest cavity gradient, since we dispose of
the largest portion of transverse plane fulfilling the criteria
for stable CSs. We fix all parameter values as in Fig. 7(c) and
we inject the writing beam into the homogeneous region.
Starting with no spot, the WB is capable of generating a high
intensity spot with a diameter on the order of 10mm when it
is in phase with the holding beam. If we remove the WB, the
bright spot remains on indefinitely. We then apply this beam
in a different location without changing any parameter value
and a second spot is generated without perturbing the first
one we have created. This one will also persist after removal
of the WB. We reach, then, the situation in which two spots
exist. Changing the phase of the WB byp in respect with the
HB and reinjecting it successively at each location, where
the spots have been created, we erase each of them in an
independent way. The full series is displayed in Fig. 8 and
we claim these spots being CSs[39]. The minimum power
requirementPwb,min for the WB in order to switch on a CS
depends onPhb, u, andJ. For measuringPwb,min we fix u like
in Fig. 7(c). We find that forJ=262 mA,Pwb,min ranges from
1 to 20mW for Phb ranging, respectively, from 8 mW to
1 mW, while for J=252 mA, Pwb,min ranges from 1 to
20 mW for Phb ranging, respectively, from 27 mW to
15 mW.

It is interesting to measure the rise time of the CSs after
application of the WB. In Fig. 9 we show the time series
displaying the rising front of the CS. The rise time of the CS
is 570±50 ps. This value is not significantly affected by pa-
rameters variations, provided that the CS can be switched on.
It is important to remark that the time measured is the
build-up time of the CS intensity but we cannot claim that
this is the total CS switch-on time after application of the
WB. Measurements for quantifying a time-delay between the
application of the WB and the onset of the CS intensity
buildup are in progress.

Cavity solitons may be switched on by means of the writ-
ing beam but they can also appear spontaneously induced by
the noise present into the system when the holding beam
power is close to the critical value for which the homoge-

FIG. 6. Modulational instability border shifting as the injection
intensity is increased,J=180 mA, Phb from 1 mW (lowest in the
graph) to 8 mW (highest in graph). The different curves have been
offset for clarity.

FIG. 7. Average intensity profiles of a second sample of VCSEL
under different injection frequency around 970 nm. From(a) to (d)
the frequency is decreased by step of 50 GHz,J=200 mA, Phb

=8 mW.
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neous solution is not stable anymore[this value will be illus-
trated and commented in Sec. III(see Fig. 15)]. They also
appear decreasing the holding beam power from values
where only pattern solutions are stable to values where only
CSs and the homogeneous solution are stable. In Fig. 10 we
show experimentally, as function of the VCSEL bias, the
values of the holding beam power at which, for increasing
power, the homogeneous solution(Fig. 10, inset 1) looses its
stability and pattern(Fig. 10, inset 3) develops(Fig. 10, up-
ward arrow). For decreasing HB power, patterns evolves to
CSs(Fig. 10, inset 2). Continuing to decrease the HB power,
at a critical value the CS solution looses its stability and the
system switch to the homogeneous solution(Fig. 10, down-
ward arrow). These transitions, as always in real systems
close to bifurcation, are inevitably smoothed by the presence
of noise. Therefore, close to the parameter values where the

homogeneous solution or CS solution becomes unstable, the
noise may induce spontaneous jumps of the system towards
the other solution. This results in a relative uncertainty of
parameter values of about 20% for the borders of the bista-
bility region (gray part in Fig. 10) where CSs coexist with
homogeneous solution.

FIG. 9. Measure of the rise time of the CS and(inset) zoom onto
a smaller time window.Phb=3 mW, Pwb=10 mW.

FIG. 10. CSs existence domain as a function of the parameters.
Upward arrow indicates the border in the parameter space where the
homogeneous solution switches off for increasing HB intensity.
Downward arrow indicates the border in the parameter space where
the CSs switches off for decreasing HB intensity. Region(1) is
characterized by the output profile of inset(1), region (3) is char-
acterized by the output profile of inset(3) and in the gray region
s1+2d CSs (inset 2) and homogeneous solution coexist. Note that
the profiles are flipped horizontally with respect the ones shown in
Figs. 5 and 7.

