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Kinetics of phase transformations in depletion-driven colloids
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We present results from a detailed numerical study of the kinetics of phase transformations in a model
two-dimensional depletion-driven colloidal system. Transition from a single, dispersed phase to a two-phase
coexistence of monomers and clusters is obtained as the depth of the interaction potential among the colloidal
particles is changed. Increasing the well depth further, fractal clusters are observed in the simulation. These
fractal clusters have a hybrid structure in the sense that they show hexagonal closed-packed crystalline ordering
at short length scales and a ramified fractal nature at larger length scales. For sufficiently deep potential wells,
the diffusion-limited cluster-cluster aggregation model is recovered in terms of the large-scale fractal dimen-
sion D; of the clusters, the kinetic exponent and the scaling form of the cluster size distribution. For
shallower well depths inside the two-phase coexistence region, simulation results for the kinetics of cluster
growth are compared with intermediate-stage phase separation in binary mixtures. In the single-phase region,
growth kinetics agree well with a mean-field aggregation-fragmentation model of Sorensen, Zhang, and Taylor.
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[. INTRODUCTION ity with other phase changes, such as spinodal decomposition
The general problem of how a dispersed phase, such g¥d the formation of precipitated crystalline solids from so-
utions. A quantitative understanding of reversible aggrega-

particles in a colloid or molecules in a solution, come to-""*" - - e
gether, when destabilized, to form a condensed phase, Sujﬁn is thus needed for a unifying description of the transition

as aggregates, gels, or precipitated crystalline solids, is rom a general dispersed phase to clusters, and for a greater

fundamental importance for controlling the assembly of the-ontrol over the self-assembly and material properties of

dispersed phase into a useful mateflg! Parts of this grand various colloids. _ _ . .
problem have seen considerable previous research, such 3S|Man|pulat|on of the interaction potential between colloi-
a

; : ; : ticles can be achieved in several ways. For a charge-
irreversible aggregatiof2] and the formation of fractal ag- par . X . e
gregates[3], gelation, spinodal decompositio], nucle- stabilized colloidal solution, this can be done by the addition

ation, and early studies of growth during precipitatié, of salt or surfactant solution so thasacondary minimurf8]

H L th that Il of th in the interaction potential forms. Another way to control the
owever, a general theory that encompasses all of these Ieyia 4 ction potential between colloidal particles is to induce a

lated phenomena is lacking. , _ depletion interaction by adding a nonadsorbing polymer
Colloidal solutions can display a rich series of phase tran 9-11 (or a different sized colloid12]) in an otherwise

sitions between gas, liquid, and solid phafg]. The liquid  stable colloidal solution. A major advantage of the latter sys-
phase can be amorphous or liquid crystalline, and the soligems is that the strength and range of the depletion interac-
phases can be crystalline, amorphgperhaps fractal and  tion can be easily controlled by varying the polymer concen-
gel. These possibilities are controlled by the potential betration and the length of the added polymer chains.
tween the disperse components and the kinetics of the phase The phase behavior of depletion-driven colloids has been
transition. A fluid-to-crystal transition occurs if the potential studied extensively both theoretically and experimentally.
is solely hard sphere. The addition of an attractive potentiallhe equilibrium behavior of these systems being reasonably
brings on three-phase equilibria. A key parameter that causegell understood, much of the recent work has been directed
large changes in the phase diagram is the relative range ¢ understanding the kinetics of phase transitidt¥%13 and
the attractive interaction between the colloidal particles. Ascolloidal gelation[14] (and its relation to glass transitifb]
the relative range of the attractive interaction lessens, thand the more general jamming transitifk6]) in these sys-
system develops a gas-crystalline coexistence with a metdems. Hobbig12] has studied growth kinetics of the crystal-
stable liquid-liquid coexistence region. lization process in depletion-driven colloids and compared
A theoretical understanding of the colloidal phase dia-the experimental results with mean-field theories of aggrega-
gram leads to better control of colloidal growth kinetics. Fortion fragmentation. Direct observation of crystallization and
example, colloidal aggregation, which is often irreversible,aggregation has been carried out more recently by de Hoog
can be made reversible on experimental time scales by taet al. [13] by varying the polymer concentration, hence the
loring both the strength and range of interaction betweerdepth of the depletion potential. Brownian dynamics simula-
colloidal particles. Reversible aggregation of colloids istions [17-2Q have also been carried out to study transient
known to exhibit various intriguing phenomef@,7], such  gel formation and crystallization in these systems. In particu-
as transient gel formation, compactification, and crystallizalar, Soga, Melrose, and Bdl17,18 (SMB) have observed a
tion. Moreover, reversible aggregation has a striking similarvariety of nonequilibrium behaviors in their simulations by
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varying the strength of the depletion potential. Evidences ofvork. In Sec. Ill we present simulation results and compare
metastability, homogeneous nucleation, kinetically arrestethem  with  traditional  aggregation,  aggregation-
gel state, and density instability were reported by SMB infragmentation, and phase separation models. Finally, we con-

