LETTERS

1770

Yu-Tsung Huang, Chun-Hsing Liao, and Po-Ren Hsueh

receive isoniazid if their TB developed

when they were young. In the present

study, the resistant rate was lower for

M. tuberculosis strains isolated from

elderly persons than from younger

adults. These findings suggest that

first-line anti-TB medications still

have good in vitro activity against M.

tuberculosis strains in elderly patients.

et al. (1), our results showed that

isoniazid-resistant M. tuberculosis

was significantly less likely to be

isolated from nonrespiratory than from

respiratory specimens. The reasons for

this finding are unclear. Continuous

monitoring of antimicrobial drug

resistance among M. tuberculosis

isolates isolated from various body

sites needs to be incorporated into any

rates is a major aspect of the global TB

control program. Clinicians must have

knowledge of local epidemiology, and

mycobacteriology laboratories should

maintain up-to-date information on

drug susceptibility test profiles of

Chih-Cheng Lai, Che-Kim Tan,

local M. tuberculosis isolates.

Gathering data on drug resistance

TB surveillance program.

In contrast to the study by Vinnard

Author affiliations: Chi-Mei Medical Center, Liouying, Tainan, Taiwan (C.C. Lai), Chi-Mei Medical Center, Yong-Kang, Tainan (C.-K. Tan); National Taiwan University Hospital, Taipei, Taiwan (Y.-T. Huang, P.-R. Hsueh); National Taiwan College of Medicine, Taipei (Y.-T. Huang, P.-R. Hsueh); and Far Eastern Memorial Hospital, New Taipei City, Taiwan (C.-H. Liao)

DOI: http://dx.doi.org/10.3201/eid1709.110447

References

- Vinnard C, Winston CA, Wileyto EP, Macgregor RR, Bisson GP. Isoniazidresistant tuberculous meningitis, United States, 1993–2005. Emerg Infect Dis. 2011;17:539–42.
- Liu WL, Lai CC, Tan CK, Lin SH, Huang YT, Liao CH, et al. Declining drug resistance of *Mycobacterium tuberculosis* isolates from elderly patients in Taiwan, 2000–2008. Eur J Clin Microbiol Infect Dis. 2010;29:1413–6. doi:10.1007/ s10096-010-1019-7
- Lai CC, Tan CK, Huang YT, Chou CH, Hung CC, Yang PC, et al. Extensively drug-resistant *Mycobacterium tuberculosis* during a trend of declining drug resistance between 2000 and 2006 at a medical center in Taiwan. Clin Infect Dis. 2008;47:e57–63. doi:10.1086/591702
- Hoopes AJ, Kammerer JS, Harrington TA, Ijaz K, Armstrong LR. Isoniazidmonoresistant tuberculosis in the United States, 1993 to 2003. Arch Intern Med. 2008;168:1984–92. doi:10.1001/ archinte.168.18.1984

Address for correspondence: Po-Ren Hsueh, Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Rd, Taipei, 100, Taiwan; email: hsporen@.ntu.edu.tw

Novel Mycobacterium Species in Seahorses with Tail Rot

То the Editor: Seahorses (Hippocampus guttulatus and H. hippocampus) with signs of tail rot disease (lethargy, lack of appetite, white spots on the skin, and necrotic tail lesions) were collected from aquaria at the Institute of Marine Research, Spain, during March 2007 through May 2009 (online www.cdc.gov/ Appendix Figure, EID/content/17/9/101289-appF. htm). Microscopic examination of cutaneous lesions after Ziehl-Neelsen staining disclosed acidfast bacilli. Microbiologic analysis showed unidentified Mycobacterium strains. Subsequently, we used PCR amplification of repetitive bacterial DNA elements to group the strains (1). The results showed an identical PCR pattern for the strains; thus, we selected strain BFLP-6^T for analysis. On the basis of phenotypic and genotypic data, we consider the unknown acidfast bacillus to represent a novel species of the genus Mycobacterium, for which the name *M. hippocampi* sp. nov. is proposed.

Extraction and amplification of genomic DNA for 16S rRNA sequence analysis were conducted as described (2), and the RNA polymerase B (*rpoB*) gene was amplified and sequenced as described by Adékambi et al. (3).