FIG. 8. Intensity distribution of the output field. The holding beam is always on, and all parameters are kept constant:Phb=10 mW,J
=262 mA. (a) The writing beam(WB) is blocked;(b) a 15mm focused WBsPwb=8 mWd targets a point into the homogeneous region; it
induces the appearance of a single CS;(c) the WB is blocked again, the CS remains;(d) the WB is displaced in position and switched-on
again and it generates a second CS;(e) the WB is blocked again and the two bright spots coexist;(f) the WB targets again the second CS,
but the relative phase of WB with respect to HB has been changed ofp and the CS is erased;(g) the WB targets again the first CS, but the
relative phase of WB with respect to HB has been changed ofp and even the first CS is erased. Once the WB is blocked, the intensity
distribution is identical to(a). In (h) we plot the CS profile.
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E. The cavity solitons: positioning

By changing the frequency of the injected field we find
various positions where a CS can be located, always in the
homogeneous emission region and close to the border with
the pattern region. Thus, such structures exist in a relatively
wide range of injected field intensity and/or pumping current
and always close to the critical detuning value corresponding
to the modulational instability. Anyway, we are not able to
create a CS in an arbitrary position inside the transverse do-
main where they are possibly stable. In Fig. 11 we target
with the WB a point in a slightly different location with the
one targeted in Fig. 8(b). We can generate a CS but after
removal of the writing beam it migrates towards the position
of Fig. 8(b), suggesting that this location is an attracting
locus for CS. Two elements determine this behavior. First the
presence of a roughness of the layer as well as random dis-
tributed impurities across the transverse plane of the device
which trap the CS. Second the cavity resonance gradient
which acts as “wind” and tends to blow the CS towards the
pattern region with a velocity proportional to the gradient.

We have measured the speed of the CS. The CS drifts of
18 mm in 38 ns which means a speed value of 470 m/s. This
value is in good agreement with the value predicted by the
theory for the amount of gradient present in our device(see
Sec. III D). Moreover, the theory explains also the trapping
role of the sample roughness. The conditions for such “trap-
ping” obviously depends on the balance among the local
resonance and the large-scale resonance cavity gradient. In
conclusion, the presence of the cavity gradient induces a drift
of the CSs and limits their existence to a small region in the
transverse plane. A strong effort in solving this problems is
in progress for the future fabrication of new samples. On the
other side, the presence of impurities and the inevitable
roughness of the layers trap the CSs. This enables the obser-

vation on averaging CCD camera possible but it makes dif-
ficult an arbitrary positioning of the CSs across the device.

Alternatively, we can observe CSs if we vectorially com-
pensate the force exerted by the cavity length gradient with a
force exerted by an opposite gradient. Such antagonistic gra-
dient could be easily introduced experimentally in the inten-
sity or in the phase of the holding beam. An easy way to
introduce a phase grating in the holding beam is by injecting
a holding beam tilted witch respect the VCSEL cavity axis. A
beam tilted in the plane defined by direction of the cavity
resonance gradient and the axis of the VCSEL cavity results
in a phase gradient which may compensate the cavity reso-
nance gradient if the angle of tilting is chosen with the right
value. In Fig. 12 we have used an holding beam tilted in
order to compensate the cavity gradient. Starting from maxi-
mum value ofPhb and decreasing it we observe, in agree-
ment with theoretical results, “stripe like” patterns that con-
tracts to leave CSs, confirming the conceptual interpretation
of CSs as “remains of bifurcating pattern.” Choosing prop-
erly the parameters we are able to create up to seven CSs
(Fig. 13) almost filling the region where they are stable. This
result is strongly encouraging for the future in order to de-
velop gradient-free broad area VCSEL. As further step, once
these devices are obtaired, it will be very interesting to ana-
lyze the interaction between them as a function of their dis-
tance and to implement the all-optical reconfiguration of CSs
array.

