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Abstract. We propose a generalization of dispersive qubit readout that
provides the time evolution of a flux qubit observable. Our proposal relies on
the nonlinear coupling of the qubit to a harmonic oscillator with high frequency,
representing a dc superconducting quantum interference device. Information
about the qubit dynamics is obtained by recording the oscillator response to
resonant driving and subsequent lock-in detection. The measurement process is
simulated for the example of coherent qubit oscillations. This corroborates the
underlying measurement relation and also reveals that the measurement scheme
possesses low backaction and high fidelity.
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1. Introduction

The question of how to gain information about the state of a quantum system has intrigued
researchers since the early days of quantum mechanics. With the advent of quantum
computation, this fundamental question also became of practical interest, mainly because
the final stage of a quantum algorithm is necessarily qubit readout. This task only requires
distinguishing between two particular qubit states and thus can be achieved by projective
measurements. Nevertheless, going beyond readout is of interest as well, since one also
desires direct experimental evidence for coherent superpositions emerging, e.g., from tunnelling
oscillations.

In order to obtain a quantum mechanical description of a measurement process, one usually
models the measurement apparatus as a macroscopic quantum environment, i.e., as a heat bath,
where the pointer of the apparatus corresponds to an effective bath coordinate. When interacting
with the central quantum system, the bath acquires information about the system state. Owing to
the macroscopic nature of the bath, one may assume that a fraction of the bath already possesses
full information about the effective pointer coordinate [1]. Therefore one can obtain knowledge
of the pointer position without violating fundamental laws of quantum mechanics.

In recent years, superconducting quantum circuits have provided a new arena to test
fundamental questions of quantum mechanics in the laboratory. Prominent examples are the
demonstration of coherent time evolution in charge qubits [2] and of Berry phases [3], as well
as testing Bell inequalities [4]. Above all, different protocols for quantum measurement were
successfully implemented in circuit quantum electrodynamics [5–8]. For a superconducting
solid-state qubit, the practical measurement of one of its coordinates is carried out by
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coupling it to a macroscopic environment, as given by external circuitry, via a quantum point
contact [9, 10] or a harmonic oscillator. Depending on the setup, the oscillator is realized
by a dc superconducting quantum interference device (SQUID) [11] or a superconducting
resonator [12]. In both cases, the resonance frequency of the oscillator depends on the qubit
state. Consequently, the response of the oscillator to a close-to-resonant ac excitation possesses
a phase shift that can be measured and from which one can infer the qubit state. The first
experiments in this direction worked with an oscillator whose frequency was much lower
than the qubit splitting [5, 13, 14]. More recent experiments [6, 15] operated in the so-called
dispersive regime, where the oscillator frequency and the qubit splitting are of the same order,
while their detuning is still larger than their mutual coupling strength. A crucial detail is
that the oscillator frequency and bandwidth naturally limit the time resolution in such qubit
measurements. Thus, using the said schemes with slow oscillators, it is only possible to extract
time-averaged information about the qubit state in general, but there is no possibility to resolve
its dynamics in time.

Recently, a first step towards a time-resolved measurement of qubit dynamics was
proposed [16, 17]: when a weak high-frequency field acts directly on the qubit, the reflected
signal acquires a time-dependent phase shift by harmonic mixing. Lock-in amplification of
the reflected signal then allows the obtaining of information about the qubit dynamics. In this
paper, we combine both approaches and extend the scheme of [16, 17] to a qubit coupled to
a driven high-frequency oscillator. A measurement protocol for such a setup is particularly
appealing because an oscillation mode is part of most of the recent superconducting qubit
designs. Moreover, the oscillator serves as a filter for quantum noise and thus reduces qubit
decoherence. Here, we focus on a flux qubit embraced by a dc SQUID, whose fundamental
frequency may even be tunable to some extent [18, 19]. As a particular feature of this realization,
the qubit–oscillator coupling is nonlinear in the oscillator coordinate; that is, the coupling
possesses both significant linear and quadratic contributions. It will turn out that for realistic
parameters, the measurement scheme relies on the quadratic part of the coupling.

The paper is structured as follows. In section 2, we introduce our model and discuss
dispersive qubit readout in generalized terms. The central relation on which our measurement
scheme relies is derived in section 3. Section 4 is devoted to numerical studies in which we
test our measurement relation and work out quantitatively measurement fidelity and backaction.
Furthermore, we provide an estimate of the signal-to-noise ratio and discuss realistic parameters
for a possible experimental implementation. The appendix contains details of the derivation
of the measurement relation, the input–output formalism [20] and the Bloch–Redfield master
equation that we use for obtaining numerical results.

2. Dissipative qubit–oscillator model

2.1. System–bath model

We consider a superconducting flux qubit coupled to a SQUID [7], as sketched in figure 1. The
SQUID is modelled as a harmonic oscillator, which gives rise to the Hamiltonian [6, 7, 18, 21]

H0 =
h̄ωqb

2
σz + h̄�(a†a + 1

2) + h̄(σz cos θ − σx sin θ)[g1(a + a†) + g2(a + a†)2]. (1)

The first term represents the qubit with energy splitting h̄ωqb = h̄(ε2 + δ2)1/2 and the mixing
angle θ = arctan(δ/ε), which depends on the controllable qubit bias energy ε and the qubit gap
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Figure 1. Sketch of the flux qubit (blue) coupled to a dc SQUID. The interaction
is characterized by the linear coupling g1, which depends linearly on the SQUID
bias current Ib and the quadratic coupling g2. The SQUID with Josephson
inductance L J is shunted by a capacitance C . The frequency shift of the resulting
harmonic oscillator (green) can be probed by external resonant ac excitation
Acos(�act) via the transmission line (black), in which the quantum fluctuations
ξ

qm
in (t) are also present.

energy δ, while σx,z denote the Pauli matrices. The second term describes the oscillator with
frequency � and the bosonic creation and annihilation operators a† and a, respectively. The
qubit couples to the oscillator in two ways. First, via dipole interaction with strength g1, which
is linear in the oscillator coordinate a + a†. Up to order g2

1 , this causes a frequency shift for
both the oscillator and the qubit. The second coupling term proportional to g2, by contrast, is
quadratic in the oscillator coordinate. Its physical origin is a nonlinear Josephson inductance,
which depends on the magnetic flux, by which the SQUID is penetrated [7, 18]. This term
provides a frequency shift already in first order of g2. The interaction coefficients g1 and g2 can
be controlled to some extent, as an expansion of the qubit–SQUID interaction to second order
in the oscillator coordinate demonstrates [18]. In detail, for a small SQUID bias current Ib, the
coupling coefficient g1 depends linearly on Ib, whereas g2 is independent of the latter, as we
discuss in section 4.4. For Ib = 0, one even obtains g1 = 0, such that the qubit couples only to
the square of the oscillator position [7, 18].