their simulations. The use of computer simulations to studytlude in Sec. IV with a brief summary and discussion of the
aggregation kinetics in these systems is particularly usefukesylts.

as one can avoid sedimentation-related complications seen in
experiments.

In this paper, we present the results from extensive
Brownian dynamics simulations for a system of colloidal
particles interacting via the depletion potential. We assume |n our Brownian dynamics simulatiorj€1], we consider
that the depletion interaction can be approximately aca two-dimensiona(2D) system of linear sizé& =2560 con-
counted for by an effective two-body interaction between aajning N,,=13,107 colloidal particles of mass and diam-
pair of colloidal particles, as suggested by Asakura-Oosawgter . This sets the monomer area fraction tofpe-0.157.

[9] and Vrij [10]. In contrast to SMB, we focus on lower \yg giso setm=1 ando=1, and measure all distances in units
monomer concentratiorifar away from the percolation ;. periodic boundary conditions are enforced to minimize

threshold and restrict ourselves to two dimensions. This a"wall effects. The equations of motion for the colloidal par-
lows us to carry out a detailed comparison of the Clusm?icles read és

morphology and aggregation kinetics to traditional models o
aggregation and fragmentation. Clusters obtained in the
simulations range from dense, faceted crystals to fractal ag-
gregates, which show ramified morphology on large scale§nere I is the monomer friction coefficient antﬁ/i(t),

but hexagonally packed crystalline morphology on Shor\/Yhich describes the random force acting on each colloidal

length scales. Increasing the depth of the depletion potenti . : . : : . .
well, a transition from a dispersed phase to a coexistence %amcle, Is a Gaussian white noise with zero mean and satis

dispersed and solid phase is found. Near the transition poinfies the 2D fluctuation-dissipation relatiofWi(t) -W;(t"))
a formation of clusters with a round shape is observed. A§4ksTI'6;d(t—t"). Hydrodynamic interactions, including lu-
the well depth is increased further, one first obtains elongatebrication forces, are ignored in the simulation as they might
clusters, and then fractal clusters form for deep enough weot be of predominant importance for a study of quiescent
depths. Our simulations also show how growth kineticssecondary minimum colloid$22]. The potentialU acting
evolve from the irreversible limits to systems which come toupon each colloidal particle has a twofold contribution: the
equilibrium over the simulation time due to fragmentation. two-body depletion potential of Asakura-Oosallh,o), plus
The rest of the paper is organized as follows. In Sec. Il wea repulsive hard-core-like interactig¢,.) given by the fol-
describe the model and numerical method employed in oulowing expressions,

1. NUMERICAL MODEL

Fi== VU, — T + Wi(t), (1)