III. THEORY AND SIMULATIONS

A. The model

We described the field dynamics of the device studied in
the experiment performing tailored simulations in a model

FIG. 11. CS drift: we target an arbitrary point with the WB and,
as we remove it, CS migrates in a point nearby. The vertical line
helps as reference for the CS position. Note that the profiles are
flipped horizontally with respect the ones shown in Figs. 5 and 7.

FIG. 12. Intensity distribution of the output field for decreasing
HB power,J=280 mA. From(a) to (f) the holding beam power is
scanned downward from 33 mW to 2 mW. The HB has been tilted
in order to vectorially compensate the force exerted by the cavity
length. Note that the profiles are flipped horizontally with respect
the ones shown in Figs. 5 and 7.

FIG. 13. Intensity distribution of the output field showing the
presence of seven CSs.Phb=25 mW,J=290 mA.

HACHAIR et al. PHYSICAL REVIEW A 69, 043817(2004)

043817-6



where we first predicted existence of CSs[26,28]. The basic
dynamical equations for the slowly varying coherent field
and carrier density, in the paraxial and mean field limit ap-
proximations, read

] E

] t
= − kfs1 + iudE − EI − iSxsNdE − ia¹'

2 Eg, s1d

] N

] t
= − gfN − ImfxsNdguEu2 − I − d¹'

2 Ng, s2d

whereE, N are the normalized electric field and the carrier
densitysnormalized to its transparency valued, k is the cavity
decay rate,g is the nonradiative recombination rate,u is the
cavity detuning parameter,EI is the normalized input field,I
is the normalized current profile,S is the cooperativity pa-
rameter,x is the susceptibility of the material, and¹'

2 is the
transverse Laplacian wherea and d are the diffraction and
diffusion coefficients, respectively. A more detailed discus-
sion of the parameter definitions and of the scalings can be
found in Ref.f15g.

In recent times the above model was refined to include a
first-principle description of the semiconductor susceptibility,
many-body effects, and a few other relevant corrections
[29,30], moreover fundamental quantum-based models of
semiconductor response have been successfully proposed
[31,44]. As it turns out, the approximation to the semicon-
ductor susceptivity

xsNd = − sa + idsN − 1d, s3d

yields results which are in excellent agreement with the ex-
periment and already proved to provide resultssMI thresh-
olds, pattern variety, CS properties and dynamicsd qualita-
tively similar to more refined modelsse.g., compare Refs.
f28,29gd. In Eq. s3d, a is the linewidth enhancement factor
f45g. The peculiarity of the experimental observations re-
sides mainly in the particular shape of the sample, the varia-
tion of the microcavity resonance across the VCSEL’s diam-
eter, the current crowding on its outer border and—as our
simulations evidenced—the fluctuations in the resonance
transverse profile. This required us to introduce phenomeno-
logical modifications, increasing the complexity of our simu-
lations and preventing an analytical explanation of the
emerging pattern variety.

These modifications are summarized as follows.
(1) A broad Gaussian profile for the holding beam, to

reproduce its experimental shape,EIsx,yd=EIexpf−sx2

+y2d /2S2g, where the origin of thesx,yd coordinate system
is chosen at the center of the integration grid andS is a broad
width (usually twice the spatial size of the integration grid)
so thatEIsx,yd is almost plane wave where the injected cur-
rent is not zero(see next point 4).

(2) A constant gradient in the cavity length, which
amounts to substituting the parameteru in Eq. (1) with a
spatially dependent detuning

usx,yd = u1 − hx, s4d

wherex is the horizontal coordinate. This accounts for the
measured varying cavity resonancessee Sec. II Cd; the cho-
sen values forh were induced from the experimental indica-
tions about the distributed Bragg reflectorsDBRd reflectivity
and the cavity frequency variations along the sample diam-
eter.

