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A large scale study of trace metal contamination (Hg, Cd, Pb and Ni) by means of caged mussels Mytilus

galloprovincialis was undertaken along the coastal waters of the Western Mediterranean Sea within the

context of the MYTILOS project. Individual mussels from an homogeneous population (shell size 50� 5

mm) obtained from an aquaculture farm were consecutively caged and deployed at 123 sites located in the

Albor�an, North-Western, South-Western and Tyrrhenian sub-basins for 12 weeks (April–July) in 2004,

2005 and 2006. After cage recoveries, both the metal content in the whole mussel tissue and the allometric

parameters were measured. Statistical analysis of the datasets showed significant differences in

concentrations between sub-basins for some metals and mussel condition index (CI). Linear regression

models coupled to the CI were revisited for the data adjustment of certain trace metals (Hg, Cd and Ni),

and four level categories were statistically derived to facilitate interregional comparison. Seawater masses

surrounding coastal areas impacted by run-off from land mineralised coasts and industrial activities

displayed the highest concentration ranges (Hg: 0.15–0.31 mg kg�1 dw; Cd: 1.97–2.11; Ni: 2.18–3.20 and

Pb: 3.1–3.8), although the levels obtained in most of the sites fitted within moderate or low categories, and

they could be considered as baseline concentrations. However, few sites considered little-influenced by

human activities, at present, showed high concentrations of Cd, Ni and Pb, which constitute new areas of

concern. Overall, the use of active biomonitoring (ABM) approach allowed to investigate trace metal

contamination in order to support policy makers in establishing regional strategies (particularly, with

regard to the European Marine Strategy Directive).
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Environmental impact

Marine environmental research and marine chemical pollution are top priorities within two recent European Directives (the Water

Framework Directive, 2000 and the European Marine Strategy Directive, 2008). Research development and monitoring coordi-

nation between Mediterranean bordering countries provided a unique evaluation of the environmental impact by trace metal

pollution in the Western Mediterranean Sea. The sampling strategy by using caged mussels allows evaluating the levels of pollution

in the near-shore water column. Unknown and suspected sources of metal pollution have been identified in areas considered

relatively non-impacted by human pressures pointing out to natural sources.
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1. Introduction

Trace metals occur naturally in the marine environment, but

anthropogenic activity may lead to enhance natural concentra-

tions, mainly in estuarine and coastal waters.1 Although most of

trace metals are essential to marine organisms they became toxic

if a particular threshold is exceeded, which varies between taxa.2

Trace metals could pose also a serious threat to human health

because of their persistent occurrence and bioaccumulation

capacity, which constitutes a potential risk to seafood and

shellfish consumers.3 These global concerns are heightened in the

Mediterranean Sea due to its semi-enclosed nature (which can

magnify the risks from exposure to contaminants such as metals),

the complex geomorphology of its basins, and the variety of

metal sources involved due to increasing urban, industrial and

marine transport pressures.4,5 Therefore the investigations on

trace metals are a priority component in national and regional

marine chemical contamination monitoring programmes all over

the world, including the Mediterranean Sea.6 These are also

driven in Europe by the EU Water Framework Directive7 and

the EU Marine Strategy Directive8 where those are listed as high-

priority contaminants.

The use of indigenous mussels to monitor chemical contami-

nation has been recommended by the MEDPOL Programme in

the Mediterranean Sea, since the mussel-watch concept was

proposed in the early 1970s,9 and as a result, several assessments

of the state of pollution by trace metals using biota have been

based on these datasets.10 However, most of the studies were

geographically restricted, despite geopolitical boundaries, to

rocky shores where mussel beds can be found, leaving other

relevant coastal water bodies outside the scope of these studies,

as is the case of the coastal dilution zones (i.e. near-shore waters),

where the dispersion of the trace metals take place. These limi-

tations have made difficult to provide a simple and straightfor-

ward picture of the overall trace metal contamination based in

passive biomonitoring studies.