3¢ 1 2(1+¢)°
UAo(ri') - 2_5 (1 +§)2rij - 5[’3 - T , for rij < (1 +§) (2)
KeT ’
B 0, for rj > (1+¢)
[
and tabulated in Table I. In what follows, we will characterize the
strength of the potential in terms of the absolute value of the
Undrip) _ - 3) minimum potential depthU,,|, instead of the polymer vol-

keT 07 ume fraction ¢,. We choosel'=0.5, and a time stepht
=0.005 in reduced time units af(m/U,)Y? with massm

In Eq. (2),  is the size ratio between a polymer chain and a=1. All simulations start from a random initial monomer
colloidal particle, and is set equal {=0.1 as in previous conformation and the results for the kinetics are averaged
works [17,18. Thus the interaction is quite short ranged andover more than 100 runs.

is cut off at a reduced distance of 1.@p is the polymer

volume fraction which controls the strength of the depletion

interaction in the Asakura-Oosawa model. In the hard-core- . RESULTS

like repulsive interaction given by Eq3), we have sen
=36. Exponentsi< 36 are reportef3] to lead to anomalies
when a hard-core mimic is required in the potential. The total Transition from a single, dispersed phase to a state in
pair potentialU =U o+ U, passes through a minimum value which the solid phase starts to develop in the two-phase re-
(U, which is related to the polymer volume fractigi, as  gion is observed in the simulations whith,| is larger than

A. Cluster morphology
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TABLE |. Relation between nonadsorbing polymer volume frac- 250 P ean AP SET :;- (SE «F:‘.:.I""? L
tion ¢, and the absolute valugU,) of the total interacting poten- X % X
tial U.

d’p |Um‘ /kBT
0.1768 2.000
0.2110 3.000
0.2262 3.125
0.2266 3.135
0.2314 3.250
0.2410 3.500
0.2610 4.000
0.2800 4.500
0.2980 5.000
0.3330 6.000
0.3670 7.000

a critical valueU.. From our simulations, we estimate that _ _
U.~3.130T for our choice of monomer area fractidip. FIG. 1. Snapshot of the_ simulated colloidal system_ tgt
For smaller values ofU,,|, small fluctuating clustersn the ~ =10000. Here, the well depth is S‘?tmﬂ‘:&l%' the system is in
dispersed phase form and dissolve over some correlatiofi€ Single-phase region and the dispersed phase is observed.
time. The linear size of these fluctuations increases as one
approaches the transition. This is expected as the correlatighape to reduce interfacial energy. During this course, the
length in the single phase should increase as a power lav@sulting cluster bears the history of the collision in its shape
near a critical point. A phase diagram for the model consid{such as in the ordering of single crystal domains inside the
ered here is known accurately in three dimensif2#, but  cluster as in Fig. @)]. The timescale for this shape evolution
not in two dimensions. For this reason, a quantitative identidepends critically on the potential well degth,|, as we will
fication of the quench points chosen in our work on the 2Dsee shortly.
phase diagram is not possible. Increasing the degree of quenching into the two-phase
For computing cluster properties, we consider two neigh+egion by settindU,,|=4.CkgT, rather elongated clusters that
boring particles to belong to the same cluster if the distancgrow with time are see(Fig. 3, central column In this case,
between their centers is less than or equal to the range of tiBe potential well is deep enough to slow down the move-
interaction, i.e., 1€ (or 1.1 for our choice of ) in units of ~ ment of monomers on a cluster surface, which is needed for
o. Figure 1 shows a snapshot for a system wiith,
=3.12%gT. In this case the system is in the single phase as 250
|Uml < U, and the largest observed fluctuating cluster has a
size of less than 100 particles. As shown in the inset of Fig.
1, these small clusters have amorphous structures. No evi-
dence of crystal formation is found in these clusters. If we set
|U.| close to the critical value, but slightly deeper thdp
the nucleation and growth of round clusters occur. The
growth of only one round-shaped cluster in our finite-sized 150>
simulation box is observed in Fig. 2 fdd,|=3.13%gT. This :
value of|U,,| puts the system barely in the two-phase region.
Increasing the depth of the potential well,| further, 100
nucleation becomes more heterogeneous in our simulation
box, as can be seen in the top-left snapshot of Fig. 3 for
|U,|=3.25 at an early time. For this value ¢8|, large
round-shaped clusters in a sea of monongansl small clus-
terg are observed at late timgkeft column of Fig. 3. The
average coordination number per particle inside such a clus-
ter is close to 6, and as shown in Figcy hexagonal pack-
ing of the particles is clearly present inside the cluster. In
Fig. 4, details of cluster shapes are shown for several values
of the potential well depth. Once two clusters collide with  FIG. 2. Snapshot of the simulated colloidal system tat
each other, the shape of the newly formed cluster remains10 000 for|U,|=3.135. A single round-shaped cluster is growing
anisotropic for some time while it evolves toward a circularin the simulated box surrounded by the dispersed phase.
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250 5
200 't:‘:“.#” t
150 \51‘ ‘t‘:l; i
100 1&' {'}'
52 ,”n.hi,-ﬁ‘
250 §
200
150
100 L FIG. 3. Temporal evolution for three different
s guenches. The first column shows snapshots at
=3000, 6000, 23 000 and 40 000 fiod | =3.25.
Y 258 The second column shows snapshot$=2000,
20 000, 43 000, and 84 000 fdd,|=4.0. The
200 .
: third column shows snapshots att
150 =1000, 3000, 10 000, and 86 000 fitt,|=7.0.
100 Cluster morphology shows a distinct change as
50 the depth of the potential is varied.
N
250