Regarding a time-resolved measurement of the qubit dynamics via the oscillator, it will
turn out that for realistic parameters of flux qubits, this quadratic coupling is crucial, while the
linear coupling turns out to be typically too weak. For common circuit-QED setups using charge
and flux qubits coupled to a transmission line resonator [11, 12, 22, 23], not only g1 but also g2

is too small. Thus, we henceforth focus on setups of flux qubits coupled to SQUIDs possessing
a sizable quadratic coupling, as described above.

The qubit–SQUID system is further coupled to external circuitry, which acts as a dissipative
environment and is modelled by the system–bath Hamiltonian [24–27]

H=H0 + Q
∑

k

h̄ck(bk + b†
k) +

∑
k

h̄ωk(b
†
kbk + 1

2). (2)

Here, Q = a† + a is the oscillator coordinate, such that the interaction term represents
the inductive coupling between the qubit and the flux degree of freedom of the SQUID.
The system–bath interaction can be fully characterized by the spectral density J (ω) =

π
∑

k |ck|
2δ(ω − ωk), which is proportional to the real part of the effective impedance of
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the environment [28]. Here we assume an ohmic spectral density, J (ω) = αω, for which the
dimensionless damping strength α can be interpreted as effective resistance [29–31].

2.2. Qubit–oscillator interaction in the dispersive limit

We are interested in the dispersive limit, which is characterized by a detuning 1 = � − ωqb

larger than the qubit–oscillator couplings,

g1, g2 � |1|, 1 = � − ωqb. (3)

It is then convenient to go to the dispersive picture via the unitary transformation (A.2). As
detailed in appendix A, this yields the effective Hamiltonian [32, 33]

H̄0 = U†H0U = h̄�̄(ā†ā + 1
2) +

h̄ωqb

2
σz, (4)

where the transformed bosonic operators ā and ā† are defined in equation (A.10). The
qubit–oscillator coupling has been removed formally by shifting it to the operator-valued
oscillator frequency

�̄ = �

√
1 +

4ω̄

�
, (5)

where the overbar denotes the dispersive picture, while the qubit operator

ω̄ =
g2

1

2
σz

(
1

1
−

1

� + ωqb

)
sin2 θ +

g2
1

2
σx

(
1

1
−

1

� + ωqb

)
cos θ sin θ + g2(σz cos θ − σx sin θ)

(6)

determines the coupling. The interpretation of equations (5) and (6) is that the oscillator
frequency depends on the qubit state. This allows dispersive qubit readout by measuring the
associated phase shift of the oscillator response upon resonant driving, like in the case of a
classical oscillator that is driven by an external force. In particular, assuming that cos θ = 0 and
g2 = 0, equation (5) predicts the frequency shift �̄ = � + σzg2

1[1/1 − 1/(� + ωqb)]−1. The last
contribution in �̄ stems from counter-rotating terms in the qubit–oscillator interaction. These
must be accounted for in the case of large detuning 1, where a rotating-wave approximation
produces inaccurate results [34]. Depending on the qubit expectation value 〈σz〉, the oscillator
is red or blue detuned. Thus, we obtain in this limit the well-known qubit-dependent phase
shift corroborated in various experimental realizations [5–8, 22]. There, however, the oscillator
frequency was smaller than the qubit splitting, � � ωqb. As a consequence, it was only possible
to obtain time-averaged information about the qubit state.

Now the goal of this paper is generalization of dispersive qubit readout such that time-
resolved information about the qubit state can be obtained as well. This obviously requires os-
cillator frequencies and bandwidths larger than the qubit transition frequency, that is, � � ωqb.
We emphasize that equations (5) and (6) are nevertheless valid as long as the coupling con-
stants are small enough to fulfil condition (3); for details see appendix A and [34]. If the qubit
dynamics is much slower than the oscillator, the qubit can be treated within an adiabatic approx-
imation. This means that the qubit dynamics is assumed to be constant during one oscillator pe-
riod. In turn, the time evolution of the oscillator depends on the instantaneous qubit state. Then
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the Schrödinger-picture operators σx,z in equation (6) can be replaced by their time-dependent
expectation values, and the operator-valued quantity ω̄ is substituted by

ω̄(t) =
(g1 sin θ)2

2

(
1

1
−

1

� + ωqb

)
〈σz〉t +

g2
1

2
cos θ sin θ

(
1

1
−

1

� + ωqb

)
〈σx〉t

+g2 (cos θ〈σz〉t − sin θ〈σx〉t) . (7)

Equation (7) implies that information about the time-dependent qubit state is encoded in the
effective oscillator frequency �̄ ≡ �̄(t). This gets expressed as a slow parametric modulation
in time, like for a parametric oscillator. In detail, the instantaneous qubit state enters via the
qubit expectation values 〈σx,z〉t ≡ Trqb{σx,zρ0(t)}, where Trqb denotes the partial trace over
the qubit degrees of freedom. The time dependence, indicated by the subscript 〈· · ·〉t , stems
from the evolution of the total qubit–oscillator state ρ0(t) under the effective system–bath
Hamiltonian (A.15).

