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Chlorosomes, the light harvesting antennas of green photosynthetic bacteria, are based on large 

aggregates of bacteriochlorophyll molecules. Aggregates with similar properties to those in 

chlorosomes can also be prepared in vitro. Several agents were shown to induce aggregation of 

bacteriochlorophyll c in aqueous environments, including certain lipids, carotenes and quinones. A key 

distinguishing feature of bacteriochlorophyll c aggregates, both in vitro and in chlorosomes, is a large 

(>60 nm) red shift of their Qy absorption band compared with that of the monomers. In this work, we 

study the self-assembly of bacteriochlorophyll c with the xantophyll astaxanthin, which leads to the 

formation of a new type of complexes. Our results indicate that, due to its specific structure, 

astaxanthin molecules competes with bacteriochlorophylls for the bonds involved in the aggregation, 

thus preventing formation of any significant red shift compared to pure bacteriochlorophyll c in 

aqueous buffer. A strong interaction between both types of pigments in the developed assemblies is 

manifested by a rather efficient (~40%) energy transfer from astaxanthin to bacteriochlorophyll c, as 

revealed by fluorescence excitation spectroscopy. Results of transient absorption spectroscopy show 

that the energy transfer is very fast (<500 fs) and proceeds via the S2 state of astaxanthin. 
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Introduction 

Chlorosomes of green photosynthetic bacteria (Blankenship and Matsuura 2003; Frigaard and Bryant 

2006) contain large aggregates of bacteriochlorophyll (BChl) c, d or e molecules arranged into curved 

lamellar structures (Psencik et al. 2004; Psencik et al. 2006; Oostergetel et al. 2007; Ganapathy et al. 

2009; Psencik et al. 2009; Oostergetel et al. 2010). The BChl aggregates are held together by 

interactions between the central Mg ion of one BChl molecule, a hydroxyl group at C3
1
 of another 

BChl and a keto group at C13
1
 of a third BChl molecule (Hildebrandt et al. 1994; Balaban 2005). The 

close interaction between BChl molecules leads to strong exciton coupling which is manifested by a 

large red shift of the Qy absorption band. Carotenoids and quinones are also present in the chlorosomes, 

occupying the hydrophobic space between the lamellar layers of BChls (Psencik et al. 2006). 

Carotenoids in chlorosomes are involved in both light-harvesting and photoprotection (Melo et al. 

2000; Psencik et al. 2002; Polivka and Frank 2010); whereas quinones mediate a protective quenching 

of the excitation energy in chlorosomes of green sulfur bacteria in the presence of oxygen (Frigaard et 

al. 1997). A chlorosome envelope is thought to be formed by a monolayer of lipids; it covers all of the 

chlorosome surface except the region where the chlorosome is attached to the cytoplasmic membrane. 

On this side, the chlorosome is delimited by a paracrystalline baseplate composed of CsmA proteins, 

which bind BChl a and carotenoids(Sakuragi et al. 1999; Bryant et al. 2002; Montano et al. 2003; 

Pedersen et al. 2008). 

 Aggregates of chlorosomal BChls or their synthetic analogues can also be prepared in vitro, 

either in non-polar or polar environments (for reviews see Balaban et al. 2005; Miyatake and Tamiaki 

2005; Miyatake and Tamiaki 2010). In polar environments, e.g. aqueous solutions, the aggregation of 

BChl c is driven by hydrophobic interactions (Klinger et al. 2004; Zupcanova et al. 2008). Addition of 

a suitable non-polar component is necessary to induce aggregation, most likely because hydrophobic 

interactions between farnesyl tails of BChl c molecules alone are not sufficiently strong to drive it. 

Lipids are well-known to play such an inducing effect on BChl c aggregation (Hirota et al. 1992; 

Uehara et al. 1994; Steensgaard et al. 2000), but there are other molecules that also induce aggregation 

of BChl c in aqueous solutions, for example, quinones with a hydrophobic side-chain (Alster et al. 