200
150
100
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a reduction of interfacial energy. Therefore, new collisionslimited cluster-cluster aggregatiogDLCA) or reaction-

are produced before anisotropic clusters formed from previlimited cluster-cluster aggregatiofRLCA) models. How-
ous collisions have enough time to reshape themselves intever, even for this deep well depth, the aggregates show
circular clusters. As a result, the clusters seen in this case atexagonal closed-packed crystalline ordering at short length
elongated even at very late times. For an even larger weBcaleg[Fig. 4(f)], while displaying ramified fractal nature at
depth, such a$U,|=7.0kgT (Fig. 3, right colump, fractal larger length scales. To be specific, this cluster morphology
clusters are obtained. We speculate that the interfaciadannot be reproduced by a traditional DLCA modeling for
tension-driven surface reorganization of monomers is almoswhich the typical coordination number of a particle in a clus-
frozen in this case, and the cluster shape results mainly frorter is =2. Large-scale morphology of the simulated clusters
random cluster-cluster collisions as in a traditional diffusion-display close similarities with aggregates observed experi-
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mentally by de Hooget al. [13] and Andersoret al. [25] in [ ! ' ' ' ' ' ! "]
the earlier stages of the aggregation in depletion-driven col-  2o0F ] [ | i }{H{!}ih{“i”ﬂ{“”“[H! .
loids, before sedimentation becomes crucial. It should be I l ]
noted here that such a mixed morphology of aggregating

clusters was observed by Skjeltdi®6] in 2D aggregates of 1
polystyrene spheres attracting via a secondary minimum. In "S- l ¥
such a system, the superposition of a screened electrostatios™  [t11] H]I[]][Hm]mH]H”“H““H““Hm

repulsion and a van der Waals attraction leads to the forma-
tion of a secondary minimuriB,27] in the potential, with a ] 1
rather high energetic barrier between the primary and sec- 1'0:11{ = U fkgT=3.25 7
ondary minima. The barrier between these minima prevents + Uy fkgT=7.0
irreversible aggregation and these charged colloids can effec-
tively interact through the secondary minima. | - ! s | : |
2000.0 4000.0 ¢ 6000.0 8000.0
B. Comparison with traditional models of aggregation and FIG. 5. Time evolution of the cluster averaged fractal dimen-
phase separation sion, D¢ for well depthgU,|=3.25 and RgT. For the lower value of

|Ul, compact clusters are found for which the fractal dimension is
close to 2. We have calculated the fractal dimension as a function of

