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Relying on our theoretical approach for the superconducting critical state problem in 3D magnetic
field configurations, we present an exhaustive analysis of the electrodynamic response for the so-
called longitudinal transport problem in the slab geometry. A wide set of experimental conditions
have been considered, including modulation of the applied magnetic field either perpendicular or
parallel (longitudinal) to the transport current density. The main objective of our work was to
characterize the role of the macroscopic material law that should properly account for the underlying
mechanisms of flux cutting and depinning. The intriguing occurrence of negative current patterns
and the enhancement of the transport current flow along the center of the superconducting sample
are reproduced as a straightforward consequence of the magnetically induced internal anisotropy.
Moreover, we show that related to a maximal projection of the current density vector onto the
local magnetic field, a maximal transport current density occurs somewhere within the sample. The
elusive measurement of the flux cutting threshold (critical value of such parallel component Jc||) is
suggested on the basis of local measurements of the transport current density. Finally, we show that
a high correlation exists between the evolution of the transport current density and the appearance
of paramagnetic peak structures in terms of the applied longitudinal magnetic field.

PACS numbers: 74.25.Vs, 74.25.Ha, 41.20.Z, 02.30.Xx

http://arxiv.org/abs/1108.0658v1


2

I. INTRODUCTION

The high interest arisen concerning the problem of magnetic flux depinning in type-II superconductors is markedly
associated with its relevance to technological and industrial applications achieving elevated transport currents with
no discernible energy dissipation. Thus, the distribution of vortices in a real type-II superconductor is determined
by the balance between the electromagnetic driving forces perpendicular to the flux lines, and forces pinning the
vortices to material inhomogeneities (lattice defects, impurities, and finite-size effects)1–3. Per unit volume, this reads
J×B = Fp (or J⊥B = Fp).

On the other hand, it is well-known that various striking phenomena occur when a transport current is applied
to a nonideal type-II superconductor under the presence of a longitudinal magnetic field4–32. First, a remarkable
enhancement of the critical current density has been observed in a wide number of conventional and high temperature
superconducting systems3,7,22–31. Second, an intriguing negative longitudinal electric field along the direction of the
transport current has been also reported8–21. Such a resistive structure in the longitudinal field geometry has been
intuitively understood in terms of helical domains, closely connected to the force-free current parallel to flux-lines
(recall that the magnetic force per unit volume is given by J×B)11,18,21,25.

Nevertheless, although several facts suggest that the vortex lattice is arranged in a helical configuration, perhaps
close to the force-free arrangement (J‖B), the arising voltage cannot be straightforwardly described as a critical
flux-flow voltage if one is to be consistent with the experimental reports13,32. On the other hand, although several
proposals have been done in terms of the crossing and recombination of adjacent nonparalell flux lines, the so-called
flux line cutting phenomenon has been basically recognized as the physical mechanism by which the longitudinal
voltage is produced18–20,30,31,33–35. Outstandingly, remarkable numerical and conceptual difficulties related to the
implementation of the above picture of the local dynamics for the transport current in realistic longitudinal geometries
have lead to unfortunate omissions of the phenomenon in practical calculations related to the applications of type-II
materials.

Recently, we have shown that our general critical state theory (Ref.4,5), is able to describe on a quantitative
basis the anomalous features involved in the local electrodynamics of a current carrying superconducting sample
subjected to variations of both longitudinal and transverse magnetic fields (Ref.6). In brief, our work is developed at a
phenomenological level which allows to deal with 3D-magnetic field configurations and nontrivial constraint conditions
defining anisotropy effects on the superconducting material law. We have introduced a geometrical description for
the constraints on the critical current density in terms of a closed region ∆r, such that the physically admissible
states are given by the condition J ∈ ∆r. When the physical limitations concerning the microscopic phenomena of
flux depinning and cutting are considered to be independent, the region ∆r becomes a cylinder, with a longitudinal
rectangular section of size 2Jc⊥×2Jc‖. This ansatz

4,5 can be identified with the so-called double critical state model in
type-II superconductivity. Hereafter, a related anisotropy parameter, that we will name after bandwidth χ ≡ Jc‖/Jc⊥
will be used.

Preliminar work on the intriguing effects associated to the longitudinal transport problem was presented in Ref.6.
Here, supported by numerical simulations that cover an extensive set of experimental conditions, we put forward a
much more complete physical scenario. Thus, we will show that the striking existence of negative flow domains, local
and global paramagnetic structures, emergence of peak-like structures in both the critical current density and the
longitudinal magnetic moment, as well as the compression of the transport current in type-II superconductors under
parallel magnetic fields, are all predicted by our general critical state model. In addition, we shall introduce some
ideas that could be applied for the determination of the flux cutting threshold from local measurements of the current
density flowing along specific layers of the superconducting sample, as correlated to the behavior of the magnetic
moment components.