Wild mussels (Mytilus sp.) have many monitoring advantages,

the most important being they are able to concentrate trace

metals and organic contaminants in their tissues with little

metabolic transformation and provide a time integrated

measurement of the bioavailable fraction in the surrounding

seawaters.11 However, the inherent variability in metal uptake

and depuration processes by mussels, due to biotic and abiotic

factors, are important sources of variability and need some

attention in order to compare datasets from mussels of different

areas or regions.12 For example, lead uptake rates by Mytilus

edulis in different laboratory conditions shown lower uptake and

loss rates in large mussels than in small mussels, as well as

different uptake rates by individual organs.13 Also attempts to

model physiological processes in Mytilus sp. for mercury and

lead have been investigated.14 With regard to abiotic factors, it

has also been shown a relationship between the salinity and

temperature with the uptake of cadmium and zinc by Mytilus

edulis.15 Therefore, to control the factors influenced by the

natural variability and to solve the scarcity of natural mussel

stocks along the coasts, active biomonitoring (ABM) using caged

mussels was introduced by different authors.16–20 The ABM

approach allows to use specimens of similar biological para-

meters (i.e. allometric) and to choose the location, depth and

exposure period during the study. In the Western Mediterranean
1496 | J. Environ. Monit., 2011, 13, 1495–1505
Sea, in recent years, this technique has been applied successfully

in some specific areas.18,19,21–23 However, there could be also

drawbacks related to the experimental work when the ABM

approach is used on a large geographical scale (e.g. the potential

loss or the damage of the deployed cages, mussel mortality, cost

constrains, etc.). On the other hand, the potential for the

changing environmental variables over large areas need to be

taken into account, thus for trace metals the bioaccumulation

factor depends both on the physiochemical characteristics of the

surrounding waters (i.e. external factors) and the mussel physio-

logical status (i.e. internal factors), the latter linked to the

primary food production or trophic capacity of the environ-

ment.24,25 Different approaches (i.e. data normalisation) have

been reported to overcome the influence of the internal mussel

physiology on metal concentrations, such as pollutant levels per

condition index,26 tissue growth,27 lipid content28 or shell

weight.29 Recently, to overcome both limitations, samplers by

diffusive gradients in thin films (DGT), are starting to be tested

as an alternative to biomonitoring strategies.19,30,31

In this study, we examine the condition index coupled to

regression models methodologies,32,33 to a large scale bio-

monitoring study in the Western Mediterranean region for data

normalisation. The datasets of mercury (Hg), cadmium (Cd),

lead (Pb) and nickel (Ni) along the coastal dilution zone of land

based contamination sources are considered in terms of their

environmental significance, characteristic sources, and compar-

atively with datasets reported in caged mussels elsewhere in the

world. As far as we know, we present the first assessment cate-

gories of trace metal levels in near-shore coastal waters to

facilitate the interpretation and to allow the comparison between

regions and the Western Mediterranean sub-basins (i.e. Albor�an,

North Western, South Western and Tyrrhenian). We assess

whether metal concentrations show any significant spatial vari-

ation by using the same ABM standardised approach for the

whole Western Mediterranean.
2. Materials and methods

2.1. Mussel caging, deployment and recovery

The mussels (Mytilus galloprovincialis) were obtained from an

aquaculture farm located in the Mediterranean French coast

(Languedoc-Roussillon) and were placed in cages of poly-

ethylene netting (dimensions 1 m � 1 m with 1 cm mesh size) and

deployed at 123 sites along the coast of the Western Mediterra-

nean countries (Fig. 1, ESI†). Batches were made up with 200

mussels 18–24 months old of standardized shell size (50 � 5 mm)

and sorted twice according to the height of the shell through

19 mm mesh. Prior to deployment, the 3 kg samples were stored

in cages mounted on PVC tubing and re-immersed for 10 days so

they can re-cluster prior to transplantation and a sample was

taken for reference (see ESI†). Cages were deployed over periods

of 12 weeks in 2004, 2005 and 2006 (immersed in April and

recovered in July). Every year, the caged mussels were deployed

in a selected portion of the Mediterranean coast at approxi-

mately 6 m to 8 m below the sea surface (ranging from 10 m to

74 m depth) to cover the whole study area. To select the distri-

bution of the deployments, we followed the division in four sub-

basins for the Western Mediterranean region according to Jeftic

(1990): Albor�an (I), North-Western (II), South-Western (III) and
This journal is ª The Royal Society of Chemistry 2011
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Tyrrhenian (IV). Additional information on field experiments

performed during the cruises has been reported elsewhere.34,35
2.2. Sample treatment and chemical analysis

A composite sample from mussel soft tissues (n ¼ 15 individuals)

from each site, to reduce the inter-individual variability, was

processed aboard according to standardised procedures and

stored at �20 �C. Once in the laboratory, composite samples

were lyophilised and homogenised using a ball mill made of

agate. The allometric parameters (e.g. dry flesh weight, dry shell

weight and length, width and height of the shell) as well as the

survival percentage (ranging from 98% [site 122 Cap des 3

fourches] to 49% [site 52, Reserve Marine du Cannes], mean:

77%, SD: 12), were measured. The CI was calculated on 10

individual specimens from each site as the ratio of the dry flesh

weight to dry shell weight. Trace metal analyses were performed

with approximately 0.5 g of freeze-dried mussel sample digested

at 90 �C for 10 minutes and at 180 �C for other 60 minutes, using

high pressure Teflon reactors and concentrated HNO3 in

a microwave oven system. The concentrations of Pb, Cd and Ni

were determined by graphite furnace atomic absorption spec-

trophotometry with Zeeman background correction (AAS-ZGF)

instrument (Perkin Elmer 4110-ZL). The total Hg was deter-

mined by atomic fluorescence using a reducing dissolution of

10% SnCl2 in 6% v/v HCl (CV-AAS). The analytical and quality

assurance was performed by IFREMER using certified reference

materials, duplicate samples and procedural blanks. The external

validation of the analytical procedures is regularly assessed by

participation in QUASIMEME (Quality Assurance of Infor-

mation in Marine Environmental in Europe) interlaboratory

exercises for trace metal analysis.
2.3. Data treatment and statistical analysis

Exploratory statistics (SPSS Software) was performed for the

four regional Western Mediterranean sub-basins datasets

(Albor�an (I), North-Western (II), South-Western (III) and

Tyrrhenian (IV)) and for the whole Western Mediterranean.

Linear regression models were performed using the LTS regres-

sion function (S-Plus 6 Software), which allow removal of

outliers and calculation of the parameters of the regression for
Fig. 1 Sampling sites along the Western Mediterranean Sea (sub-basins: I

rhenian). Site codes, names and descriptions are provided in the ESI†.

This journal is ª The Royal Society of Chemistry 2011
each trace metal (see ESI†). Trace metals with a correlation

coefficient higher than 50% were adjusted to a mean CI following

the procedure by Andral et al.33 Adjusted and/or raw concen-

trations for each metal were log-transformed (to ensure a normal

distribution; Kolmogorov–Smirnov test). Log-transformed

datasets were used to perform a one-way ANOVA to study

differences in metal concentrations between sub-basins (homo-

geneity of variances was checked using Levene’s test). We tested

the null hypothesis that the error variance of the dependent

variable (i.e. concentration) is equal across groups (i.e. sub-

basins). When parametric requirements were not fulfilled in the

groups under consideration the Kruskall–Wallis (K–W) test was

applied. If significant differences were detected between sub-

basins, the Tukey’s b or Tamhane’s T2 post hoc tests were applied

for pair-wise comparison. A setting of a ¼ 0.01 was used with

parametric analyses to compensate for the increased likelihood

of type I error caused by any imbalance design in the study (i.e.

different number of measurements for each sub-basin).

Metal level categories for the caged mussel datasets were

developed using a modification of O’Connor’s statistical proce-

dure36 to facilitate the assessment of the results in the whole

Western Mediterranean Sea: mean (X) and standard deviation

(SD) of the log-normal frequency distribution curves for each

metal dataset were used to statistically derive four categories:

a ‘‘very high concentration’’ category where data were equal or

more than [values $ X + 2 SD]; a ‘‘high concentration’’ category

which included values higher than the mean plus one standard

deviation [$X + 1 SD to <X + 2SD]; a ‘‘moderate concentration’’

category was defined as [$X � 1 SD to <X + 1 SD]; and finally,

a ‘‘ low concentration’’ category to include values less than the

mean minus one standard deviation [values < X � 1 SD].
3. Results and discussion

3.1. Regression models and condition index adjustment

The CI values measured in the Western Mediterranean basin

ranged from 0.06 to 0.22 [0.103–0.117; 95% confidence interval

for the mean (CIM)]. The results shown significant differences in

CI values within mussels deployed in the four sub-basins, despite

they were immersed during the same time and seasonal period,
¼ Albor�an; II ¼ North-Western; III ¼ South-Western; and IV ¼ Tyr-

J. Environ. Monit., 2011, 13, 1495–1505 | 1497
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although in different years (Kruskall Wallis test; Tanhane T2

post hoc test; p < 0.01). The CI values were significantly higher in

western sub-basins (Albor�an (I), North-Western (II)) than in the

eastern ones (South-Western (III) and Tyrrhenian (IV)). To

allow comparisons and minimise the influence of internal factors

(e.g. mussel growth rates) on metal concentrations, we adjusted

metal concentrations to a mean CI33 (equivalent to standard CI

for a theoretical mussel representing the whole population), for

Cd, Hg and Ni which showed concentrations inversely propor-

tional to the CI (see ESI†).