The next step in our analysis is to carry out a quantitativaime, including only clusters with a size equal or higher than 10%
comparison of the results from Brownian dynamics simula-of the size of the largest cluster in the system. Inclusion of too small
tions with more traditional models, such as DLCA andclusters produces a slight bias of the slope, which result®sin
RLCA. These limiting nonequilibrium models have beenbeing larger than 2. When increasifig,|, a gradual transition to
quite successful in describing aggregation. In DLCA, thefractal clusters is observed. Fractal clusters|fay| =7kgT have a
rate-limiting step is the Brownian diffusion by which the fractal dimension oD;=1.4, close to the 2D DLCA result.
particles meet and stick irreversibly, and in RLCA, the lim-
iting step is the small probability of clusters sticking when kinetics: deep potential well deptdeep quench in the two-
they touch. A general feature of such irreversible processes {shase regiop shallow potential well deptlshallow quench
that the resulting structures are fractals with characteristign the two-phase regionand quenches in the single-phase
fractal dimensions. However, if the magnitude of the inter-region.
action potential between colloidal particles is comparable to
thermal energykgT, both rearrangement and fragmentation
(hence reversible aggregatjoof clusters can take place. In
such situations, one needs to compare the results of curre
Brownian dynamics simulations with models that conside
both aggregation and fragmentation.

The large length scale cluster morphology obtained in our s(t) ~t 7 (4
simulations is quantified by computing the cluster-ensemble . N
averaged fractal dimensidD;. This is achieved by writing wherez is the kinetic exponent that depends on the homoge-
N~Rgf, whereR; is the radius of gyration of an individual neity constanth, of the aggregation kernel,
cluster containingN particles. Figure 5 shows the temporal z=1/(1-N). (5)
evolution for the fractal dimension in two representative . . .
cases. Computation of the fractal dimension coﬁfirms a tran- For.the DLCA model W'th a Brownian coagulatlon !<erne|,
sition from compact clusters witD,=2 to fractal clusters & Scaling argumeri28,29 yieldsx=(d-3)/Dy in the dilute

when we increase the well depth. We find that the fractalMit: In three dimensions, this provides=0 andz=1 as
dimension for a large potential well depth is given By expected[2]. In two dimensions, however, th|s Iead§ Xo
= 1.4. Within the statistical error of our data, this valuelpf =~ 1/D=-0.7 with D;=1.4 and hence=0.59 in the dilute

is the same as the fractal dimension obtained in 2D DLCAIMIL _ L
models. Thus, Brownian dynamics simulations for a deep Another factor that influences growth kinetics of fractal

well depth reproduce the DLCA limit in terms of the large- 299regates is theolume fraction occupied by the clusters

29 ° . . ;
scale fractal dimension, even though the short length scalby- Since the fractal dimensidd; of the clusters is less than

structure of the clusters are totally different in these twothe space dimensiod f 7 increases throughout aggregation,
models. and evolution to a crowded state takes pldgecan be com-

puted in terms of the perimeter radius of the clusters which,

is related to the cluster radius of gyrati®y. Thus, cluster

crowding can be understood by considering the ratio of the
Since the potential well depth dictates cluster morphol-<luster center of mass to the cluster nearest-neighbor center-

ogy, it is expected to control cluster growth kinetics as well.of-mass separatioR,,, to the cluster radius-of-gyratioRy,

We have studied three different regimes “quench depth”  which scales with time aR,,/Rect™4Pr/@)_ Note that

using terminology of fluid-fluid phase separatimf growth  R,,/R,— 0 at late times, indicating gelation occurring in the

1. Fractal dimension

(a) Deep quench in the two-phase regite compute the
mean size of clusters(t) (as the number of monomers per
ckusteb and the cluster-size distribution(N). The kinetic

eory based on the Smoluchowski equation predicts that for
irreversible aggregation at late times,