(3) The irregularities in the layers of the Bragg reflec-
tors, which are modeled by settingu1=u0+dusx,yd, where
dusx,yd is a Gaussian stochastic process with zero average
and transverse correlation length of a few microns. The mag-
nitude of the fluctuations depends on the reflectivity and on
the distribution of layer jumps associated to the epitaxial
deposition. The correlation length is related with the typical
transverse dimensions of the layer defects. Values for this
stochastic process were induced from previous works[34]. A
stochastic realization ofusx,yd is shown in Fig. 14.

(4) A spatial profile of the electric currentIsx,yd capable
to simulate two basic features of the sample under observa-
tion. One is the circular symmetry of the sample, which is
related to the physical etching of the VCSEL and to the
annular electrode deposition: in this respect we assume that
the current is zero outside a circle and this is sufficient to
qualitatively reproduce the occurring patterns. The other is
the current crowding observed on the outer border of the
sample, due to the annular contact. Since the investigated
sample was a bottom emitter, a particular architecture spe-
cifically cued to make the current-density distribution more
homogeneous inside the sample, it turns out that a top-hat
profile is enough to adequately describe the patterns and the
CSs in the operative regimes reported in Sec. II, while an
annular crowding was sufficient to qualitatively match the
process of emission close to threshold and few other details.

B. Pattern variety and symmetries

The general study of the MIs and pattern formation in an
infinitely extended system has been provided in Ref.[28],
further refinements and extensions were provided in Refs.
[46,47]; here we provide or recall results for a specific para-

FIG. 14. The transverse spatial profile of the cavity resonance
usx,yd. A spatially distributed stochastic process was added to
simulate the roughness induced by the layer jumps in the epitaxial
deposition of the DBRs. The deterministic profile of the resonance
shows a linear gradient, as measured in the experiment.
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metric set suitable for comparison with the device and setup
adopted in the experiment.

Figure 15 shows the homogenous steady state curve(S-
shaped solid/broken line) of the emitted field versus the in-
jected field, the broken part of which marks the part of the
curve unstable versus spatial perturbations. The arrows indi-
cate the lower and higher thresholds of the modulational in-
stability, as predicted by the linear stability analysis. The
hollow circles show the results of the simulations in a
bounded sample; they mark the maxima of the patterns real-
ized by the system when the homogeneous emission loses
stability in favor of spatial modulations. Note the existence
of a range of input field values, between the vertical linesa
andb, to the left of pointA, the lower MI threshold(which
proved to be rather close to that of a broad area VCSEL,
despite the existence of boundaries imposed both by the
holding field shape and the material/current confinement),
where patterns coexist with a homogeneous background.
This is the elective regime where CSs can be obtained. The
wide superposition of patterns and homogeneous solutions to
the right of the higher MI thresholdB is a feature due to the
system’s boundaries and will be described further on in the
text. In this work, we specifically concentrate on features
related to the sample structure and geometry: to this purpose
our approach was to gradually introduce the modifications
listed above in order to evidence their implications on the
morphogenesis and gain a better comprehension of the ex-
perimental observations.

The first step was thus to study the role of the circularly
symmetrical boundaries of the VCSEL: for example, it is

well known that in fluid dynamics convective rolls connect
orthogonally to the boundary[48]. In our case we performed
a slow forward scan of the input field intensity with a con-
stant cavity detuning(h=0) and studied the pattern variety
observed above the MI threshold. In Fig. 16 we show the
evolution of spatial structures for input field values ranging
from 0.66 to 2.5.

We start from an initial condition[Fig. 16(a)] correspond-
ing to isolated CSs sitting on the homogeneous background;
by increasing the input intensity CSs are no longer stable and
dynamical transverse filaments appear[Fig. 16(b)], at times
breaking up in spots then reconnecting again, but invariably
the outermost structures tend to assume the circular symme-
try of the boundary[Fig. 16(c)]. Upon further increase, the
filaments tend to stabilize in circular rings which attain a
prefect regularity for still higher fields. The final targetlike
structures show the tendency of the patterns to avoid contact
with the boundaries, as opposed to the hydrodynamical case.