As an important intermediate result, the modulation of �̄ in time found can be traced back
to the qubit dynamics in the absence of the driving. This enables us to measure the qubit’s time
evolution via the oscillator response to resonant driving.

3. Time-resolved measurement of the qubit dynamics

The qubit–oscillator Hamiltonian in the dispersive picture, equation (4), together with the
effective, modulated frequency (5) already indicates that the oscillator detuning may contain
information about the qubit dynamics. As in the case of the traditional dispersive readout, we
consider the response of the system to an ac field that is resonant with the oscillator. Physically,
the situation corresponds to that of a classical mechanical oscillator driven by an external
periodic force. Owing to the only weak dissipation, the response is manifest in the phase of
the reflected ac driving. In the following, we establish a relation between this phase and a
time-dependent qubit expectation value. This relation will form the basis of our measurement
protocol.

3.1. Response of the qubit–oscillator compound to resonant driving

In the theory of optical cavities, the response to an external ac excitation is conveniently
calculated with the input–output formalism [20, 35]. This formalism has also been applied to
quantum circuits [5, 13, 14, 16]. Its cornerstone is the relation

ξout(t) − ξin(t) = 2α Q̇, (8)

formulated in the Heisenberg picture and derived in appendix B. It relates the incoming and
the outgoing fluctuations of the transmission line, ξin/out(t), to the time-derivative of the system-
bath coupling operator, which in our case is Q = a + a†. The dimensionless dissipation strength
α of the ohmic spectral density quantifies the coupling between the oscillator and the electric
environment and, thus, appears as a prefactor. An ac driving corresponds to a coherently excited
incoming mode, such that the fluctuations can be separated into quantum fluctuations ξ

qm
in (t) and

a deterministic component Acos(�act). Here, the deterministic part is an ac field in resonance
with the bare oscillator, �ac = �, such that

ξin(t) = ξ
qm
in (t) + A cos(�t), (9)
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which implies the expectation value 〈ξin(t)〉 = Acos(�t). Then the input–output relation (8)
becomes ξout(t) = ξ

qm
in (t) + A cos(�t) + 2α Q̇ and thus the corresponding expectation value of

the outgoing signal reads

〈ξout(t)〉 = A cos(�t) + 2α〈Q̇〉. (10)

It is also convenient to work here in the dispersive picture obtained by the unitary transformation
(A.2). While this leaves the environment operators unchanged, the coordinate by which the
oscillator couples to the environment changes as Q → Q̄ = ā + ā†

− (λ1 − λ6)σx + 2λ�σz; see
equation (A.14). The time derivative dQ̄/dt can be obtained from the commutator of Q̄ with the
Hamiltonian (4) augmented by a term that describes the driving. This yields terms of order �

and terms with prefactors ωqb and g1/1. For a fast oscillator, the latter terms can be neglected,
and we obtain the equation of motion

d2

dt2
Q̄ + 2α�̄

d

dt
Q̄ + �̄2 Q̄ = −2�̄[ξ qm

in (t) + A cos(�t)]. (11)

This linear, inhomogeneous equation is readily solved with the help of the Green’s function
for the dissipative harmonic oscillator. Inserting the resulting dQ̄/dt into the input–output
relation (10) and neglecting transient terms yields for the expectation value of the outgoing
signal the expression

〈ξout(t)〉 = A cos{�t − ϕ(t)}. (12)

Owing to the weak dissipation, the system energy is almost preserved, such that the amplitudes
of the incoming and the outgoing signal are practically the same. The phase difference

ϕ(t) = arctan

(
−4α�̄�(�̄2

− �2)

(�̄2 − �2)2 − 4α2�̄2�2

)
≈

�̄2
− �2

α��̄
(13)

stems from the coupling to the qubit which detunes the oscillator, while the slow time evolution
of the qubit renders the phase time-dependent. The approximation is valid if the qubit–oscillator
couplings are smaller than the oscillator damping rate, i.e. for g1, g2 � α�. In other words, the
first term in the denominator is negligible, since the qubit-induced frequency shift �̄ − � is of
order g1,2. This also ensures ϕ � 1 and thus ϕ ≈ tanϕ. Next, we insert the effective frequency (5)
together with equation (7) and obtain to second order in g1 and first order in g2 the phase shift

ϕ(t) =
2g2

1

α�

(
1

1
−

1

� + ωqb

)
[sin2 θ〈σz〉t + cos θ sin θ〈σx〉t ] +

4g2

α�
(cos θ〈σz〉t − sin θ〈σx〉t).

(14)

This central relation forms the basis for our non-invasive qubit measurement via a resonantly
driven harmonic oscillator. It identifies a set of qubit observables, which generate the low-
frequency system dynamics, as the cause of a small phase shift between the incoming and the
outgoing signal. In other words, equation (14) enables one to monitor the qubit dynamics by
continuously measuring the phase shift ϕ(t) with suitable experimental techniques.

By evaluating the prefactor for specific setups, we will see below that our measurement
scheme is particularly feasible for flux qubits. In this case, the last term of the phase shift (14)
dominates, and one measures the qubit variable σzcos θ − σxsin θ , i.e. the flux degree of freedom
by which the qubit couples to the SQUID; cf the model Hamiltonian (1).
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3.2. Static versus dynamical phase shift

The terms entering the phase shift ϕ(t) may be static as well as dynamical. In the first instance,
this depends on whether or not the related qubit observables undergo any time evolution. At this
point, further insight is obtained by a closer look at the Heisenberg equations of motion for the
qubit operators σx and σz. In the dispersive picture, valid under conditions (3), they are derived
from the effective Hamiltonian H̄0, given by equation (4), and read

σ̇x =
i

h̄
[H̄0, σx ] = −ωqbσy, (15)

σ̇z =
i

h̄
[H̄0, σz] = 0. (16)

Thus, in the dispersive qubit–oscillator coupling limit (see section 2.2), the observable σz

is a constant of motion. As a consequence, those contributions to ϕ(t) that depend on
〈σz〉t ≡ 〈σz〉const are time-independent. This corresponds again to the established scheme for
non-invasive qubit state readout. In contrast, the observable σx possesses a non-trivial time
dependence generated by H̄0. Thus, 〈σx〉t renders the phase shift ϕ(t) dynamical. This, in turn,
enables a time-resolved single-run measurement of the unitary qubit evolution by means of the
qubit observable σx .