2. Growth kinetics
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FIG. 6. Log-log plot for time evolution of the averaged cluster  FIG. 7. Log-log plot of radius of gyration vs time for deep well

size for deep well depths. The kinetic exponentpbtained from  depths. The exponerd=z/D, obtained from linear fits, is given by
linear fits, is given by 0.74+0.05 in each case. 0.52+0.04 in each case.

system. In practice, however, the system gels well before thigenerally written aRy(t) ~t". Itis well established4] that
condition is reached as the clusters are ramified. It is knowm=1/3 atlate times in both two and three dimensions, while
that the kinetic exponerztincreases as the system gets denset intermediate times, dominated by surface diffusion and
[30], i.e, as the cluster volume fractidf) increases. For an coalescence of diffusing clusters, the growth-law exponent
intermediate value off ¢, scaling argument$28] yield z  can be characterizef82,33 by n=1/4. Wehave plotted a
=1.28 in three dimensions arm=0.67 in two dimensions. 10g-log graph okRy)(t) vstin Fig. 8 for two shallower well

Our results fors(t) vst for deep potential wellgsuch as depths inside the two-phase coexistence. In each case, at in-
with |U,|=6.0 and 7.BsT) are presented in Fig. 6 as a log- termediate times_(when the average radius of gyration of
log plot. The measured kinetic exponentzis0.74+0.05 in ~ clusters=5 or biggey, we observe the growth of clusters
each case. This value afis rather similar to the 2D scaling characterized by an exponent-efl/4. We have checked that
result in the intermediate regime mentioned abfg and  POth Ry andR,, do increase proportionately with each other
also to the kinetic exponent obtained in large-scale 20Rt these times. _F°|'Um|:3-EkBT’ we also observe aucle-
DLCA simulations[31] with a fair degree of cluster crowd- ation induction timeat th_e very beginning, after which clus-
edness. This agreement strongly indicates that fragmentatidfl 9rowth and coarsening take place.
does not play an important role over the simulation time for (c) Quench in the single-phase regidn the presence of
these choices of the potential well depth. fragmentation, Sorensen, Zhang, and Tay®ZT) [34] have

The kinetic exponent can be alternatively obtained by generalized the Smoluchowski equation on the assumption
measuring the temporal evolution of the mean cluster radiuthat both the aggregation and fragmentation kernels are ho-
of gyration(Ry). In the scaling description of DLCAR,) mogeneous functionf35,36. SZT arrives at a general ex-
~t2 with a=z/D;. Therefore, if fractal dimensio; is  pression for the evolution of the mean cluster size in terms of
known, z can be deduced from a log-log plot @y vs time  reduced variables* = s/s, andt* =t/t,,
t. In Fig. 7 we show such a log-log plot for various values of — 7
|Upl. For computing(Ry), we only use clusters containing
more than four particles. For botb,|=6.0 and 7.R;T we
obtaina=0.52+0.04, which yieldg=0.73 forD;=1.4. Thus,
both methods of measuring the kinetic exporesthow good
agreement with each other for deep well depths.

(b) Shallow quench in the two-phase regidfor shal-
lower well depths in the two-phase region, fragmentation of .
clusters can take place. However, it is expected that fragmen- %4 < 7
tation predominantly occurs at the surface of the cluster; this r °
is the celebrated evaporation-condensation mechanism be- o2 o o oxoxxx .
hind Ostwald ripening32]. In addition, surface reorganiza- L
tion of clusters can take place to reduce interfacial tension. 4,4 A N T S TN
One of the most important characteristics of cluster growth 18 20 25 Iog(sff 85 40
under spinodal decomposition is that the clusters are com-
pact and, as a result, both cluster nearest-neighbor separationfFiG. 8. Log-log plot of radius of gyration vs time for shallower
R and the cluster radius-of-gyratid®, grow with thesame  well depths in the two-phase region. The solid line is a guide to the
temporal exponent. In other words, there is only one lengtleye with a slope of 1/4. Cluster growth at intermediate times is
scale in the system. The growth law in these cases can bmnsistent withRy(t) ~t", with n~0.25.