Firstly, the linear regression models were determined for trace

metals against the 1/CI dataset according:

Ctrue ¼ mmetal � [1/CItrue] + b

In addition, the mean CI ratio (0.11) was calculated.

According to the correlation coefficient R2 of the models

obtained and its significance level, more than 80% of the Cd and

Hg concentrations and a 50% of the Ni concentrations might be

explained by the CI of the mussels. In the case of Pb concen-

trations, the influence of CI was not relevant. Secondly, known

the slope (i.e. mmetal) for each metal dataset and a point (a pair

metal concentration and CI), we adjusted the metal concentra-

tion datasets (assuming equal slopes) with the mean CI by using

the point-slope form of a linear equation [Y � Y1 ¼ m (X � X1)],

as:

Cadjusted ¼ Ctrue + mmetal (CImean � CItrue)

The raw and adjusted metal concentrations by site are

provided in Fig. 2. Adjusted data for Cd and Hg show a more

balanced dataset to compare the different sub-basins in a large

scale study area. For example, non-adjusted Cd concentrations

(i.e. true concentrations) in the Balearic Islands showed higher

values than the SE Spain, NE Spain, France and Italian Penin-

sula. This could be interpreted as a contaminant mass concen-

tration effect due to the modest mussel growth rate in Balearic

Islands, thus there are clear differences in the tropic conditions

between these regions. Therefore, after the adjustment to a mean

CI, the Cd concentrations in Balearic Islands decreased whilst

the areas located in continental coast increased with respect to

the true values, in this case, due to a mass dilution effect.

However, the adjusted Cd concentrations in Balearic Islands still

comparable to those in the SE Spain. The effect of the adjustment

for Hg and Ni is not as pronounced as for Cd, despite the same

pattern can be observed, and was negligible for Pb values,

because correlation exists for some metals to some extent, in

accordance with previous research.32,33 The adjustment metho-

dology through CI assumes that each mussel, including those

which showed highest concentrations (i.e. outliers), has the same

physiological behaviour without regard, for example, to the

effects that high concentrations of metal might have in the mussel

physiology (i.e. equal slopes assumption), as well as homoge-

neous external factors (e.g. temperature, salinity). In addition,

the CI neither change uniformly nor equally modulates the metal

concentrations in organisms, on the contrary, it changes

temporally as described by Borchart et al.,32 as well as spatially,

as demonstrated by our statistical analysis. This variability
1498 | J. Environ. Monit., 2011, 13, 1495–1505
should be considered to interpret both spatial and temporal

trends of metal pollution when using an adjustment model in the

context of a large scale biomonitoring approach. In conclusion,

data adjustment through linear regression models using the CI

allows comparison of regions pseudo-quantitatively rather than

qualitatively (i.e. non-adjusted) in a large scale because differ-

ences are partly balanced but not eliminated (Fig. 2). However,

adjusted datasets could be difficult to compare with existing

datasets compiled without adjustments (i.e. true measured

values), as a result of outstanding corrections to data. Therefore,

a scientific consensus and further research would be necessary in

order to establish a common approach for data analysis resulting

from biomonitoring programs worldwide. From a human health

perspective, the true concentration datasets (see ESI†) would be

more useful than adjusted concentrations for further parallel

investigations.
3.2. Geographical differences in trace metal concentrations

The Pb concentrations recorded in the Western Mediterranean

basin were generally categorized as ‘‘moderate levels’’ (Fig. 3A)

for the 83% of sites (CIM ¼ 1.23–1.61 mg kg�1 dw). Significant

differences in raw Pb concentrations were found between sub-

basins (Kruskall–Wallis test; p¼ 0.029). Mean Pb concentrations

were lower in North-Western (II) and Tyrrhenian (IV) sub-

basins than in Alboran (I) and South-Western (III) basins.

Fig. 3A shown the highest concentration of Pb (ranging from 3.1

to 8.3 mg kg�1 dw) found in mussels from Portoscuso and

Portoferraio in Italy [site no. 99 and no. 73, respectively] and

from three sites located along the SE coast of Spain: Cabo del

Agua [site no. 11], El Port�us [site no. 10] and Portm�an [site no.