According to our measurement relation (14), the dynamical phase signal has the amplitude

ϕx
max =

2

α�

∣∣∣∣g2
1 sin θ cos θ

(
1

1
−

1

� + ωqb

)
− 2g2 sin θ

∣∣∣∣ . (17)

Interestingly, ϕx
max is reciprocal to the damping strength and the oscillator half-bandwidth α�.

Thus, a large oscillator frequency together with strong damping leads to reduced angular
visibility. On the other hand, the adiabatic treatment of the qubit underlying relation (14)
becomes invalid if either � or α is too small. Moreover, the input–output relation (10) crucially
relies on finite damping. Thus, appropriate choices of � and α need to be based upon a
compromise between good phase resolution and the validity of our approximations. We go into
further details of this issue when discussing the measurement quality in section 4.2.

It is important to note that the amplitude ϕx
max possesses contributions from both the linear

and the quadratic qubit–oscillator interaction of Hamiltonian (1). The first term on the rhs of
equation (17) stems from the linear interaction characterized by the coupling coefficient g1.
Like the effective Hamiltonian (A.13), this contribution is of second order in the dispersive
parameter g1/1. Due to the minus sign in round brackets, it is additionally minimized, given
that 1/(� + ωqb) ≈ 1 for large detuning 1. Thus, for a Cooper-pair box or a flux qubit coupled
to a high-frequency transmission line resonator, where the qubit–oscillator coupling merely
depends on the circuit characteristics and is therefore purely linear, i.e. g2 = 0, the maximum
amplitude ϕx

max drops below any useful level.
On the contrary, a finite quadratic qubit–oscillator interaction g2 > 0 ensures a noticeable

phase signal, independent of the detuning 1, and even if g2 � g1. Formally, this feature arises
from Hamiltonian (1), where the quadratic coupling term already generates a frequency shift in
zeroth order perturbation theory. If the qubit–oscillator interaction is transverse, that is, ε = 0,
the phase resolution is maximized, whereas it vanishes for purely longitudinal coupling, i.e. for
δ = 0. Hence, the presence of a nonlinear qubit–oscillator interaction, as provided by a nonlinear
SQUID Josephson inductance, turns out to be a crucial ingredient.
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4. Measurement quality

The central measurement relations (14) and (17) remain to be corroborated, via comparing them
with the phase shift obtained by simulating the actual measurement process. In doing so, we
restrict ourselves to the fundamental example of coherent qubit oscillations. For the numerical
treatment of the qubit–oscillator state, we employ the quantum master equation (C.1) derived
from the full dissipative qubit–oscillator–bath Hamiltonian (2). For a realistic evaluation, we
use parameters similar to those of the experiment reported in [18, 19]. Furthermore, we employ
N = 10 oscillator states, which turns out to be sufficient to reach numerical convergence.

4.1. Time-resolved measurement of unitary qubit evolution

If the qubit is only weakly coupled to the oscillator, and if the latter is driven only weakly,
the qubit’s time evolution is rather coherent (see section 4.3 on qubit decoherence). For this
scenario, figure 2(a) depicts the time-dependent phase ϕ(t) computed with the measurement
relation (14), while the inset confirms its proportionality to the qubit expectation value 〈σx〉t . For
comparison, we wish to recover this phase information directly by analysing the outgoing signal
〈ξout(t)〉, as given by equation (10). In an experiment, this can be achieved by lock-in techniques,
which we mimic in the following way [36]. First, we focus on the associated spectrum 〈ξout(ω)〉

depicted in figure 2(b). It reflects the qubit dynamics in terms of two sidebands around the
central peak related to the oscillator frequency, here chosen as � = 10 ωqb. The dissipative
influence of the environment, modelled by a transmission line (see figure 1), is reflected in a
broadening of this peak. The corresponding oscillator bandwidth is given as 2α�, where α

denotes the dimensionless damping strength; see appendix C. Here, we recall that the oscillator
is driven resonantly by the external driving signal Acos(�act), that is, � = �ac. In the time
domain, the sidebands correspond to the phase-shifted signal 〈ξout(t)〉 = Acos(�t − ϕexp(t))
with a slowly time-dependent phase ϕexp(t). In order to obtain this phase ϕexp(t), we select
the spectral data from a frequency window of size 21� centred at the oscillator frequency �,
which means that 〈ξout(ω)〉 is multiplied by a Gaussian window function exp(−(ω − �)2/1�2).
We choose for the window size the resonator bandwidth, 1� = α�, which turns out to suppress
disturbing contributions from the low-frequency qubit dynamics. Finally, we centre the clipped
spectrum at zero frequency and perform an inverse Fourier transform to the time domain. If
the phase shift ϕexp is constant, one could use a much smaller measurement bandwidth. Then
the outcome of the measurement procedure would correspond to homodyne detection [35] of a
quadrature defined by the phase shift and yield a value ∝ cos ϕexp.

Figure 2(a) reveals the good agreement of the resulting ϕexp(t) with the prediction of our
measurement relation, ϕ(t) ∝ 〈σx〉t , at angular resolutions of 1–2◦. Good agreement is already
obtained for an oscillator frequency � = 10 ωqb, which obviously represents a good compromise
between the validity of the adiabatic approximation (see section 2.2) and a sufficiently strong
signal. There is even some room for obtaining a stronger phase signal since the dissipation
strength α still can be reduced without violating the validity range of our theory as long as
ωqb .1�.