WO o Uk T=4.0
« UkgT=35
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T, .o.o...oo

— SZT: 3=-0.70, 0=+0.5 —
--- SZT: }=-0.35, 0=+0.5

— SZT: A=-0.70, 0=+0.5
--- SZT: A=—0.35, 0=+0.5

FIG. 9. Comparison between simulation results for growth ki-  FIG. 10. The same as in Fig. 10, excépt|=3.12%gT here.
netics in the single phase and SZT prediction for two sets of param-

eter values. Herel|=2.0kgT. tions [32,37, where cluster distributions are assumed to

ds* obey a scaling law given by
S :S*)\—S*w+2 (6)
' N N
dt n(N,t) = —m2¢(—), (7)
wheres, is the steady-state value sft) at long time, and, s(t s(t)

is a characteristic time scale for the approach to equilibriymwhere N,, stands for the total number of particlésono-

The exponents and w stand for the degree of homogeneity merg in the system and(N/s) is a general scaling function.

of the aggregation and fragmentation kernels, respectively. ke ‘scajing form assumed for the cluster size distribution
is clear from our discussion above that the SZT descrlptlorEEq (7)] is tested in Figs. 11 and 12 f§d,|=7 and 3.8T

of aggregation fragmentation is not applicable in the tWO'.respectively. Results are averaged ove;n more than 106 runs.

phase region, where the cluster size increases indefinitely e prescribed scaling form seems to work well for|
m

the thermodynamic limit. However, in the single-phase re-:7kBT_ For such a deep well depth, one would expect that

gion, w_here the clusters grow only up.to the size .Of.thefragmentation of clusters will be rare and a comparison with
correlation length, the SZT equation might have a IIrr"tedDLCA simulations will be meaningful over the simulation
validity. We numerically solve this first-order SZT differen- time. For DLCA, the scaling function can be expressed as
tial equation[Eq. (6)] with the initial conditions* (t=0) [37]' '

=1/s,. It is not immediately clear what values ®fand w to
substitute in Eq(6). As we have discussed, in the dilute limit d(x) = AX e (8)
of the DLCA modelz=0.59, hence.=-0.7, while for a mod-
erate value of cluster crowdednegsncreases to 0.74 in the L anda=1-\. If we consider=0.74 aopropriate for this
simulations and the corresponding becomes -0.35. We d ”a ¢ ’ Fi f'_dX——Opg,S P de=135
choosew=1/2 in themean-field model of SZT to roughly eep well depti(see Fig. J, we findr=-0.35 ande=1.35.
incorporate the possibility that cluster fragmentation happens
mostly at the surface. As mentioned, we consider two neigh-
boring patrticles to belong to the same cluster if the distance
between their centers is less than or equal to the range of the
interaction. A comparison with the SZT prediction in the
single phase is carried out in Figs. 9 and 10|fdy|=2 and
|Um|=3.12%gT, respectively. In these figures we show SZT
predictions along with our simulation results for bokh
=-0.35 and -0.7 and=1/2. It isclear that\=—0.7 shows
excellent agreement with the simulation data. This is perhaps
due to the fact that the average cluster sizes are relatively 4
small throughout the simulation time and cluster crowding
does not substantially modify the dilute limit valueszodind

\. Thus, it is appropriate to substitute the dilute limit value of . | . |
A=-0.7 in the SZT model for a comparison with these simu- i
lation results.

for large values of the scaling variabke=N/s. Here,\=1

Y=

6

Infs’n(N,5)]

' 0
In(N/s)

FIG. 11. Scaling of the cluster size distribution fdd,|
=7.0kgT. The results are averaged over 150 runs. The solid line is

To characterize the cluster size distribution, we invoke it to the data according to E@8) with A=-0.35 anda=1.35 for
standard scaling ansatz applicable in many physical situascaling variableN/s= 1.