12]. The Pb dataset shown scattered ‘‘high levels’’ of Pb along the

coast of the Iberian Peninsula (Llobregat river [site no. 35] and

Cabo de Palos [site no. 13]); the coast of the Balearic Islands

(Palma de Mallorca [site no. 21], Santa Eulalia [site no. 19] and

Cala Trebeluja [site no. 28]); the south coast of France

(Huveaune [site no. 47]); the northern coast of Italy (Zinola [site

no. 65]; the coast of Sardinia (Oristano and Porto Torres [site no.

100 and 101, respectively]; and the coast of Morocco (Nador [site

no. 119]). The sites located along the coast of Italian Peninsula,

Sicily, Tunisia and Algeria were categorized as ‘‘moderate

levels’’.

Adjusted Cd concentrations (CIM ¼ 1.29–1.37 mg kg�1 dw)

were categorized as ‘‘moderate levels’’ and ‘‘low levels’’ (for the

69% and 15% of the sites, respectively; Fig. 3B). The mean

adjusted Cd value in Albor�an sub-basin (I) was significantly

higher than in the rest of sub-basins (one-way ANOVA, p ¼
0.000; Tukey B post hoc test, p < 0.01). Some ‘‘very high’’ values

(ranging from 1.97 to 2.11 mg kg�1 dw; adjusted data) were

measured along the coast of Spain ( �Aguilas [site no. 9], Adra [site

no. 6], Mah�on [site no. 29]) and near Sicily (Ustica [site no. 94]).

Many of the ‘‘high levels’’ of Cd were recorded at sites along the

south and south-eastern coast of Spain (Torrox [site no. 5], Cabo

de Gata [site no. 8], Almer�ıa [site no. 7], Cabo del Agua [site no.

11] and El Port�us [site no. 10]); the coast of Balearic Islands (Cala

Trebeluja [site no. 28], Fornells [site no. 30] and Santa Eulalia

[site no. 19]) and Cabrera [site no. 22]); on the coast of Morocco

(Cap des Trois Forches [site no. 122]); and at few sites along the

coasts of Italy (Piombino [site no. 72]), Sardinia (Porto Torres
This journal is ª The Royal Society of Chemistry 2011
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Fig. 2 Raw (B) and adjusted (:) metal concentrations (Cd, Ni, Hg and Pb) in Mytilus galloprovincialis at the 123 sampling sites along the near-shore

coastal waters Western Mediterranean region. Full data are available in the ESI†.
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[site 101] and Portoscuso [site no. 99]), Filicudi island [site no. 91]

and in a site of France (Nice [site no. 53]).

Adjusted Hg concentrations (CIM ¼ 0.09–0.10 mg kg�1 dw)

showed (Fig. 3C) a predominance of moderate levels for the 88%

of the sites along the Western Mediterranean basin. Significant

differences were found between sub-basins (K–W test, p ¼
0.003). The highest concentrations were found in those sites

located in South-Western (III) sub-basin, though significant
This journal is ª The Royal Society of Chemistry 2011
differences were only demonstrated between the Tyrrhenian sub-

basin (IV) and Northwestern sub-basin (II) (post hoc Tamhane

test, p ¼ 0.002). Very high Hg concentrations (ranging from 0.15

to 0.31 mg kg�1 dw; adjusted data) were measured at five scat-

tered sites along the Western Mediterranean basin (Portoscuso

[site no. 99], Palerme [site no. 93] and Maddalena Island [site no.

102] in Italy; Skikda in Algeria [site no. 113] and El Port�us [site

no. 10] in Spain). There was a predominance of high Hg values at
J. Environ. Monit., 2011, 13, 1495–1505 | 1499
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Fig. 3 Spatial distribution of the adjusted concentrations of lead (A), cadmium (B), mercury (C) and nickel (D) in the Mediterranean sub-basins (I ¼
Albor�an; II ¼ North-Western; III ¼ South-Western; IV ¼ Tyrrhenian). Upper left legend shows the concentration ranks for each metal.
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Algiers Bay [Sites no. 117 and 118], along the north-west Italian

peninsula (Montalto di Castro [site no. 77], Piombino [site no.

72], Portoferraio [site no. 73]) and in the French coast at Hyeres

ouest [site no. 50].

Adjusted Ni concentrations (CIM ¼ 0.97–1.14 mg kg�1 dw)

were categorized as moderate for the 82% of the sites and there

were no significant differences between the sub-basins of the

Western Mediterranean Sea (one-way ANOVA, p ¼ 0.817). The
1500 | J. Environ. Monit., 2011, 13, 1495–1505
spatial distribution clearly showed the highest Ni values along

the North African coastline (Fig. 3D). Ni levels categorized as

‘‘very high’’ were measured in 5% of the sites (ranging from 2.18

to 3.20; adjusted data): Tunisia (Tabarka [site no. 111] and La

Galite [site no. 110]); Algeria (Skikda [site no. 113], Zhour Oued

[site no. 114], Or�an [site no. 119]); and Morocco (Nador [site no.