The paper is organized as follows. In Sec. II, the physical background for the critical state concept in longitudinal
geometries under applied 3D magnetic fields is introduced (Sec. II A). Then, the underlying approximations and the
variational statement for the longitudinal transport problem in superconducting slabs are both described in detail
(Sec. II B). This encloses the time-discretized description of the magnetic field penetration process, and the local
dynamics of the transport current in an arbitrary magnetization process. The theory is then applied for a set of
experimental configurations and a collection of material laws as regards the interplay of the flux deppining and
cutting mechanisms (Section III). On the one hand, the infinite bandwidth model (or T-state model) with Jc|| ≫ Jc⊥
is assumed (Sec. III A). As the necessity of including a model with a well defined value for the threshold Jc|| will
become apparent, in sections III B and III C a more general description is presented as function of the anisotropy
effects on the material law. These effects will be investigated in terms of the range of parameter values: χ = 1, 2, 3, 4.
The procedure will reveal both local and global properties of the magnetic moment and the transport current flow
indicating a possible reconstruction scheme of the underlying material law. Sec. IV is devoted to summarize the main
findings of our work.
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II. LONGITUDINAL TRANSPORT PROBLEM IN THE DOUBLE CRITICAL STATE REGIME

This section is devoted to introduce the theoretical background that justifies our variational statement as an
appropriate tool which allows to implement a wide class of material laws in the investigation of the electromagnetic
response of superconducting samples subjected to 3D magnetic field configurations and transport currents. The
characteristic mathematical equations for the critical state problem are introduced in terms of a variational statement
that is applied within the infinite slab geometry. The relevance of the parallel and perpendicular critical current
limitations will be demonstrated.

A. General statements

The dynamics of the local magnetic field and transport current profiles in type-II superconductors is commonly
obtained within the critical state model framework. In the basic formulation (Bean’s model,36–38) one considers
that the magnetic flux lines, when driven by a macroscopic current density, will either penetrate or exit across the
superconducting surface. In more detail, when the driving forces (local value of J × B) overcome the pinning force
in a local section of the superconducting sample, the system of vortices rearranges itself into a new metastable state
such that the vortex lattice is pinned again when the equilibrium at the boundary is reestablished. Notice that this
physical mechanism relates to the component of J perpendicular to B. Since the displacement of the flux-lines takes
place with high associated resistivity, the system quickly adjusts itself to successive equilibrium states so as to avoid
the high resistive losses. On the other hand, reversible energy terms related to the equilibrium properties of the vortex
lattice are usually neglected (justified by the range of interest for the local magnetic fields Hc1 ≪ H ≪ Hc2), and the
linear relation B = µ0H is assumed.
For the particular case that the transport current is applied along the direction of the vortex lattice, rotation of

vortices is induced by the component of the current density parallel to the magnetic field. Subsequent cross-joining
and cutting will occur if the angle between neighboring vortices overcomes some critical value. Thus, in general, for
nontrivial configurations, and related to the threshold values for the current density that trigger the displacement of
vortex lines in some sense, a critical state may be defined as a given configuration which is able to withstand a critical
current defined by Jc = Jc|| + Jc⊥, as long as neither threshold (Jc|| or Jc⊥) is exceeded

4–6,30,31,35,39.
One must mention that, data from a wide number of experiments have shown that in many cases Jc|| and Jc⊥

can be of the same order of magnitude8–10,12,13,24,40–43. Then, in order to explain the accompanying phenomena,
both thresholds have to be included in the theory. In these cases, the local current voltage characteristic, connecting
the local electric field E and current density J, is strongly anisotropic with respect to the direction of the magnetic
induction B. This fact introduces strong difficulties when trying to find an analytical solution for the critical-state

equation ∇×H = Jc (or 0). Our formulation can somehow bypass such difficulties by treating the electric field as a
derived quantity that may be obtained a posteriori.
Thus, the critical-state equation can be posed in numerical terms, assuming an evolutionary discretization scheme.

Let us suppose that Hl stands for the local magnetic field intensity at the time layer lδt, and that the current density
profiles relate to some magnetic diffusion process that takes place when the local conditions for the material law
J‖ ≤ Jc‖, J⊥ ≤ Jc⊥ are violated. The successive field penetration profiles within the superconductor may be obtained
by the finite-difference expression of Faraday’s law,

µ0
Hl+1 −Hl

δt
= −∇×E = −∇× [ρ(∇×Hl+1)] . (1)

Here, ρ(J) plays the role of a nonlinear and nonscalar resistivity that should properly incorporate the physics of the
threshold and dissipation mechanisms mentioned above. Notice that the local profile Hl+1 can be solved in terms of
the previous field distribution Hl and the boundary conditions at time layer (l + 1)δt. The initial condition fulfills
Ampere’s law ∇×Hl = Jl as well as ∇ · Hl = 0 and ∇ · Jl = 0. One possibility for making the integration of this
system affordable is to find an equivalent variational statement. Thus, one can avoid the integration of these set of
differential equations by inversion of the Euler-Lagrange equations

Jl+1 −∇×Hl+1 = 0 , (2)

and

∇× pl +Hl+1 −Hl = 0 , (3)

for arbitrary variations of the time-discretized local magnetic field, Hl, that plays the role of the unknown. On the
other hand, we have introduced the Lagrange multiplier, pl, which can basically identified with the electric field of
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the problem. The related Lagrange density (over whole space) is

L =
1

2
|Hl+1 −Hl|

2 + p · (∇×Hl+1 − Jl+1) . (4)

As indicated above, minimization under the constraint ∇×Hl+1 = Jl+1 (Ampère’s law) allows to reduce the number
of variables in the statement of the problem, skipping the explicit inclusion of E.
For practical purposes, we stress that the above equations may be transformed so as to get a vector potential

formulation by means the condition

Hl+1 −Hl = µ−1
0 ∇× (Al+1 −Al) . (5)

Thus, by using standard electromagnetic manipulations, one may show that the functional to be minimized can take
the following form in terms of the current density

F [Jl+1 ∈ ∆r] ≡
8π

µ0

∫

Ω

∆A0 · Jl+1dr

+

∫ ∫

Ω×Ω

J′
l+1 · [Jl+1 − 2Jl]

|r− r′|
drdr′

(6)

It must be emphasized that Eq.(6) can be applied for any shape of the superconducting volume Ω as well as for
any general restriction (material law) for the current density Jl+1 ∈ ∆r. It is also to be noticed that solenoidality
(∇ · J = 0) has to be imposed so as to be consistent with charge conservation in quasi-steady regime.