3. Cluster size distribution
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values of the magnitude of the potential well depthy,|.
There exists a critical value of this well depthl,) in the
model. WhenU,,|<U.=3.13kgT, the system remains in a
single phaséfor our chosen value of the monomer area frac-
tion f) characterized by a dispersed phase of monomers and
small clusters. A transition from this dispersed phase to a
two-phase coexistence takes place when the system is
quenched, such that,|>U.. In the two-phase region, a
dispersed and hexagonally packed crystal phase can coexist.
Gradual transition from round cluster growth to the forma-
tion of elongated clusters is observed as the well depth is
increased. Increasing the well depth even more, fractal clus-
e R e ters are observed in the simulation. These fractal clusters
In(N/s) have a hybrid nature in the sense that the aggregates show
hexagonal closed-packed crystalline ordering at short length
FIG. 12. Scaling of the cluster size distribution fiof,|=3.5.  scales and a ramified fractal nature at larger length scales.
The results are averaged over 100 runs. A solid line of slope ~1.5 igor sufficiently deep potential wells, the large-scale fractal

In(s>n(N,))

added to guide the eye. dimension of the clusters are close to those obtained in simu-
lations of DLCA model in two dimensiong);=1.4.

Figure 11 shows that E@8) with these values of and « fit Further quantitative comparisons with the DLCA model

the scaled cluster size distribution quite well for large valuesare carried out next in the limit of deep potential well depths.

of x. Kinetic exponents obtained from both the mean number of

Scaling does not seem to work so well ft,|=3.5%gT  particles in a cluster and the average cluster radius of gyra-
(Fig. 12. For small values of the scaling variable and attion provide strong support that the DLCA limit in the kinet-
earlier times, a power law with an exponent close to —1.5 idcs can be achieved for deep potential wells. In addition, the
found in the scaling function. Such a power-law decay ofscaling function for cluster size distribution matches the
scaling functions are reminiscent of a RLCA behavior. WeDLCA scaling form for deep potential well depths. For shal-
should point out that a similar exponent of —1.5 has beertower well depths in the two-phase region, growth kinetics is
observed by Hobbigl2] in the scaling function for a binary compared with early-time theories of phase separation. In the
colloidal mixture in which depletion forces arise from the single-phase region, comparison of simulation results with a
difference in size between two colloids. The origin of the mean-field aggregation-fragmentation model shows good
RLCA-type power-law behavior for this shallow well depth agreement.
is perhaps due to the fact that clusters do not stick the first Our work clearly demonstrates the importance of Brown-
time they approach each other. There is also a hint of amn dynamics simulations in the study of colloidal aggrega-
exponential decay in the size distribution for lasgas seen tion, and more generally, for studying the transition from a
by Hobbie. At later times, the “scaling function” changes dispersed to a solid phase. Past theoretical studies of fractal
appreciably, displaying the presence of a broad maximum aggregates in colloids, for example, typically started from
an intermediate value dfi/s. the DLCA model, which turns out to be the irreversible lim-
its of our simulation and are recovered for a deep well depth.
In contrast, aggregates that cross over from fractal to com-
pact crystalline morphology can be easily studied in Brown-

To provide a unifying description of the transition from ian dynamics simulations by changing a simple parameter of
the dispersed to the solid phasehich includes both fractal the model. More importantly, growth kinetics and aggregate
and Crysta”ine aggregamsjve have carried out a detailed size distributions that evolve from nonequi”brium to equilib-
study of the kinetics of phase transformations in a model 20um limits can be accessed in a reasonable amount of com-
colloidal system. The interaction among colloidal particles inPuter time. We expect that our results would stimulate further
this work arises from the depletion effect due to the additiortheoretical and experimental studies towards the understand-
of a nonadsorbing polymer, and is modeled as an effectivénd of the transition from a dispersed to a solid phase in
two-body potential. Although the depletion force is assumedvidely different physical situations.
to be instantaneous in this work, recent w{s] shows that
the depletion force will have a time dependence that will in
general affect colloidal kinetics. However, this time depen- ACKNOWLEDGMENTS
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