This branch of patterns is indefinitely extended, in the
sense that the system’s boundaries cause the disappearance
of the upper MI thresholdB in Fig. 15. Beyond the plane
wave(PW) input intensity, corresponding to thresholdB, the
emitted field profile should rather soon fall back to the ho-
mogeneous solution(it has a subcritical character as the
lower one); on the contrary we found that by continuously
increasing the input intensity well above this threshold the
emitted field preserves a circular symmetry. In order to con-
firm that the occurrence and persistence of target patterns can
be ascribed to the role of the boundaries, we ran simulations
for EI =3.0, a value far beyond the thresholdB in Fig. 15,
where a target pattern is realized[Fig. 17(a)]. Then the sys-
tem was integrated again after increasing the spatial step,
which amounts to simulate a sample of larger diameter, so
that the effect of the sample borders on the field spatial struc-
ture is diminished. Results are shown in Fig. 17(b): the cen-
tral region of the sample shows a flat profile, now corre-
sponding to the value of the homogeneous solution. The
persistence of a weaker, circular motif on the border ensures
that the diffractive modulations are still present, i.e., patterns
are not artificially canceled by a grid too coarse to accom-
modate transverse modulations. This confirms that the ring-
like patterns are intrinsic structures, stabilized beyond the MI

FIG. 15. S-shaped input-output curve for the homogenous sta-
tionary solution of Eqs.(1) and (2). The broken part of the curve
shows the unstable region where, due to a MI, the system can be
expected to realize a patterned profile. PointsA and B mark the
(lower/higher, respectively) thresholds of the instability and are cal-
culated by performing a linear stability analysis on an infinitely
extended medium along Ref.[28]. The value of the input field at
pointsA andB is 0.69 and 1.88, respectively. The two vertical lines
a andb delimit the region where patterns and stable homogeneous
solutions coexist. Circles refer to solutions obtained by direct inte-
gration of Eqs.(1) and(2) for a circular current profile; on the left
of line a, they correspond to homogeneous solution, while on the
right they plot the maxima of patterned states. Other parameters are:
d=0.052,u=−2.25,S=0.90,a=5.0.

FIG. 16. The intensity field profile changes when the input field
is slowly increased from a valuesEI =0.66d slightly lower than the
thresholdA to a valuesEI =2.5d well beyond thresholdB. The sys-
tem displays the patterns whose maxima correspond to the circles in
Fig. 15. Patterns in(b), (c), (d) are dynamical, all the others are
stationary. Gray scale ranges from white(intense fields) to black
(low fields).
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thresholdB by the sample boundaries, and that when this
constraint is removed the system realizes the homogenous
solution as the PW analysis predicts.

The second step in our analysis consisted in introducing
the cavity resonance gradient and reproducing the pattern
variety under broken azimuthal symmetry. It is worthwhile
here to recall how our previous theoretical and experimental
investigations evidenced the onset of two separated regions
for patterns and homogeneous profile. According to our re-
sults, in an appropriate range of values of the holding beam
intensity, the reflected field shows on the left a dynamical
pattern, whose intensity peaks irregularly oscillate in time,
and a homogeneous region on the right[see Ref.[39], Fig.
3(b)]. Although depending onu1, the location of the bound-
ary between the two does not coincide with the linex
=u1/h [see Eq.(4)], where the cavity is resonant with the
input field; actually, it is determined by the threshold of the
modulational instability causing the formation of patterns; as
it is well known, this threshold depends on the cavity detun-
ing (among other parameters, such as the input field inten-
sity, see below), hence, when it changes across the sample,
one finds the boundary in terms of the locus of the local MI
thresholds. Note that it reproduces a nearly straight line
when the input field is almost a plane wave. Our interpreta-
tion is supported by an analytical evaluation of the MI
threshold for an unbounded system, with PW injection[see
Ref. [39], Fig. 3(a)] where the predicted threshold matches
the numerical evidences, and we also provide an indication
about the sample region where CSs are expected to be stable.