Table. Factors associated with isoniazid resistance among Mycobacterium tuberculosis

Sequences obtained were compared against the sequences available in the GenBank, EMBL, and DDBJ databases obtained from the National Center for Biotechnology Information by using the BLAST program (4). Phylogenetic analysis were performed by using MEGA version 4.0 (5) after multiple alignments of data by ClustalX (6). Distances (distance options according to the Kimura 2-parameter model) and clustering with the neighbor-joining method were determined by using bootstrap values for 1,000 replications.

The 16S rRNA sequence of strain BFLP- 6^{T} was a continuous stretch of 1,473 bp (GenBank accession no. FN430736). Sequence similarity calculations after a neighbor-joining analysis indicated that the closest

relatives of strain BFLP-6^T were M. flavescens (98.26%), M. goodii (98.01%), *M*. duvalii (97.94%), M. smegmatis (97.92%), and M. novocastrense (97.86%) (Figure). Similar results were obtained for strain BFLP-6^T when the maximumparsimony algorithm was used. The rpoB gene has also been proposed as a useful marker for inferring bacterial phylogeny (7,8). A pairwise analysis of the rpoB sequence of strain BFLP-6^T (GenBank accession no. FR775976) showed low levels of similarity (<89.8%) with other species of the genus Mycobacterium. The G + C content of DNA, as measured by the thermal denaturation method, was 66.7 mol%.

Strain BFLP-6^T was found to consist of gram-positive-staining,

Figure. Neighbor-joining phylogenetic tree constructed from 16S rRNA gene sequences, showing the position of strain BFLP-6^T (in **boldface**) among other *Mycobacterium* species. Numbers at node indicate bootstrap values (expressed as percentages of 1,000 replications); only values >50% are given. *Mycobacterium leprae* TN was used as an outgroup. Scale bar indicates 0.01 substitutions per nucleotide position. GenBank accession numbers are in parentheses.

aerobic, acid-alcohol-fast, nonmotile, and nonsporulating cells. A scanning electron micrograph showed that strain BFLP-6^T is irregular, rod-shaped, \approx 1.2–1.4 µm in length, and 0.4 µm in diameter. Colonies on Lowenstein-Jensen medium supplemented with 1.5% (wt/vol) sodium chloride were orange after incubation at 25°C for 5 days. The colonies were positive for catalase, glucose fermentation, arginine dihydrolase, urease, and aesculin, and assimilation of glucose, mannitol, potassium gluconate, and malate. The colonies were negative for nitrate reduction to nitrite, oxidase, indole production, gelatin hydrolysis, *N*-acetyl-D-glucosamine; and assimilation of arabinose, mannose, maltose, caprate, adipate, citrate, and phenylacetate. The major fatty acids were C18:1 ω 9c, C16:0, and C16:1 ω 6c. Mycolic acids included α-mycolates, keto-mycolates, and nonhydroxylated fatty acid methyl esters.

In addition, strain BFLP-6^T showed resistance to isoniazid, thiophene-2carboxylic hydrazide, hydroxylamine, thiacetazone, and picrate. However, the strain exhibited susceptibility to ciprofloxacin, clarithromycin, and rifampin. The type strain BFLP-6^T has been deposited in the German Collection of Microorganisms and Cell Cultures, under reference DSM 45391^T; and in the Belgian Coordinated Collections of Microorganisms under reference LMG 25372^T.

Acknowledgments

We thank P. Quintas, A. Chamorro, M. Cueto, S. Otero, and P. Ruiz for skillful technical assistance.

This study was supported by the Spanish Ministry of Science and Technology (*Hippocampus* CGL2005-05927-C03-01 and Hipporearing CGL2009-08386). J.L.B. was supported by a postdoctoral I3P contract from the Spanish Council for Scientific Research.

José Luis Balcázar, Miquel Planas, and José Pintado

Author affiliations: Instituto de Investigaciones Marinas, Vigo, Spain (J.L. Balcázar, M. Planas, J. Pintado); and Catalan Institute for Water Research, Girona, Spain (J.L. Balcázar)