120]). ‘‘High values’’ of Ni were found at the Gulf of Tunis (Sidi

Daoud [site no. 105], Korbous [site no. 106], Rades [site no. 107]
This journal is ª The Royal Society of Chemistry 2011
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and Sidi Ali [site no. 108]); Algeria (Annaba [site no. 112]); along

the north coast of the Italian peninsula (Livorno [site no. 71],

Cornigliano [site no. 67] and Palmarola [site no. 81]); Sardinia

(Porto Torres [site no. 101]), and France (Rhone [site no. 46]).

3.3. Major land based, river discharges and industrial sources

of metal pollution in the Western Mediterranean Sea

Two sites, El Port�us [site no. 10] in Spain and Portoscuso [site no.

99] in Sardinia Island (Italy), both in the vicinity of large

industrial areas, commercial harbours and Zn–Pb mining

districts, differ from the rest of the Mediterranean sites as they

shown the highest levels of Pb and Hg as well as high concen-

tration of Cd. Our results confirm that run-off from the old mines

in the SE coast of Spain (closed in the nineties) is still one of the

major land based sources of trace metals and have an

outstanding impact on the environmental geochemistry of

coastal areas of the Western Mediterranean sea as was earlier

reported.37,38 High levels of Cd and Hg in the seagrass Posidonia

oceanica from El Port�us39 and extreme levels of Cd, Pb and Hg in

resident mussels have been reported in the surrounding areas.40

El Port�us [site no. 10] is influenced by a major navy base, the

industrial complex of Escombreras, and the Sierra de Cartagena-

La Union mining district. We also found consistent high levels of

Pb in Portm�an [site no. 12] and Cabo del Agua [site no. 11],

whereas high levels of Cd were found in Adra [site no. 6], Almer�ıa
[site no. 7], Cabo de Gata [site no. 8] and �Aguilas [site no. 9]. The

southeastern part of Spain is amongst the most intensely

mineralised regions of Europe, with a great variety of ore-

forming environments containing primarily Pb–Zn–Ag ores

whereas Cd is found as an impurity.41 Cadmium inputs at these

sites, a part from the geological nature of the soils in the mining

districts, could show some influence from domestic inputs and

industrial areas. The potential contributions through atmo-

spheric emissions from a huge nearby coal-based power plant

located near Cabo de Gata (Carboneras) and from the industrial

area of Cartagena-Escombreras should be also considered. In

Italy, Portoscuso [site no. 99] is a high environmental risk area42

due to pollution from the Portovesme industrial zone and the

Iglesiente-Sulcis mining district. Although most mines were

closed in 1980–1990, residues of mining exploitation and pro-

cessing have been left on site and they may cause heavy-metal

pollution in the aquatic system.43 High levels of Pb and Cd in

accordance with earlier reported concentrations in sediments and

caged mussels were found in this area.19,44 On the north Sardinian

coast, the industrial harbour of Porto Torres [site no. 101]

recorded high levels of Cd, Pb and Ni which are concordant with

the metal levels in mussels and Posidonia oceanica reported by

Lafabrie.22,45

Other high Pb levels were found in Spain at Cabo de Palos [site

no. 13] which may be the result of the resuspension of the

contaminated sediments of the adjacent site of Portman, during

storm events and Palma de Mallorca [site no. 21] potentially due

to harbour dredge activities, high maritime traffic and waste-

waters discharges. On the Italian littoral, the high level of Pb at

Oristano [site no. 100] is concordant with the high trace metal

concentrations reported in sediments46 and in resident mussels47

possibly related with the processing plants of bentonite and

perlite. It is worth to mention, the high Pb level found in Nador

[site no. 120], along the Moroccan coast, considered a hot spot,48

was in agreement with the Pb values reported in brown mussels
This journal is ª The Royal Society of Chemistry 2011
(Perna perna) by Banaoui et al.49 Within the Alboran sub-basin,

the high levels of Cd at Torrox [site no. 5] and Cap de Trois

Fourches in Morocco [site no. 122] seem to be related to domestic

discharges, although the proximity of these three sites to the

Strait of Gibraltar with the potential contribution of Cd-

enriched Spanish shelf water from the Atlantic Ocean and the

drainage of the Iberian pyrite belt into the Gulf of Cadiz should

not be ignored.50

The evaluation of the potential sources of Ni and Hg point out

to the anthropogenic activities as a major cause of its environ-

mental occurrence. The highest levels of Hg in the North African

coastal waters were measured in two Algerian sites highly

populated and with huge petrochemical industry: Skkida [site no.