C. Comparison with the experiment

Since in the experiment a shift of the boundary was ob-
served by changing either the input field frequency or its
intensity, we validated this evidence in terms of the drift of
the MI threshold with those two quantities. Simulations fully
confirm this behavior as seen in Figs. 18 and 19. In Fig. 20
we show an interpretation of the slight boundary curvature
observed at times in the experiment as due to the Gaussian
shape of the input field whose isointensity lines are circles:

for weaker local intensities the threshold is pushed towards
lower cavity detunings(as hinted by Fig. 19). As it turns out,
a beam waist around the size of the sample diameter makes
the HB departures from plane wave irrelevant to all practical
effects.

Another agreement between experiment and theory here
is the reduction of the structure size when the cavity detun-
ing becomes smaller, as a consequence of the increase of the
modulational instability’s critical wave vectorKC for de-
creasing cavity detunings, as predicted in the past[49]. By
injecting higher and higher intensities, the boundary moves
rightwards and the patterns invade the whole device’s sec-
tion. As in the previous case with constant detuning, the
patterns(filaments, occasionally breaking up in spots) are
dynamical, and they continuously evolve in time. Eventually,
when the pattern occupies the whole section of the device it
undergoes a process similar to that observed in the previous
case, and the field shows the occurrence of the target patterns
with unaffected circular symmetry[same as Fig. 16(h)].

The last part of our investigations was devoted to a char-
acterization of the CSs properties, as evidenced by the ex-
periments. The peculiarities of the CSs observed in this par-

FIG. 19. Sample with high cavity resonance gradient. Field in-
tensity profile(gray scale) for decreasing(from a to d) values of the
input intensity. This matches the experimental observed border
shifting upon decreasing the injected power(see Fig. 6).

FIG. 17. The field intensity profile forEI =3.0 as marked in Fig.
15. We expect an unbounded device to be homogeneous here be-
cause the system is way above the higher MI thresholdB. In (a) we
see that a pattern is still present, though, as a result of a boundary-
induced stabilization(see text). The spatial step size is 0.5.(b) The
spatial step size has been increased to 1.2, thus simulating a broader
device. The target pattern has disappeared and the profile in the
emission circle is almost homogeneous, save for a few diffraction
rings at the sample border.

FIG. 18. Sample with high cavity resonance gradient. Field in-
tensity profile(gray scale) for decreasing values(from a to h) of the
cavity detuningu. This matches the experimental observed shift of
the boundary upon decreasing the injected wavelength(see Fig. 5).
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ticular experiment, that in our opinion needed an
interpretation and/or an at least partially quantitative com-
parison, were(a) the stabilization of CSs in determined lo-
cations of the sample section, which was spontaneously
achieved just in the sample with low resonance gradient,
while in the sample with high transverse gradient it could be
obtained only by making use of an eccentric, narrower hold-
ing beam; and(b) the possibility of controlling the stationary
CSs by adding a further Gaussian external beam.

A general theoretical treatment of the CS dynamical re-
sponse in presence of external perturbations, in particular of
those amounting to a parameter gradient in the spatial do-
main (be it phase, intensity, or detuning), was reported in
Refs.[17,46]. The main result was the prediction of a linear
dependence of the CS drift speed to the gradient of the spa-
tially varying quantity, as shown by Eq.(6.15) of Ref. [46],
when the gradient could be treated perturbatively. Although
the detuning gradient in the investigated sample cannot be
treated perturbatively, we could nevertheless expect the de-
tuning gradient to act as a sort of Aristotelian force where the
velocity is vectorially proportional to the force itself. We
thus started to perform simulations for the high-gradient
sample, by estimating a resonance(and thus detuning) drift
of about five scaled units in our parameteru for a resonator
with an average of 0.5% transmittivity.

The CSs were excited by adding a narrow pulse to the
holding external field with its same phase, for a short time, as
reported in Ref.[15], and they immediately behaved as ex-
pected, sliding leftwards and following the gradient lines. As
it turns out, the CS slides directly into the patterned domain,
melting with the structures and ceasing to exist as an indi-
vidual entity. We tried to reproduce the experimental tech-
nique by means of which it was possible to compensate the
speed induced by the force associated to detuning gradient
with an equal and opposite force associated to the intensity
gradient intrinsic to the Gaussian profile of the holding
beam.