Setting either g1 or g2 to zero (not shown) reveals that the nonlinear coupling g2 is
responsible for the good agreement of the phase shifts in figure 2(a). Thus, the whole protocol is
mainly applicable to flux qubits coupled to SQUIDs. For charge qubits, by contrast, the typical
values of g2 are too small. Furthermore, we have verified that the visible constant delay between
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Figure 2. Time-resolved measurement of coherent qubit oscillations at the
degeneracy point ε = 0. The full qubit–oscillator state was simulated with the
quantum master equation (C.1) with N = 10 oscillator states and the parameters
� = �ac = 10 ωqb, g1 = 0.1 ωqb, g2 = 0.01 ωqb, A = 1.0 ωqb. The dimensionless
oscillator dissipation strength is α = 0.12. The resonator bandwidth is given
by 2α� = 2.4ωqb. (a) Lock-in amplified phase ϕexp(t) (dashed green lines),
compared to the estimated phase ϕ(t) (solid red line) of the outgoing signal
〈ξout(t)〉. Here, ϕ(t) ∝ 〈σx〉t (cf equation (14)), which is corroborated by the inset
showing that 〈σx〉t performs oscillations with (angular) frequency ωqb. (b) Power
spectrum 〈ξout(ω)〉 for the resonantly driven oscillator (blue solid line). The
sidebands stemming from the qubit dynamics are visible at frequencies � ± ωqb.
In order to extract the phase information, we apply a Gaussian window function
with respect to the frequency window of half-width 1� = 1.2ωqb, which turns
out to be the optimal value for the measurement bandwidth.

both phases ϕ(t) and ϕexp(t) does not depend on the selected parameters, while its detailed origin
remains unexplained.

4.2. Measurement characterization: fidelity and backaction

The validity of relation (14) for the phase ϕ(t) is naturally limited to specific parameter ranges
due to the various underlying approximations made. The main crucial assumptions to justify the
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Figure 3. (a) Fidelity defect δF = 1 − F for the phases ϕ(t) and ϕexp(t) and
(b) time-averaged trace distance D̄ between the density operators of a qubit with
finite coupling to the oscillator and a reference qubit without oscillator. Both
quantities are depicted for various coupling strengths g2 in dependence of the
oscillator frequency �. All other parameters are the same as in figure 2.

adiabatic treatment of the qubit are a large qubit–oscillator detuning 1/� ' 1 and weak mutual
interaction, g2 � g1 � 1. Furthermore, the oscillator damping α is assumed to stay within the
limits g1,2/� � α � 1.

In an experiment, the oscillator frequency and the coupling strength are finite, however.
Consequently, the actual phase ϕexp(t), which we extract numerically and which can be
measured by lock-in amplification, generally differs from the predicted phase ϕ(t). Thus, the
mutual agreement of both phases needs to be tested quantitatively for realistic scenarios. To this
end, we employ the measurement fidelity F with the scaled overlap defined as

F = (ϕ, ϕexp) ≡

[∫
dt ϕ2(t)

∫
dt ϕ2

exp(t)

]−1/2 ∣∣∣ ∫ dt ϕ(t)ϕexp(t)
∣∣∣. (18)

The ideal value of F = 1 is assumed if ϕ(t) ∝ ϕexp(t).
In figure 3(a) we depict the fidelity defect δF = 1 − F between ϕexp(t) and ϕ(t) as a

function of the oscillator frequency � = �ac for different quadratic coupling coefficients g2.
As expected, the overall fidelity is rather insufficient for small oscillator frequency � < 10ωqb,
for which the adiabatic approximation of section 2.2 is not valid and, moreover, if the oscillator
bandwidth is too small to resolve the qubit dynamics, i.e. if ωqb < α�. When we increase �, the
fidelity defect δF drops to values of 0.05–0.5, independently of the parameter g2. Taking into
account that the fidelity is arbitrarily lowered by the constant delay between ϕ(t) and ϕexp(t)
visible in figure 2, this still corroborates that � = 10ωqb is a good choice. In the limit of large
oscillator frequencies, we again observe an increase in the fidelity defect, which occurs sooner
the smaller g2 is. This latter effect, which is only visible for the smallest value of g2 in figure 3(a),
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is directly explained by a reduced maximum angular visibility of the phase ϕ(t) ∝ g2/�. Thus,
figure 3(a) provides a pertinent indication for the validity frame of our central relation (14).

Moreover, it is necessary to take into account the backaction upon the qubit that stems
from the nonlinear qubit–oscillator interaction. An appropriate measure for how much the qubit
dynamics is perturbed by the oscillator is given by the time average D̄ of the trace distance
D(t) =

1
2Tr|ρqb(t) − ρqb,0(t)| between the qubit dynamics with and without the coupling to the

driven oscillator. To be specific, we compare the qubit state ρqb(t) evolving under the full
system–bath Hamiltonian (2) to an unperturbed reference state ρqb,0(t) that evolves unitarily
under the bare qubit Hamiltonian Hqb = (h̄ωqb/2)σz. Thus, the trace distance essentially
quantifies the invasiveness of the measurement based upon the second-order qubit–oscillator
interaction. In the absence of perturbations to the qubit, D̄ vanishes by definition, while D̄ = 1
if the density operator of the measured qubit is completely unrelated to that of the reference.

Figure 3(b) shows that the predicted phase ϕ(t) faithfully describes the unperturbed qubit
dynamics as long as the coefficient g2 stays sufficiently small. A reliable operating range appears
to be g2/ωqb . 0.01. For � = 10 ωqb, this is consistent with our above reasoning regarding
the fidelity. For even weaker quadratic interactions, we first find D̄ ∝ �−3, which implies
that the dispersive first-order coupling in terms of g1 governs the qubit–oscillator interaction
when � is small. This cubic dependence is due to relation (14) and to the fact that the first-
order perturbation acting on the qubit has an inverse quadratic dependence on the detuning
1 ∝ �. Beyond a critical detuning, which individually depends on g2, the quadratic interaction
prevails again, as is reflected by the saturation of D̄ with increasing oscillator frequency �. For
g2/ωqb & 0.05, the effect of the linear coupling withers. Thus, at g2 = 0.01ωqb, the value of g1

is rather irrelevant for our measurement protocol.