B. Variational statement in slab geometry

In this subsection, we derive a specific variational formulation for the longitudinal transport problem in super-
conducting slabs for eventual 3D-field configurations (Fig. 1), i.e., both in plane and transverse local magnetic field
components emerge as derived effects of the external sources (transport currents and/or external magnetic sources).
We shall consider the time evolution of magnetic profiles Hl+1(z) within an infinite superconducting slab (of

thickness 2a), cooled under the assumption of an initial state defined by a uniform vortex lattice perpendicular to
the external surfaces, i.e., a constant magnetic field Hz0. Then, the constraint for the current density (material
law J ∈ ∆r) corresponding to the limitations on the parallel and perpendicular directions mentioned above may be
visualized by a finite cylinder with its axis parallel to the local magnetic field Hz (Fig. 1a). When a transport current
is injected along the superconducting slab in the direction of y-axis, a magnetic field component Hx appears, inducing
a rotation of the critical current region ∆r (see Fig. 1b). Finally, if a third magnetic field component Hy is switched,
a new rotation of the region occurs (Fig. 1c). Notice that, by symmetry, the current density is confined to the XY
plane, i.e.: J = (Jx(z), Jy(z), 0). In particular, this means that in practice one should impose the restriction that J

belongs to the projection of the critical current region onto the plane (J ∈ ∆p) and that ∇ · J ≡ 0.
At this point, we must mention that for numerical convenience, the material law is not strictly used in the form of

a cylinder, but smoothly reshaped as a superellipsoid4,5 by means of the relation

(

J||

Jc||

)2n

+

(

J⊥
Jc⊥

)2n

≤ 1 . (7)

The critical current region ∆r will be characterized in terms of its bandwidth χ = |Jc||/Jc⊥| and the superelliptic
index n.
We call the readers’ attention that two analytical approaches for the slab geometry may be found in the literature

for extreme situations. The first one was introduced by Brandt and Mikitik in Ref.44 for the regime of strong pinning
with very weak longitudinal current conditions, i.e., Hz must be very high as compared to Hxy(a) (then J‖ ≪ Jc‖).

On the other hand, the opposite limit (Hz → 0) was recently considered in Ref.6. Here, and based on the numerical
resolution of the variational statement, a complete tour along the whole set of values for the perpendicular field will
be presented.
In order to simplify the mathematical statements we shall normalize the electrodynamic quantities by defining

h ≡ H/Jc⊥a, j ≡ J/Jc⊥, and z ≡ z/a. In turn, our problem will be described in terms of Ns discretized layers, each
one characterized by a current density function j(zi) = jx(zi) + jy(zi) distributed along |zi| ≤ Nia/Ns. For further
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consideration, notice that the value of the transport current assumed in this work, i.e.: penetration to half thickness,
imposes the boundary condition hx(a) = 0.5 (Fig. 2).
In our discretized description, and in terms of Ampere’s law hx(zi) will be evaluated from

hx(zi) = δ
∑

j<i

2jy(zj)− jy(zi)

2
. (8)

Similarly, the local profiles for the longitudinal magnetic field component hy(zi) can be obtained from

hy(zi) = δ
∑

j>i

2jx(zj)− jx(zi)

2
, (9)

with δ ≡ a/Ns the thickness of each layer over the local plane zi.
Then, for the magnetic process sketched in Fig. 1c, Eq.(6) takes the following form in terms of discrete variables

F(t = l+ 1)=
1

2

∑

i,j

Ixi,l+1M
x
ijI

x
j,l+1 −

∑

i,j

Ixi,lM
x
i,jI

x
j,l+1

+
1

2

∑

i,j

Iyi,l+1M
x
ijI

y
j,l+1 −

∑

i,j

Iyi,lM
y
i,jI

y
j,l+1

+
∑

i

Iyi,l+1(i− 1/2)(hy
l+1(a)− hy

l (a)) . (10)

In this expression we have introduced the sheet currents Ixi,l+1 ≡ δjx(zi, t = l + 1) and Iyi,l+1 ≡ δjy(zi, t = l + 1),

and their mutual inductance coefficients Mx,y
ij . F has to be minimized along the different time steps (l = 1, 2, . . . )

in the magnetic process under consideration. On the other hand, one can show that the parallel and perpendicular
projections of the sheet current components are given by

I2⊥ = (1− h2
x,i)I

2
x,i + (1− h2

y,i)I
2
y,i − 2hx,ihy,i Ix,iIy,i ,

I2‖ = h2
x,i I

2
x,i + h2

y,i I
2
y,i + 2hx,ihy,i Ix,iIy,i . (11)

These components have to be constrained according to the material law in Eq.(7). Further, for the transport problem,
one has to consider the external constraint:

∑

i

Iy,i = Itr . (12)

The theoretical framework becomes closed by the following expressions for the mutual inductance coupling
elements4,5