Yet, we could not cause a CS to stop by merely acting on
the sole holding beam, therefore we added a second Gaussian
beam[hereinafter control beam(CB)], with a lower intensity
(about one order of magnitude) than the holding beam and a
considerably narrower waist(about 1/25). This accom-
plished the double requirement of providing a sensible inten-
sity gradient(variation in space) and a negligible local per-
turbation(intensity magnitude) which did not affect the CSs
stability. A typical three-dimensional(3D) intensity portrait

for this double Gaussian injection is shown in Fig. 21(a).
When a CS is now switched on at a location lying at the left
of the CB axis, it starts sliding leftwards, crosses the CB
maximum and starts feeling the opposite gradient force. It
then slows down, and remains trapped in a precise location,
where the two forces cancel. The equilibrium regime is de-
picted in Fig. 21(b).

The second sample which was experimentally investi-
gated exhibited a gradient one order of magnitude weaker,
and in those conditions CSs were observed sliding towards
certain location where they could stand still.

Based on our previous experience of the role of the rough-
ness in the detuning profile(due to the layer jumps intrinsic
to the DBR epitaxial deposition[34]) we interpreted the ex-
istence of equilibrium positions as the results of local size-
able variations in the detuning so that, if we may introduce a
pictorial image, the CS can be fancied as a rock rolling
downhill that can be stopped by a hump(or a dip) in the
terrain, provided it is sufficiently elevated(or hollow). The
milder the slope, the easier is to find a land scar capable to
accomplish the trapping. We thus performed the new streams
of simulations adding the stochastic realizations of the detun-
ing profile described above[see Fig. 14].

Indeed, as shown in Fig. 22, the CS moves to the left with
a velocity of about 550 m/s, reaches a location where it gets
trapped and there it will sit still forever. It must be noted that

FIG. 20. The effect of the holding beam shape on the emitted
field profile: from (a) to (b) the HB waist has been halved.

FIG. 21. A 3D surface plot of the transverse field intensity
showing a system state similar to that shown in 2D in Fig. 18(a). (a)
The small hump appearing in the homogeneous emission domain, to
the right of the patterned region, shows the local-field increase due
to the additional beam CB. The CB is weak enough as not to trigger
modulational instabilities at the location where itis centered.(b)
Here the system exhibits the profile at regime after a suitable pulse
has locally excited a CS at the far end of the sample. The CS sled
towards the patterned region due to the detuning gradient and has
been eventually stopped by the countergradient(in intensity) ap-
plied by the CB. The plotted profile is thus a stationary one. Note
that the CS is stopped on the left of the CS maximum, because that
is where the detuning and intensity gradients are opposite(antipar-
allel); to its right the two would be parallel.

FIG. 22. The CS slides leftwards and is trapped in a roughness-
determined location. As commented in the text, the patterns in the
left domain are not stationary, but continuously evolve in time. A
vertical diameter has been added to make the movement more evi-
dent. The last frame represents a stationary configuration, whose 3D
profile appears in Fig. 23.
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the roughness-induced equilibrium locations in principle
limit the continuum of positions where a CS can be encoded
to a countable set, but, on the other hand, they appear in our
simulations to be interspersed densely enough throughout the
sample’s cross section, as to ensure a satisfactory density of
equilibrium positions. It must be kept in mind that there exist
interaction distances between CSs[15,17,28,46], and the CSs
spatial encoding density seems to be more stringently limited
by this factor. Also, in absence of the roughness trapping, CS
would slide undisturbed and one would need to largely re-
duce the diametral resonance gradient in the sample, with a
consequent increase in sample costs and growth times.

Figure 23 shows a 3D plot of the intensity profile, where
the reader can appreciate the absence of strong perturbations
induced by the cavity detuning roughness, whose main effect
actually resides in the dynamical action of the local fluctua-
tions on the Cs motion, rather than on the local intracavity
field. The background intensity is almost as smooth as in Fig.
21(a).