113] and Alger [sites no. 117 and 118]. The level of Hg at Alger

bay is concordant with the results in sediments reported by

Rouibah et al.51 and the level found at Skkida is in agreement

with the high metal levels found by Gueddah and Djebar.52 A

substantial number of sites located on the Italian north-west

coast of the Tyrrhenian Sea shown high levels of Hg. The high

Hg level at Piombino [site no. 72] is concordant with the results

obtained by Bocchetti et al.53 at Piombino harbour, relating these

high values to the industrial activities, combustion processes of

the thermoelectric energy plants and dredging and disposal

operations conducted in the area. Trace elements released by fuel

combustion in the thermoelectric power plant have been previ-

ously related to the high level of Hg at Montalto di Castro [site

no. 77].54 The very high level at La Maddalena Island [site no.

102] (Sardinia) appears to be linked to the existence of a naval

base and an army shipyard. The maximum Hg value found at

Palerme (Sicily) [site no. 93] is concordant with the metal levels in

sediments reported by Tranchina et al.55 who relate the pollution

sources to industrial, domestic wastes, harbour areas and river

inputs. Nickel in the Tyrrhenian sub-basin (IV) shows a ubiqui-

tous pattern along the Tunisian coastal waters with peak levels at

Tabarka [site no. 111] and La Galite Islands [site no. 110] and

high levels at Korbous [site no. 106], Sidi Ali [site no. 108], Sidi

Daoud [site no. 105] and Rades [site no. 107]. Our results are in

agreement with a preliminary assessment of Pirrone et al.56 who

studied past and current emissions of Ni to the atmosphere from

major anthropogenic sources (e.g. fossil fuel consumption) in the

Mediterranean. On the contrary, our results are far from the low

Ni concentrations in the superficial sediments from the Gulf of

Tunis.57 The remaining North African coastal values are in

agreement with previous research.52,58,59 The maximum concen-

tration of Ni at Or�an [site no. 119] is in agreement with the high

trace metal levels and biological effects in mussels.60,61 Finally,

high Ni concentrations were found on the coast of Italy (Genova-

Cornigliano [site no. 67] and Livorno [site no. 71]) in agreement

with previous studies using caged mussels,22,23 potentially asso-

ciated with industrial areas (e.g. steel industry) and harbours.

The main contributions of direct river inputs were also iden-

tified in the present study. Along the coast of France, mussels

moored in the mouth of the Huveaune river [site no. 47],

currently considered to represent a significant source of trace

metals into the Marseille gulf,62 showed high Pb levels. The high

level of Hg at Hy�eres Bay [site no. 50] (France), near the mouth

of the small river Gapeau, could be also related to sewage inputs.

Likewise, high Pb concentrations measured in the mouth of the

Llobregat river [site no. 35] (NE Spain) may be explained by the
J. Environ. Monit., 2011, 13, 1495–1505 | 1501
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influence of the Barcelona metropolitis.63 Nickel discharges in

the Rhône site [site no. 46] were even higher than the values

previously reported by Andral et al.33
3.4. Undefined sources of metal pollution in the Western

Mediterranean Sea

Remarkably, unexpected results were obtained in some coastal

sites where there is not a known direct anthropogenic influence.

Cadmium and lead pollution in some coastal locations in the

Balearic Islands cannot be directly attributed to known sources,

such as the level of Cd at Mah�on [2.39 mg kg�1 dw; site no. 29],

higher than previously reported by Deudero et al.64 in cultivated

mussels, which suggested could be related to the costume jewel-

lery industry or the high levels of Pb and Cd at Santa Eulalia [2.1

and 2.09 mg kg�1 dw, respectively; site no. 19] which suggested it

might be related to tourism activity. Even more, the reasons for

the peak of Ni at Fornells [1.2 mg kg�1 dw; site no. 30], the high

values of Pb and Cd at Cala Treboluya [2.0 and 2.16 mg kg�1 dw;

site no. 28], and the high level of Cd at Cabrera [2.58 mg kg�1 dw;

site no. 22], are difficult to explain and may be considered as

natural levels due to the low degree of impact of human activities.