Mx
i,j ≡ 1 + 2 [min{i, j}] ,

Mx
i,i ≡ 2

(

1

4
+ i− 1

)

,

My
i,j ≡ 1 + 2 [Ns −max{i, j}] ,

My
i,i ≡ 2

(

1

4
+Ns − i

)

. (13)

In summary, the magnetic response of the superconductor is characterized by a collection of discretized current
elements for the planar sheets (jxi, jyi) at the time steps l + 1 = 1, 2, 3, .... Then, the magnetic field profiles may be
obtained by means of Eqs.(8) and (9), and the sample’s magnetic moment per unit area from

Ml+1 =
∑

i

z× ji , (14)

where a factor of 2 has been introduced related to the contribution of the U-turns at infinity for each circuit.
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FIG. 1. (Color online) Scheme of the time dependence of the magnetic process considered in this work. (a) Left panel: an
external magnetic field Hz0 is applied perpendicular to the external surface of a superconducting slab of thickness 2a. (b)
Middle: the slab is later subjected to a transport current along the y-axis. This generates a local magnetic field component
Hx. (c) Right panel: at t = t′′ an external magnetic field Hy parallel to the transport of current direction is switched on.
The lower row of each panel depicts the region ∆ that constrains the flow of electrical current, as related to the critical state
material law. ∆ is a cylinder with axis parallel to the local magnetic field, with radius Jc⊥ and length 2Jc‖. The components
of J within the sample’s plane are indicated for each case

III. INFLUENCE OF THE MAGNETIC ANISOTROPY IN THE CRITICAL CURRENT

In the previous sections we have visualized the double critical state model as a phenomenological approach which
can be formulated by means of a variational problem with physical constraints. Here, based on the above mentioned
theoretical statements for the longitudinal transport current problem, we will show the theoretical predictions for
the magnetization process outlined in Fig. 1c as hy(a) ≡ Hy0 is increased. In addition, several initial states hz0 will
be focused on. Moreover, we shall concentrate on the effect of the flux cutting boundary (jc||) considering several
conditions for the material law. Two extreme cases (χ = 1 and χ → ∞) will be considered first (Sections III A and
III B), and the range in between at a second step (χ = 2, 3, and 4 in Section III C). Remarkably, our procedure will
reveal the fingerprints of the cutting and depinning mechanism, thus being a theoretical pathway for the reconstruction
of the material law, represented by the proper region ∆r.

Henceforth, we shall use the simplified notation T or CTχ as regards to the infinite bandwidth model (T by
transport) or double critical state model (CT by cutting and transport) with anisotropy χ = |jc||/jc⊥|.

A. T-states for the longitudinal transport configurations
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FIG. 2. (Color online) Profiles of the magnetic field components hx[z, hy(a)] and hy [z, hy(a)], and the corresponding current-
density profiles jy[z, hy(a)] and jx[z, hy(a)] for the T -state model and perpendicular magnetic field components hz0 = 10 (top),
hz0 = 2 (middle) and hz0 = 0.5 (bottom). The different curves correspond to the following sets of values for the longitudinal
field at the surface: (i) top row: hy(a) = 0.005, 0.050, 0.170, 0.340, 0.500, 0.680, 0.845, 1.0, 40.0, 80.0, 150.0, 300.0, 500.0, 750.0,
1000, (ii) middle row: hy(a) = 0.0050.050, 0.170, 0.340, 0.500, 0.680, 0.845, 1.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, (iii) bottom
row: hy(a) = 0.001, 0.050, 0.170, 0.340, 0.500, 0.680, 0.845, 1.0, 2.0, 3.0, 5.0, 7.0, 8.0, 9.0, 10.0.

1. Field and current density penetration profiles

Fig. 2 shows the magnetic field profiles and the induced currents for three different initial conditions, i.e., hz0 = 10,
hz0 = 2, and hz0 = 0.5, all of them under assumption of the T-state model. The initial state for the transport current
condition (Itr = Jc⊥a/2) establishes the initial transport profile jy{0 ≤ z < a/2} = 0 and jy{a/2 ≤ z ≤ a} = 1. As
the transport current is no longer modified, the condition hx(a) = 0.5 can be applied in what follows. On the other
hand, by symmetry, one has to impose the condition hx(0) = 0 at the center of the slab.

Then, when the external magnetic field hy(a) is linearly increased from hy(a) = 0, a current density jx is induced
from the superconducting surface as an effect of the Faraday’s law. Simultaneously, the local component of the
magnetic field hx(z) increases monotonically following two continuous stages fulfilling the aforementioned boundary
conditions. First, the superconducting sample is fully penetrated by the transport current when h⋆

y(a) = 0.845±0.003
and eventually, the condition jy(0) = 1 is reached as soon as hy(a) → 0.860. We notice that the value of h⋆

y(a)
for the full penetration profile is basically independent of hz0, at least to the numerical precision of our numerical
calculations. This agrees with the analytical solution of Ref.6. Second, a remarkable enhancement of the transport
current density occurs around the center of slab as hy(a) increases over h⋆

y(a). Furthermore, an eventual negative
current density appears shielding the positive transport current around the center of slab. In more detail, notice that
the appearance of negative current flow is enhanced when the magnetic component hz0 is decreased (Fig. 3).

Outstandingly, profiles of magnetic field reentry (paramagnetism in the component hy around center of slab) are
obtained for hz0 . 1 under relatively low applied magnetic fields hy(a) (see Fig.2).