D. CSs switch-on

Finally we devoted a series of simulations to the evalua-
tion of the dynamics of the CSs switch-on process, in order
to reproduce the experimental results concerning CS
build-up times. We start our study from the PW analysis[see
Fig. 15], in a parameter range where the CSs branch coexists
with the lower homogeneous branch. By injecting a narrow
WB into the cavity for a short interval of time we can access
the CSs branch and create a soliton. Practically, when the
holding beam has an amplitudeuEIu=0.75 in our scaled units
[see Fig. 15], we add a WB with a Gaussian shape centered
at an arbitrary position. The duration of the injection can be
optimized to a minimum value, below which the CS cannot
be created. Nevertheless, this parameter is not significant
from an experimental viewpoint, because the experimental
time resolution in analyzing the injection process is too
coarse(experimentally the duration of the injection is around
100 ns, and cannot be significantly reduced). We therefore

fixed the WB waist tosWB=15 mm, the duration of the in-
jection to 20 ns, and the WB amplitudeuEWBu=0.5 in our
scaled units. In Fig. 24 we report the amplitude of the intra-
cavity field at the CS center during the first 2 ns of the in-
jection. After a delay time(of about 0.8 ns), the CS switches
on with a build-up time of roughly 550 ps. As for the CS
build-up time, the agreement with the experiment is excellent
(experimental value: 570±50 ps). Next we introduced a
phase mismatch between the two beams. As the phase of the
WB is varied with respect to the holding beam, ranging from
0 to ±20, we note that the build-up time remains unchanged.

The second step is to evaluate the WB power necessary to
switch on a CS, in order to compare it with the experimental
findings. In our theoretical approach we are used to work
with scaled quantities, therefore it is very difficult to evaluate
the real physical quantities. So we decided not to compare
the absolute powers, but the ratio between the WB power
sPWBd and the HB powersPHBd. Experimentally[39], typical
values arePWB=50 mW and PHB=8 mW, so thatPWB/PHB
=6.25310−3. Numerically, we have to evaluatePWB/PHB
= uEWBu2psWB

2 / uEIu2A, whereA is the area of the sample. Af-
ter substituting the value we currently used, we obtain
PWB/PHB=1.40310−2, with a good agreement with the ex-
perimental value. The agreement becomes even better
sPWB/PHB=4.44310−3d, if we inject a Gaussian(instead of
a PW) holding beam with a waistsHB=150mm, as in the
experiment.

IV. CONCLUSIONS AND DEVELOPMENTS

By comparing theoretical models and the extensive simu-
lations based thereupon to a number of experimental evi-
dences, we have provided a rather complete analysis of the
pattern features and CSs properties, as observed in the field
profile emitted by a broad-area VCSEL amplifier. The funda-
mental properties of CSs have been assessed and the crucial
measurements concerning their addressing, drift and pinning
have been validated by theoretical interpretations. In particu-

FIG. 23. The stationary profile of the field intensity after a CS
(originally excited around the sample center) has slid along the
detuning gradient and has been stopped by the sample roughness
(see text). Compare the relative roughness in the detuning profile
(Fig. 14) and the smoothness in the homogenous region of the emit-
ted field in the background of the CS. The arrow evidences the CS.
Despite its vicinity to the pattern boundary the CS can still be
addressed independently.

FIG. 24. Modulus of the intracavity field at the CS peak as a
function of time, during injection of a Gaussian pulse of 15mm
width (numerical simulation).
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lar we have shown that, despite an intrinsic cavity resonance
gradient and residual layer imperfections(due to the epitax-
ial growth process), CSs still exhibit independence and mo-
bility, and thus remain viable for dynamical and controlled
optical information encoding and processing. Both theoreti-
cal and experimental activities are in progress to realize
schemes where such basic features are applied to relevant
all-optical applications such as buffer register, serial-parallel
conversion, and array reconfiguration. The agreement be-
tween simulations and observations is excellent, even quan-
titatively on some issues such as the CS switch-on times

and powers requirement for the injection beams.
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