4.3. Signal-to-noise ratio

Generally, a signal can be resolved only if its spectral density exceeds the level of background
noise at the measurement frequency. In the present scheme, the desired information is contained
in the sidepeaks of the spectrum at � ± ωqb; see figure 2(b). For the corresponding phase-
modulated oscillation Acos(�t − ϕmaxsin(ωqbt)), these sidepeaks correspond in the time domain
to the oscillation Aϕmaxsin(ωqbt). If the signal is integrated for a time t , its spectral weight
becomes (Aϕmax)

2t . The phase amplitude ϕmax is given by equation (17), but for the present
purpose, it is sufficient to consider the dominating contribution, which is the one proportional
to g2. Thus, here ϕmax = 4g2/α�, while we restrict ourselves to the case θ = π/2.

Since the measured signal corresponds to the state of a highly excited environmental mode,
the relevant noise level is determined by the fluctuations of the effective bath coordinate ξ . If the
temperature is sufficiently low, such that thermal excitations do not play any role, its spectral
density equals the bath spectral density: Sξξ (ω) = J (ω) = αω. Thus, the signal is at least as
big as the noise background if J (�)6 (Aϕmax)

2t . In other words, the time t during which the
output is recorded must fulfil

t >
4J (�)

(Aϕmax)2
=

(α�)3

(2g2 A)2
≡ tmeas. (19)

For the parameters used in figure 2, tmeas ≈ 4 × 103/ωqb.
Since the measurement is carried out via a coupling to external degrees of freedom,

the qubit experiences unavoidable decoherence, which means that coherent qubit oscillations
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fade away with a decoherence rate γφ. The time during which meaningful information can be
obtained is therefore limited by the inequality t 6 1/γφ . This condition together with condition
(19) can be fulfilled only if γφtmeas > 1.

The decoherence rate can be estimated upon noticing that our qubit Hamiltonian represents
a generalized spin-boson model [24–26] with the bath coupling 1

2σxη, where η = 2g2 Q2 is the
effective bath coordinate. For weak dissipation, γφ is given by the auto-correlation function
of the latter evaluated at the qubit splitting, i.e. γφ = Cηη(ωqb) [37]. This still holds true in
the presence of ac driving provided that the driving-induced renormalization of the qubit
splitting is negligible [38]. We separate the qubit coordinate into the responses to the driving
and to the incoming fluctuations, Q = 〈Q〉 + δQ; cf equation (9). Then we proceed along
the lines of [39]; the relevant terms are those of second order in δQ, such that Cηη(t) ≈

4g2
2(A/α�)2 cos(�t)〈δQ(t)δQ(0)〉. By Fourier transformation, we obtain to lowest order in

ωqb/� the decoherence rate

γφ =
(2g2 A)2

(α�)3
, (20)

which is the inverse of the required measurement time tmeas. A comparison with the numerically
computed decay of the qubit coherence (not shown) confirms this value. The obtained relation
γφtmeas = 1 marks the quantum limit of a measurement [39] and allows one to marginally fulfil
both conditions on the measurement time t .

4.4. A possible experimental implementation

Specific parameters can be obtained for the setup of [19] for which the qubit-oscillator coupling
parameters are determined by the flux bias current Ib and read

g1 = −
M Ip

4h̄ IC

sin(ϕ/2)

cos2(ϕ/2)

√
h̄�

2L J
Ib, (21)

g2 = −
M Ip

16L J IC

sin(ϕ/2)

cos2(ϕ/2)
�. (22)

Here, M denotes the mutual SQUID–qubit inductance, Ip is the qubit persistent-current, IC

the critical current of the SQUID Josephson junctions, and L J = φ0[4π ICcos(πφSQ/φ0)]−1 the
SQUID Josephson inductance. The flux φSQ that penetrates the SQUID loop corresponds to the
phase ϕ = 2πφSQ/φ0, with φ0 = h/2e being the flux quantum. For small bias currents Ib while
neglecting the inductance of the wire that leads to the shunting capacitance C , the oscillator
frequency is approximately given by the SQUID plasma frequency � = |L JC |

−1/2.
For a typical qubit transition frequency of ωqb/2π = 5 GHz, resolving the qubit dynamics

requires an oscillator frequency of �/2π = 10ωqb/2π = 50 GHz. The necessary lock-in
measurements at a carrier frequency �/2π = 50 GHz are particularly challenging at low
temperatures, but are feasible [40]. They require rather expensive amplifying technology such
as cryogenic amplifiers developed by Low Noise Factory (Sweden). Recently suitable devices
developed can be operated at up to 36 GHz and possess reasonably low noise temperatures.

Alternatively, a Josephson parametric amplifier [41, 42] enables the detection of oscillator
frequencies as high as �/2π = 20–25 GHz. Thus, as a compromise, we restrict ourselves to
an oscillator frequency of �/2π = 24 GHz, which is suitable for detecting the dynamics of
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a qubit with ωqb/2π = 2.5 GHz, a value still large enough to avoid thermal excitations at
working temperatures of 20 mK. The above value for � can be realized using the parameters
IC = 4.25 µA, ϕ = 2.3π and C = 1 pF, which are similar to those of [18, 19]. Along with M =

17.5 pH, Ip = 300 nA and Ib = 0.4 µA, we obtain the qubit–oscillator coupling coefficients
g1/2π = 45 MHz and g2 = 24 MHz. Thus, the relevant dimensionless coupling assumes the
value g2/ωqb ' 0.01 used in our numerical studies. An adequate oscillator half-bandwidth is
1� = 2.9 GHz, which implies a low external quality factor of Q ' 4–5.

Our two-state model for the qubit does not consider possible excitations to non-qubit states
caused by the coupling to the oscillator. Nevertheless, our modelling is appropriate, because
such leakage has far less relevance than for a Cooper-pair box, owing to the fact that the higher
states couple only weakly to the SQUID [43]. Apart from this, it is possible to design or tune
the oscillator such that its frequency is far from any qubit resonance. The required oscillator
frequency of the order of 10 GHz is still significantly smaller than the gap energy of aluminium,
such that quasi-particle excitation should not play a major role. This issue is even less critical
for niobium.