Another remarkable property is that, for the range of values hz(0) < h⋆
y(a) negative surface current appears even

for the partial penetration regime, e.g., for hz0 = 0.5 one has jy(a) < 0 for hy(a) > 0.722. Recall that, in Ref.6 we
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FIG. 3. (Color online) Evolution of the local current density as a function of the applied longitudinal magnetic field hy0 = hy(a)
along the central and external sheets of the slab. The results are shown for the T-state model (Jc|| → ∞ & Jc⊥ = 1.0). Top:
the components jy and jx at (z = 0) and (z = a). Middle: details of the above behavior. Bottom: behavior of the parallel
and perpendicular components of j in the same conditions as above. The different curves correspond to the values of the
perpendicular magnetic field given by hz0 = 1, 2, 5, 10, 20, 50, 100, 200 (all plots having the same color scale).

have analytically shown that both effects, local paramagnetism and negative current zones are also predicted in the
limiting case hz0 = 0 . Along this line, as a general rule, we can conclude that the smaller the value of hz0, the sooner
the surface of negative transport current and even paramagnetic local effects appear.

2. Analysis of the current density behavior

Fig. 3 displays the evolution of the current density vector as a function of the longitudinal magnetic field hy(a). Note
that we focus on the specific values at the superconducting surface (z = a) and at the center of the superconducting
slab (z = 0).

In order to understand the physical mechanisms responsible for the observed behavior, it will be useful to consider
the following representation of the current density components. We identify the following decomposition of the vector
J

J = J‖ + J⊥α + J⊥θ , (15)

that assumes a polar axes representation, with the parallel, azimuth and polar components of J defined in terms of
the magnetic field direction. The following expressions are obtained for such components, when a cartesian coordinate
system is used.

(i) The current density parallel to Ĥ or so-called cutting current component J||:

J|| =
HxJx +HyJy

H
. (16)
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FIG. 4. (Color online) The magnetic moment (Mx,My) of the slab as a function of the applied magnetic field com-
ponent hy(a) for the T-state model. The curves are labelled according to the perpendicular magnetic field component
hz0 = 1, 2, 5, 10, 20, 50, 100, 200, the same color scale applies to all the plots.

(ii) The component of J perpendicular to the plane defined by the vectors ẑ and Ĥ or so-called azimuthal current
component

J⊥α =
−HyJx +HxJy
(H2

x +H2
y )

1/2
, (17)

(iii) the component of J perpendicular to Ĥ and contained in the plane defined by the vectors ẑ and Ĥ or so-called
polar current component J⊥θ:

J⊥θ =
Hz(HxJx +HyJy)

H(H2
x +H2

y )
1/2

. (18)

Within the T-state model, the behavior of J is straightforwardly explained: the unbounded parallel current density
allows unconstrained rotations for the flux lines as the applied magnetic field increases. In particular, this leads to
negative values of jy(a) (slope of hx(a)), simultaneous to high jy(0) (slope of hx(0)). We call the readers’ attention that
negative values of the transport current are favored by smaller and smaller values of the field component perpendicular
to the surface of the sample hz0.
A property to be noticed in Fig. 3 is that , at the center of slab the flux line dynamics is mainly governed by the

longitudinal transport current density jy(0). The basic idea is that for moderate values of hz, when hy increases jy
practically becomes j‖. As this component is unconstrained, it grows indefinitely at the center.

3. Magnetic moment of the sample

Let us now concentrate on the magnetostatic properties by means of the global sample’s magnetization curveM(H).
Thus, we have calculated M as a function of the longitudinal magnetic field hy(a). Fig. 4 displays the magnetic
moment components Mx(hy0) and My(hy0) in units of Jc⊥a

2. Notice first that within the partial penetration regime
(hy(a) 6 h⋆

y(a)) the magnetic moment components are almost independent of the transversal magnetic field hz0 (at
least for non small values of this quantity). On the contrary, when hz0 < 1 and the patterns of negative current
even occur before of the full penetrated state, magnetization slightly increases. This is accompanied by faint field
reentry effects that are also shown in the figure. Furthermore, as the threshold cutting current jc|| is unbounded for
the T-state model, the magnetic moment Mx always increases as related to the diverging behavior of jy(0).
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We must emphasize that the unbounded behavior for the parallel current density assumed above (that leads to the
prediction of arbitrarily high values of the transport current density) must be physically reconsidered. Thus, the trend
of the magnetic moment Mx and also the unbounded longitudinal current density jy disagree with the experimental
evidences recollected in Refs.8–10,18,21,25–29. In addition, in Fig. 3 one can notice that, as soon as the flow of negative
current along the superconducting surface is reached, it never disappears notwithstanding the longitudinal magnetic
field remains increasing. By contrast, the disappearance of the patterns of superficial negative current were detected
in Refs.11,14,15,18,21. These observations have lead to consider Jc‖ –bounded descriptions as satisfactory solutions of the

peculiar phenomena involved on the longitudinal transport current problem8,9,11,15. Rather recent experimental data
on high temperature superconductors45 also indicate that physical bounds are to be considered for both components
of the critical current.
On the other hand, the method described in this work suits the necessity of dealing with a physically acceptable

description of both local and global issues about the electromagnetic quantities involved on the longitudinal transport
current problem6. More realistic models for the material law are presented below.