The oxidative stress biomarkers determined in caged mussels

deployed at these sites showed the absence of biological effects

associated with the chemical pollution,65 therefore suggesting

natural levels. Several authors suggested that Balearic Islands are

under a marked influence of long range transport of atmospheric

aerosols and Saharan dust,66,67 but either natural or local

anthropogenic sources could not be discarded at present. The

high levels of Cd at Ustica [site no. 94] and Filicude [site no. 91]

(Sicily) might be mainly justified by the geological nature of

substrata, since these islands constitute the emerged part of

a volcanic complex. Although our results at Ustica agree with the

high trace metal levels in sediments reported by Perra et al.,68

further studies are needed to support this assumption. On the

other hand, the concentration of Ni measured in Morocco at

Nador [2.72 mg kg�1 dw; site no. 120] has not been previously

reported in the literature and should be further studied locally. A

very high Ni input into the Mediterranean was also found in

Algeria at the mouth of Zhour [3.1 mg kg�1 dw; site no. 114]

which seems to be more related to the high heavy mineral content

of beach and dune sands.69

Despite the high levels of certain trace metals found in coastal

waters were already identified as anthropogenic hot spots or

priority pollution sensitive areas in the Western Mediterranean

Sea,70 natural processes, namely, land erosion, run-off,

upwelling, atmospheric deposition, could also lead to enhanced

natural concentrations of some metals in coastal areas. Conse-

quently, the assessment of potentially contaminated sites

depends on the significance of both sources and the measured

metal contents do not automatically imply contamination (or

pollution), because site-specific high concentrations may repre-

sent entirely natural conditions. Additional research efforts are

needed in order to distinguish between the anthropogenic and

natural origin of metal sources (e.g. isotopic studies).
3.5. Comparative assessment of metal pollution in the Western

Mediterranean Sea

The non-adjusted data and previous reported datasets available

for caged mussels, from various marine environments elsewhere
This journal is ª The Royal Society of Chemistry 2011
are shown in Table 1. Previous Pb levels reported in the Medi-

terranean and Atlantic coasts of France71,72 were similar or even

lower than mean Pb concentration found in this study (1.41 mg

kg�1 dw). Higher levels have been reported for polluted areas of

singular sites of the NW Italy,19,21 Scheldt estuary,73 San

Francisco bay,74 and Hong Kong waters.16 The Cd concentra-

tions found were slightly higher than the mean (1.32 mg kg�1 dw)

compared to most of the published data but lower compared to

highly polluted areas such as SW of Sardinia19 and San Francisco

Bay. The Hg values were within the range measured on the

Mediterranean and Atlantic coasts of France and the mean

concentration (0.10 mg kg�1 dw) was lower than elsewhere,

except for the high value at San Francisco Bay. The Nickel mean

concentration (1.10 mg kg�1 dw) was much lower than the values

found in the polluted areas localised in the Mediterranean

French coast,71 Sardinia19 and Scheldt estuary.73 Only trace metal

levels measured at off-shore areas of the German Bight and

Statfjord in the North Sea20 were lower than the levels obtained

in our study. Finally, from an ecotoxicological perspective, the

metal concentrations determined are below the maximum levels

set by EU (Commission Regulation (EC) no. 1881/2006) in

shellfish with respect to their human health risk, with the only

exception for Hg in Portoscuso [site no. 99] (Sardinia).
4. Conclusions

The geographical coverage of the sampling (i.e. ABM approach)

and the location of the sites within the dilution zone of the land

based sources have made possible to gain a significant knowledge

about the trace metal contamination (Hg, Ni, Pb and Cd),

biogeochemistry, sources and levels in the Western Mediterra-

nean basin, as well as to identify hot spots and new areas of

concern. A few sites with high metal concentrations could not be

linked to known anthropogenic activities and requires further

investigation (e.g. Balearic Islands). High metal concentrations

were predominantly found at sites close to mining, industrial

and/or urban areas. The following general conclusions may be

drawn: higher Cd levels in coastal waters of the Albor�an Sea

(sub-basin I); higher chemical pressure by Pb in the Albor�an and

North Western Mediterranean coast (sub-basins I and II); higher

Hg levels in coastal waters of the Tyrrhenian Sea (sub-basin IV);

and a predominance of high Ni levels along the North Africa

coast; whilst the rest of the Western Mediterranean confirm

moderate to low levels of metal pollution (based on the datasets

from this study). The standard ABM approach applied in the

present study is a relatively easy tool for making a large scale

assessment of the chemical water quality among different

geographic regions.
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