5. Conclusions

We have generalized dispersive qubit readout to the time-resolved observation of the qubit
dynamics. Concerning the setup, the main difference to dispersive readout is that in the present
proposal, the oscillator frequency needs to exceed the qubit splitting by roughly one order of
magnitude, and the oscillator bandwidth should be at least twice the qubit frequency. Also, here
the oscillator frequency becomes dynamically red or blue detuned, depending on the state of
the qubit. When driving the SQUID oscillator at its bare frequency �, this detuning turns into a
phase shift visible in the reflected signal via lock-in techniques. For such a qubit measurement
using the oscillator phase, the oscillator frequency represents the sampling rate, which explains
the need for high frequencies.

The constituting measurement relation has been derived from the input–output formalism
under time-scale separation of the bare qubit dynamics from the oscillator. A numerical solution
of the Bloch–Redfield master equation for the full qubit–oscillator dynamics also allowed
us to compute the phase of the reflected signal directly. Its good agreement with the phase
predicted by our measurement relation confirms the validity of the latter even when the oscillator
frequency is only moderately large. Thus, there is no need to drive the qubit with extremely high
frequencies, which would be quite challenging in an experiment. The agreement found is also
reflected by the measurement fidelity, which for moderate frequencies is already rather good.
Furthermore, the numerical analysis has demonstrated that the external ac driving does not
significantly modify the qubit dynamics, which means that the backaction of the measurement
process is weak. However, it must be emphasized that the whole scheme relies on the coupling of
the qubit via the oscillator to a dissipative environment, which already causes qubit decoherence
when the external driving is not active. In the limit of far qubit–oscillator detuning, this qubit
decoherence is drastically reduced, however.

An evaluation of the measurement relation for parameters of recent experiments with flux
qubits predicts phase shifts up to 2◦, which can be measured. Moreover, it reveals that the signal
mainly stems from the coupling of the qubit to the square of the oscillator coordinate. The
linear coupling to the coordinate, by contrast, leads to a rather small phase shift. This means
that the measured quantity is essentially the qubit’s flux degree of freedom. Likewise, the linear
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coupling of a superconducting charge qubit to a waveguide resonator is also too weak. Since
for this system the nonlinear coupling practically vanishes, the measured signal remains tiny. In
conclusion, using current technology our measurement protocol should be most feasible with
flux qubits coupled to SQUIDs that possess a significant nonlinear Josephson inductance. All in
all, our proposal may initiate further progress on the way towards single-shot experiments that
demonstrate quantum coherence in solid-state devices.
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Appendix A. System–bath Hamiltonian in the dispersive coupling limit

In the limit of large oscillator–qubit detuning, the coupling coefficients automatically fulfil the
conditions

g1, g2 � 1, 1 = � − ωqb, (A.1)

which mark the dispersive coupling regime. Following [32, 33], the effective Hamiltonian
H0,disp = U†H0U is then obtained from the full system Hamiltonian (1) by the unitary
transformation

U = exp(λ1D + λ6S + λ�W), (A.2)

where

D = σ−a†
− σ +a, (A.3)

S = σ−a − σ +a†, (A.4)

W = σz(a − a†). (A.5)

Defining 6 = ωqb + �, the necessarily small and dimensionless dispersive parameters

λ1 = −
g1 sin θ

1
, (A.6)

λ6 =
g1 sin θ

6
, (A.7)

λ� = −
g1 cos θ

�
(A.8)

emerge. Expanding the transformed Hamiltonian in powers of λ1,6,�, we obtain to second
dispersive order the effective Hamiltonian

H̄0 = h̄�

(
a†a +

1

2

)
+

h̄ωqb

2
σz +

h̄

2
(1λ2

1 − 6λ2
6)σz(a + a†)2 +

h̄�

2
λ� (λ1 + λ6) σx(a + a†)2

−
iωqb

2
λ�(λ1 + λ6)σy(a

2
− (a†)2) + g2(cos θσz − sin θσx)(a + a†)2. (A.9)
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The third and fourth terms of this Hamiltonian constitute corrections to the curvature of the
oscillator potential, i.e. the prefactor of (a + a†)2. They stem from the linear qubit–oscillator
interaction and thus enter only in the second dispersive order. Since we consider a high-
frequency oscillator, the detuning is always positive, 1 > 0, such that the dispersive parameters
λ1 and λ6 are of opposite sign. Thus, in the case of far dispersive detuning � � ωqb, these
terms become rather small. In spite of this, we keep them for later use. In contrast, we can
safely neglect the fifth term that is not of the shape (a + a†)2 and whose coefficient is small as
compared to the other terms.

The last term of equation (A.9), stemming from the second-order interaction between qubit
and oscillator, plays a particular role. Since it is already of the second order in the oscillator
coordinate a + a† and its coefficient g2 is correspondingly small, g2 � g1, it is not affected by
the transform (A.2). As a consequence, this term remains independent of the qubit–oscillator
detuning 1, for which reason its contribution to the (a + a†)2-terms is finite.

For further convenience, we introduce transformed creation and annihilation operators that
describe the oscillator–qubit system in the adiabatic limit � � ω,

ā =
1

2

√
�̄

�
(a + a†) +

1

2

√
�

�̄
(a − a†), (A.10)

and ā† accordingly, such that [ā, ā†] = 1. The effective oscillator frequency

�̄ = �

√
1 +

4ω̄

�
(A.11)

accounts for all quadratic corrections to the oscillator potential in the effective
Hamiltonian (A.9) in terms of the effective operator-valued coupling frequency

ω̄ =
1
2(1λ2

1 − 6λ2
6)σz + 1

2�λ�(λ1 + λ6)σx + g2(cos θσz − sin θσx). (A.12)

Thus, the effective Hamiltonian can be rewritten as

H̄0 = h̄�̄(ā†ā + 1
2) + 1

2 h̄ωqbσz. (A.13)

Put differently, the qubit–oscillator coupling has been shifted to the effective operator-valued
oscillator frequency �̄, which depends on the qubit state.