B. CT1 states as a general approach

In this section, we show the results obtained for the square condition given by χ ≡ jc‖/jc⊥ = 1 (CT1 in what
follows). This can be considered as a lower bound for such quantity because the experimental values reported in the
literature are typically above unity.
In order to obtain continuity with the T-state results obtained above, the electrodynamic quantities of interest have

been proceeded under the same arguments developed in Sec. II B as regards to the magnetic process shown at Fig. 1c.
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FIG. 5. (Color online) Profiles of the magnetic field components hx[z, hy(a)] and hy [z, hy(a)] for a perpendicular field component
hz0 = 0.5. Also included are the corresponding current-density profiles jy [z, hy(a)] and jx[z, hy(a)] for the CT1 model. For clar-
ity, the longitudinal magnetic field is applied in three stages: (Top) hy(a) = 0.005, 0.050, 0.170, 0.340, 0.500, 0.680, 0.845, 1.0, 1.1,
1.3, (Middle) hy(a) = 1.3, 1.6, 1.9, 2.2, 3.0, 4.0, 5.0, 6.0, and (Bottom) hy(a) = 10, 20, 40, 80, 100, 125, 150, 1000.
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FIG. 6. (Color online) Same as Fig.5, but for hz0 = 10 and the values of the longitudinal field: (Top) hy(a) =
0.005, 0.050, 0.170, 0.340, 0.500, 0.680, 0.845, 1.0, 4.0, 6.0, 8.0, 11, (Middle) hy(a) = 13, 15, 17, 20, 25, 35, 50, 65, (Bottom) hy(a) =
80, 100, 125, 150, 200, 300, 400, 1000.

On the other hand, with the aim of getting a detailed physical interpretation on how the longitudinal and transverse
magnetic fields affect the dynamics of the transport current problem, we show the magnetic penetration profiles for
low and high perpendicular fields, i.e., hz0 = 0.5 (Fig. 5) and hz0 = 10 (Fig. 6). Eventually, for completeness, the set
of initial conditions hz0 is extended in (Fig. 7). It will be shown that the fingerprint of the CT model is identified as a
peak effect in the magnetization curves (Fig. 8) caused by the maximal enhancement of the critical current transport
density along the central layer.
In order to ease the interpretation of the intricate behavior of the magnetic profiles under CT conditions, we have

divided the experimental process in three successive stages as the longitudinal magnetic field component hy(a) is
increased, i.e.:

(i) The current density at the center jy(0) increases until a maximum value is obtained (top of Figs. 5 and 6).
Notice that the partial penetration regime is included within this stage .

(ii) The minimum value for the longitudinal current density along the superconducting surface is reached (middle
row of Figs. 5 and 6).

(iii) The longitudinal current density jy(a) stabilizes around jy(a) ≈ 0.5 (Bottom of Figs. 5 and 6).

1. Field and current density penetration profiles

To start with, notice that the trend of the profiles for the partial penetration regime is quite independent of the
perpendicular magnetic field hz0 (Figs. 5 and 6). Moreover, the partial penetration regime in which the transport
current zone progressively penetrates the sample is practically independent of the magnetic anisotropy of the critical
state (compare to Fig. 2). On the other hand, the negative current patterns are also found under the low applied
magnetic fields hz0 < 0.5. However, by contrast to the results within the previous section, recall that for the T-state
model the condition jc|| → ∞ allows unbounded values for the longitudinal current jy at the center of the sample. By
contrast, for the bounded case, the magnetic anisotropy of the material law ∆r defines the maximal current density
for the critical state regime. In other words, the maximal length of the vector J within the region ∆r defines the
maximal transport current allowed in the superconductor.
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FIG. 7. (Color online) Dynamics of the current density vector for the CT1 model. To the left, we show the patterns of transport
current over the central layer (jy(z = 0)) and external layer (jy(z = a)) of the slab. To the right, we show the variation of
the perpendicular component jx(z = 0) and jx(z = a). The curves are labelled according to the perpendicular magnetic field
component hz0 = 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100, 200.

Recalling Ref.4,5, the maximal longitudinal transport current density corresponds to the optimal orientation in
which the biggest distance within the superelliptic region is obtained, i.e.:

jmax
y =

(

1 + χ2n/(n−1)
)(n−1)/2n

. (19)

Note that his equation allows to obtain the maximum value expected for jy in terms of the actual critical state model
in use. Thus, for χ = 1, n = 4 one gets jmax

y = 1.3, a value that can be checked in Figs. 5 and 6.

2. Analysis of the current density behavior

Complimentary to the field penetration profiles, Fig. 7 shows the dynamics of the main components of the current
density along the central and external layers of the superconducting slab in the CT1 condition. Once again, notice
that the full penetration regime can be clearly distinguished from the partial penetration regime.

Also, an interesting property to be noticed is that the value jmax
y (0) is independent of the applied magnetic field at

least as regards the existence of the peak effect in the transport current density (Fig. 7). Thus, the enhancement of
the transport current density can be either accelerated or decelerated with the tilt of the applied magnetic field, but
in general terms, its maximum directly relates to the limitation introduced by the cutting mechanism. Physically, this
means that the role played by the magnetic anisotropy of the material law may be characterized by the influence of
the threshold cutting value on the enhancement of the critical current density. This point will be made clearer when
material laws with different values of χ are considered.
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FIG. 8. (Color online) Magnetic moment (Mx,My) of the slab as a function of the applied magnetic field component hy(a) for
the CT1 model. The curves are labelled according to the perpendicular magnetic field component hz0 for each.