DOI: http://dx.doi.org/10.3201/eid1709.101289

References

- Balcázar JL, Gallo-Bueno A, Planas M, Pintado J. Isolation of *Vibrio alginolyticus* and *Vibrio splendidus* from captive-bred seahorses with disease symptoms. Antonie van Leeuwenhoek. 2010;97:207–10. doi:10.1007/s10482-009-9398-4
- Balcázar JL, Pintado J, Planas M. Bacillus galliciensis sp. nov., isolated from faeces of wild seahorses (*Hippocampus* guttulatus). Int J Syst Evol Microbiol. 2010;60:892–5. doi:10.1099/ijs.0.011817-0
- Adékambi T, Colson P, Drancourt M. *rpoB*-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol. 2003;41:5699–708. doi:10.1128/ JCM.41.12.5699-5708.2003
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
- Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–9. doi:10.1093/molbev/msm092
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876–82. doi:10.1093/nar/25.24.4876
- Case RJ, Boucher Y, Dahllöf I, Holmström C, Doolittle WF, Kjelleberg S. Use of 16S rRNA and *rpoB* genes as molecular markers for microbial ecology studies. Appl Environ Microbiol. 2007;73:278–88. doi:10.1128/AEM.01177-06
- Adékambi T, Drancourt M, Raoult D. The rpoB gene as a tool for clinical microbiologists. Trends Microbiol. 2009;17:37–45. doi:10.1016/j.tim.2008.09.008

Address for correspondence: José Luis Balcázar, Catalan Institute for Water Research, Emili Grahit 101, Girona 17003, Spain; email: jlbalcazar@icra.cat

Mycoplasma leachii sp. nov. in Calves, China

To the Editor: Mycoplasma leachii sp. nov., a new species designation for Mycoplasma sp. bovine group 7 (1), was initially isolated from joint fluids of arthritic calves in southern Queensland, Australia, and its pathogenicity was established by experimental infection (2). It was represented by the type strain PG50. Subsequently, M. leachii was reported infrequently as a cause of polyarthritis in calves and mastitis in cows; the pathogen was also isolated from aborted fetuses and pneumonic bovine lungs (3-6) and from small ruminant hosts (7).

M. leachii is one of 5 recognized members of the M. mycoides cluster, which comprises 3 species (1). Most notable are M. mycoides subsp. mycoides small colony and M. capricolum subsp. capripneumoniae, the etiologic agents of contagious bovine and caprine pleuropneumonia, which are listed by the World Organisation for Animal Health as notifiable animal diseases. The M. mycoides subsp. capri and M. capricolum subsp. capricolum cause various symptoms in small ruminants (8). Strains of M. leachii that cause mastitis and polyarthritis in cattle are serologically distinct from other bovine Mycoplasma spp. (9). Most reported isolates of M. leachii were detected in Australia. We report the isolation of M. leachii in cattle in China.

During January–May 2009, severe polyarthritis was observed in $\approx 100\%$ of ≈ 350 female calves at the central calf rearing unit of a farm in Helongjiang Province, People's Republic of China. Clinical signs were noticed at $\approx 3-5$ days of age, with severity gradually increasing over the next 2 days. At that time, the carpal and tarsal joints were greatly enlarged because of accumulation of intraarticular fluid. Ampicillin, streptomycin sulfonamide. and antimicrobial drug regimens for polyarthritis were ineffective. Approximately 100 calves died during the outbreak; the remaining calves recovered irrespective of treatment, but permanent disfigurement of the appendicular skeleton was evident. The disfigurement led to the calves being culled.

Necropsy was conducted on the calves that died during the outbreak, and gross and histopathologic findings similar to those described (2,3) were observed. Nearly all diarthroidal joints were enlarged and contained vellow-gray turbid synovial fluid and large yellow fibrin clots. The synovial membranes were slightly thickened, congested, and had some villous proliferation. Histologic examination affected of the articulations found severe. diffuse. subacute arthrosynovitis and bursitis.

Routine bacterial culture of 2 joint fluid samples collected aseptically from different animals showed no bacterial growth. *Mycoplasma* spp. infection was suspected, and the samples were forwarded to the laboratory for specific culture; 2 were positive for *Mycoplasma* spp. These isolates were designated GN407 and GN408.

The presence of M. leachii in joint fluids and Mycoplasma spp.positive cultures was detected by PCR with the partial lppA gene amplified with a protocol modified from the method described by Frey et al. (10) and amplification of the complete 16S rRNA gene was performed by using the primers 16S-upper 5'-AAAATGAGAGTTTGATCC TGG-3' and 16S-lower 5'-AGAAAG GAGGTGATCCATCCG-3'. The primers were designed on the basis of the 16S rRNA gene sequence of M. leachii PG50 (U26054). PCR products were sequenced directly in both directions. Sequence analyses