In order to move fully to the dispersive picture, we also have to transform the system
operator Q = a + a† by which the oscillator couples to the environment. Transformation with
the operator (A.2) yields in first dispersive order the position operator

Q̄ = U† QU = (ā + ā†) − (λ1 − λ6)σx + 2λ�σz, (A.14)

where we have assumed that � ≈ �̄. The full system–bath Hamiltonian in the dispersive picture
finally reads as

H̄= H̄0 + h̄ Q̄
∑

n

cn(bn + b†
n) +

∑
n

h̄ωn(b
†
nbn + 1

2). (A.15)

Appendix B. Input–output formalism

In order to compute the response of the oscillator to the external driving, we employ the
input-output formalism [20], which is most conveniently obtained from the quantum Langevin
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equation of the central system [44–47]. We derive it from the system–bath Hamiltonian (2) via
the Heisenberg equation of motion for the bath oscillator coordinates qn = bn + b†

n,

q̈n + ω2
nqn = 2cnωn Q. (B.1)

Here, the oscillator coordinate Q = a + a† enters as inhomogeneity. The formal solution of
equation (B.1) for initial time t0 is

qn(t) = qn(t0) cos{ωn(t−t0)} +
pn(t0)

ωn
sin{ωn(t − t0)} + 2cn

∫ t

t0

dt ′ sin{ωn(t−t ′)}Q(t ′), (B.2)

with pn(t0) = q̇n(t0). Inserting this solution into the Heisenberg equation of motion for Q yields

Q̈ = − �2 Q − 4�
∑

n

c2
n

∫ t

t0

dt ′ sin{ωn(t − t ′)}Q(t ′)

− 2�
∑

n

cn

(
qn(t0) cos{ωn(t − t0)} +

pn(t0)

ωn
sin{ωn(t − t0)}

)
. (B.3)

For the sake of a compact notation, we define the operator for the incoming fluctuations,

ξ
qm
in (t) =

∑
n

cn

(
qn(t0) cos{ωn(t − t0)} +

pn(t0)

ωn
sin{ωn(t − t0)}

)
, (B.4)

which only depends on the environmental operators at initial time and thus is independent of
the central quantum system.

We replace the sum
∑

n |cn|
2 by an integral over the spectral density J (ω)/π , which for

the ohmic J (ω) = αω becomes the derivative of the delta function δ(t − t ′), such that the time
integral can be evaluated. In doing so, we arrive at the quantum Langevin equation

Q̈ + 2α�Q̇ + �2 Q = −2�ξ
qm
in (t), (B.5)

where we have discarded an initial slip term and a constant potential renormalization, which are
both not relevant in the present context and beyond transient behaviour. Note that dissipation
enters via a friction term, while the incoming fluctuations act as a stochastic driving force.

The quantum Langevin equation (B.5) can also be expressed in terms of the outgoing
fluctuations by solving the equations of motion (B.1) for qn with boundary condition at a later
time t1 > t , i.e. by backward propagation. Then one obtains

qn(t) = qn(t1) cos{ωn(t−t1)} +
pn(t1)

ωn
sin{ωn(t−t1)} + 2cn

∫ t1

t
dt ′ sin{ωn(t − t ′)}Q(t ′). (B.6)

The corresponding environment operators define the outgoing fluctuations

ξ
qm
out (t) =

∑
n

cn

(
qn(t1) cos{ωn(t − t1)} +

pn(t1)

ωn
sin{ωn(t − t1)}

)
. (B.7)

In contrast to ξ
qm
in (t), this noise operator depends on the time evolution of the system at earlier

times t < t1. The resulting Langevin equation for the oscillator coordinate Q,

Q̈ − 2α�Q̇ + �2 Q = −2�ξ
qm
out (t), (B.8)

is characterised by negative damping and the outgoing noise. The difference of both Langevin
equations links the noise terms via twice the dissipative term by means of the input-output
relation, which in the stationary limit t0 → −∞ and t1 → ∞ reads [20]

ξ
qm
out (t) − ξ

qm
in (t) = 2α Q̇. (B.9)
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Even though we have written this relation for a harmonic oscillator, the derivation does not
rely on particular properties of this system. Thus, equation (B.9) is valid as well for nonlinear
quantum systems coupled to an environment.

If a bath mode is coherently excited by an external driving field, the incoming fluctuations
are augmented by a deterministic contribution, ξ

qm
in → ξ

qm
in + xdrive(t). Then the input-output

relation allows one to compute both the averaged outgoing signal as well as its fluctuations
and noise spectra.

Appendix C. Bloch–Redfield master equation

The numerical data presented in section 4 have been computed with a quantum master equation
of the Bloch–Redfield type [48],

ρ̇0(t) = −
i

h̄
[H0, ρ0(t)] − [Q, [Q̂, ρ0(t)]] + iα[Q, {Q̇, ρ0(t)}], (C.1)

where

Q̂ =
α

π

∫
∞

0
dτ

∫
∞

0
dω ω coth

( h̄ω

2kBT

)
cos(ωτ)Q̃(−τ). (C.2)

It describes the time evolution of the reduced density operator ρ0(t) of the qubit plus the
oscillator. The dissipative terms have been derived under the assumption that the bath couples
weakly to a system operator Q with a vanishing equilibrium expectation value. The environment
is in a thermal state at temperature T , and the system–bath interaction possesses the ohmic
spectral density J (ω) = αω with the dimensionless damping strength α. Furthermore, X̃(t) =

U†
0 (t, t0)XU0(t, t0) refers to the time evolution of the system operator X in an interaction picture

described by the propagator U0(t, t0) = exp{iH0(t − t0)/h̄}, and Q̇ is a shorthand notation for
the Heisenberg time derivative i[H0, Q]/h̄ of the system–bath coupling operator Q.
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