3. Magnetic moment of the sample

Finally, notice that the limitation introduced by the flux cutting mechanism imposes a maximal compression of
the current density within the sample. Thus, the peak effects both for the transport current density jy (Fig. 7) and
for the magnetic moment component Mx (Fig. 8) are defined by the instant at which the maximal transport current
density occurs. Additionally, upon further increasing the longitudinal applied magnetic field component hy(a), the
profile hx(z) will be forced to decrease from the central sheet (z = 0) towards the external surface (z = a). This
reversal generates a local distortion of the longitudinal current density jy in a bow tie shape (see the middle row of
Figs. 5 and 6). Likewise, as soon as the profile j||(0) = jc||) is reached, the magnetic moment Mx starts decreasing
(Fig. 8) as one can see by comparison of Figs. 7 and 8.

C. CTχ-states: Emergence of the cutting threshold

The intrinsic interplay between the cutting and depinning mechanisms introduces difficulties when one tries to
extract the threshold values for a typical experimental arrangement. Nevertheless, as it was argued in the previous
section, several fingerprints of the actual material law can be identified, i.e.: the longitudinal current density along the
central and surface superconducting layers, and the behavior of the magnetic moment curves. In order to complement
this scenario, we have simulated three additional experiments, defined by the so-called CT2, CT3, and CT4 conditions,
in which the threshold value of the cutting current density is varied relative to the depinning limit (χ = 2, 3, 4
respectively).

1. Field and current density penetration profiles

The behavior of the local electrodynamic quantities is displayed in terms of the aforementioned three stages. In
order to allow comparison, the main features displayed in Figs. 5 and 6 for the CT1 condition with hz0 = 0.5 and
10, are also shown in Figs. 9 and 10 under the conditions CT2, CT3 and CT4. Several peculiarities are to be noted.
To start with, the emergence of negative states for the transport current density close to the external surface of the
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FIG. 9. (Color online) Profiles of hx[z, hy(a)] and jy [z, hy(a)] for the 1st (top) and 2nd (middle) stages
of the magnetic dynamics described in CT2, CT3, and CT4 cases (see text) all under a field hz0 = 0.5.
The 3rd stage is only defined for the CT2 case (bottom). hy(a) is as follows. CT2: 1st stage hy(a) =
0.005, 0.050, 0.170, 0.340, 0.500, 0.680, 0.845, 1.0, 1.1, 1.3, 1.6, 1.9, 2.2, 2nd stage hy(a) = 3, 4, 5, 6, 8, 10, 20, 40, and 3rd stage
hy(a) = 80, 120, 160, 200, 300, 400, 600, 800, 1000. CT3: 1st stage hy(a) = 0.005, 0.050, 0.170, 0.340, 0.500, 0.680, 0.845, 1.0, 1.5,
1.8, 2.2, 2.6, 3.0, and 2nd stage hy(a) = 4, 5, 6, 8, 15, 20, 40, 70, 100, 150, 200, 300, 400, 600, 1000. CT4: 1st
stage hy(a) = 0.005, 0.050, 0.170, 0.340, 0.500, 0.680, 0.845, 1.0, 1.5, 1.8, 2.2, 2.6, 3.0, 4.0, and 2nd stage hy(a) =
5, 6, 8, 15, 20, 40, 100, 200, 400, 600, 1000.

superconducting sample will be more evident either when hz0 is reduced and/or the current density anisotropy factor
χ is increased.

2. Analysis of the current density behavior

In order to confirm the above interpretation, we show the magnetic dynamics of the longitudinal current density
jy, the cutting current component j|| (Fig. 11) for the conditions CT2, CT3, and CT4. We have taken a wide set of
values for the perpendicular field component (hz0). On the one hand, as regards the sample’s surface, Fig. 11 shows
that the longitudinal current density jy(a) does not display significative differences when one has χ ≥ 2 (see also
Fig. 3 for χ = ∞). Thus, the disappearance of the negative current flow along the external superconducting surface
does not occur despite a very high applied magnetic field has been considered (hy(a) = 1000). On the other hand, it
is important to notice that the patterns of the parallel current density along the superconducting surface (j||(a)) are
almost indistinguishable as soon as the condition χ ≥ 2 (CT2) is reached (upper half of Fig. 11). This implies that
for an accurate picture of the parallel critical current, surface properties do not provide a useful information.

However, outstandingly, Fig. 11 shows that the threshold value for the cutting current density can be estimated
from the experimental measurement of the transport current density along the central sheet of the superconducting
sample. Notice further that, regardless of the experimental conditions (hz0, hy(a)) and also for different bandwidths
χ no significant change occurs in the parallel current density around the central sheet of the sample (lower half of
Fig. 11).
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FIG. 10. (Color online) Similar to Fig. 9, but for a perpendicular magnetic field component hz0 = 10. The curves
are labelled as follows. (CT2 - left panel): 1st stage hy(a) = 0.005, 0.050, 0.170, 0.340, 0.500, 0.680, 0.845, 1.0, 5.0,
10, 15, 20, 30, and 2nd stage hy(a) = 40, 60, 80, 120, 160, 200, 300, 400, 600, 800, 1000. (CT3-middle
panel): 1st stage hy(a) = 0.005, 0.050, 0.170, 0.340, 0.500, 0.680, 0.845, 1.0, 5.0, 10, 15, 20, 25, 30, 40, and
2nd stage hy(a) = 60, 80, 120, 160, 200, 300, 400, 600, 800, 1000. (CT4 - right panel): 1st stage
hy(a) = 0.005, 0.050, 0.170, 0.340, 0.500, 0.680, 0.845, 1.0, 5.0, 10, 15, 20, 35, 30, 40, 60, and 2nd stage hy(a) =
80, 120, 160, 200, 300, 400, 600, 800, 1000.

3. Magnetic moment of the sample

The peak effects observed both in the local transport current density jy(0) (lower half of Fig. 11), and on the global
magnetic moment Mx (Fig. 12), are predicted to appear subsequent to the maximal longitudinal transport current
density jmax

y (Eq. 19).

Furthermore, one additional feature is to be noted: the interval between the instant at which the maximal transport
current condition is reached (jy(0) = jmax

y ), and the instant at which the slope of the magnetic moment Mx changes
sign, could be assumed as transient or stabilization period required for an accurate determination of the value jc||
when measurements are performed in terms of the applied longitudinal field hy. Apparently, this transient increases
with the value of the perpendicular field hz0. From this point on, jy(0) may be basically identified with jc‖.

IV. CONCLUSIONS

Despite of extensive experimental and theoretical studies about the electrodynamic response of type-II super-
conductors in longitudinal geometries, much uncertainties remain about the interaction between flux depinning and
cutting mechanisms, and their influence in such striking observations as the appearance of negative transport current
flow, the enhancement of the critical transport current density, and the observation of peak effects on the magneti-
zation curves. In this article, and based on the application of our general critical state theory, we have reproduced
theoretically the existence of negative flow domains, local and global paramagnetic structures, emergence of peak-like
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FIG. 11. (Color online) Dynamics of the current density vector for the CT2, CT3 and CT4 models. In the upper panel, we
show the patterns of transport current along the central (jy(z = 0)) and surface layers (jy(z = a)) of the slab. The curves are
labelled according to the perpendicular magnetic field component hz0 = 1E − 7, 0.5, 1, 2, 5, 10

structures in the longitudinal magnetic moment, as well as the compression of the transport current density for a wide
number of experimental conditions.

The longitudinal transport problem in superconducting slab geometry has been studied as follows: we have consid-
ered a superconducting slab lying at the xy plane and subjected to a transport current density along the y direction.
The slab is assumed to be penetrated by a uniform vortex array along the z direction, so that the local current
density along the thickness of the sample is entirely governed by the depinning component J⊥, perpendicular to the
local magnetic field. Subsequently, a magnetic field source parallel to the transport current direction is switched
on. Then, the experimental conditions have been modulated through the value of the external magnetic field Hy0.
The dynamical behavior of the transport current density is shown to rely on the interaction between the cutting and
depinning mechanisms. Moreover, the intensity of the inherent effects has been shown to depend on the perpendicular
component Hz0, being more prominent as this quantity is reduced. By means of our general critical state theory that
allows to modulate the influence of the different physical effects, we have been able to show that the peak structures
observed in the magnetization curves and the patterns of the transport current along the central section of a super-
conducting sample are both directly associated with the local structure of the vortex lattice. Such dependence may
become more pronounced as the extrinsic pinning of the material is reduced, in favor of the flux cutting interactions.
The same conclusion was pointed out from the experimental measurements of Blamire et. al (Ref.7,23) for high critical
temperature and conventional superconductors. By using a theory that depends on two parameters (χ ≡ Jc‖/Jc⊥
and n) accounting respectively for the intrinsic material anisotropy and for the smoothness of the J‖(J⊥) law, here,
we have quantitatively investigated the influence of the flux cutting mechanism. It has been done by comparing the
so-called square model (χ = 1), the T-state model (χ → ∞), and the double critical state conditions CTχ with χ = 2,
χ = 3, and χ = 4, all of them with the smoothing index n = 4.

From our theoretical framework we obtain that the isotropic model (circular region: χ = 1, n = 1) does neither
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FIG. 12. (Color online) The magnetic moment (Mx,My) of the slab as a function of the applied magnetic field component hy(a)
for the CT2, CT3, and CT4 smooth critical state models. The curves are labelled according to the perpendicular magnetic
field component hz0 in correspondence at the Fig 11.

predict the appearance of negative current patterns nor the peak effects in the magnetic moment curves. However,
as long as a clear distinction between the depinning and the cutting components of J is allowed, several remarkable
facts can be explained.

Going into detail, when the cutting threshold is high (Jc‖ ≫ Jc⊥ or χ ≫ 1) the emergence of negative current
patterns is ensured because unbounded parallel current density allows unconstrained rotations for the flux lines as
the longitudinal magnetic field increases. Thus, under a range of conditions, the peak effects in the magnetic moment
and a modulation of the negative surface currents are predicted.

Concentrating on the local properties within the sample, a clear independence of the field penetration profiles
relative to the anisotropy level of the material law has been obtained for the partial penetration regime. On the other
hand, as soon as the full penetration state is reached, noticeable effects of the magnetic anisotropy law are predicted
both within the central and external layers of the superconducting sample. Thus, according to our results (see Fig.11)
the elusive parallel critical current density parameter Jc|| can be obtained from the local measurement of the transport
current density along the central layer of the superconducting sample.
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6 Ruiz H S, López C and Bad́ıa-Majós A 2011 Phys. Rev. B 83 014506
7 Blamire M G, Marrows C H, Stelmashenko N A and Evetts J E 2003 Phys. Rev. B 67 014508
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