2008) or carotenes such as chlorobactene (Klinger et al. 2004) and β-carotene (Alster et al. 2010). Each 

of these additional components affects the properties of the formed assemblies in a distinct way. 

Aggregates with quinones exhibit redox-dependent quenching of the BChl c excitation (Alster et al. 

2008); whereas energy transfer from carotenoid to BChl c was observed in aggregates with β-carotene 

(Alster et al. 2010). The energy transfer proceeds mainly via the carotenoid S2 state, i.e. in a manner 
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similar to that in chlorosomes (Psencik et al. 2002), except that the efficiency of energy transfer in the 

aggregates (~30%) was lower than in chlorosomes (50–80%, (Melo et al. 2000; Psencik et al. 2002)).  

 In this contribution, properties of assemblies of BChl c with the xanthophyll astaxanthin are 

studied by the steady-state and fs time-resolved spectroscopy. Astaxanthin is characterized by the 

presence of one hydroxyl group and a keto group in each of its end β-rings, giving unusual features to 

the assemblies of BChl c when they are compared with all other successfully tested admixtures. In fact, 

astaxanthin does not induce any pronounced red shift of the BChl c Qy band, but it closely interacts 

with the BChl c molecules, forming assemblies. Astaxanthin in the assemblies is capable of energy 

transfer to BChl c. Compared to previously tested carotenoids, assemblies of BChl c with astaxanthin 

exhibit an improved absorption in the spectral range between 500-600 nm, where BChl c absorbs 

poorly. This makes these assemblies interesting for potential use in artificial photosynthesis.  

 

Materials and Methods 

Sample Preparation 

BChl c (Figure 1a) was extracted from whole cells of the green sulfur bacterium Chlorobaculum 

tepidum (formerly known as Chlorobium tepidum) and purified by means of HPLC as described 

previously (Klinger et al. 2004). The four main homologues of BChl c were collected together, in the 

same ratio as they were isolated from chlorosomes. Astaxanthin (Figure 1b) was purchased from Sigma 

and was used without further purification. Assemblies of BChl c with or without astaxanthin were 

prepared by mixing stock solutions of astaxanthin (in THF) and BChl c (in methanol) to reach several 

molar ratios of astaxanthin to BChl c within a range of 0.0–0.8 to 1.0. This mixture was then injected 

into stirred 50 mM Tris-HCl pH 8.0 buffer. The final concentration of BChl c and the percentage of 

organic solvents in the buffer were approximately 30 μM and <1% (v/v) for self-assembly experiments 

and 250 μM and 3-4% (v/v) for transient absorption spectroscopy, respectively. Pigment concentrations 

were determined from absorption spectra, using the extinction coefficients of 70 mM
-1

cm
-1

 for BChl c 

in methanol at the Qy maximum (Stanier and Smith 1960) and 125 mM
-1

cm
-1

 determined for the 

absorption maximum of astaxanthin in hexane (Weber 1988). Samples were left overnight in dark at 

room temperature to reach stable steady-state absorption spectra. Samples were gently homogenized in 

a water bath sonicator before measurement to avoid precipitates. 

 

Optical spectroscopy 

Steady-state absorption spectra were measured using a Specord 250 spectrophotometer (Analytic Jena). 
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Absorption spectra were corrected for scattering by measuring absorption spectra at two different 

distances from detector. The difference spectra (Figure S1) yielded the spectral profile of the light-

scattering of the sample (Latimer and Eubanks 1962), which, in turn, was used for the calculation of 

correction curves also for other samples of the same pigment composition. This approximation worked 

reasonably well even for samples with significantly different concentrations. The correction for a 

possible sieve effect was not performed.  

 Fluorescence excitation spectra were measured using a FluoroMax-2 fluorescence spectrometer 

(Jobin Yvon - Spex). The fluorescence excitation spectra were corrected for the wavelength dependence 

of the excitation light intensity. The correction was done by measuring the intensity of the excitation 

light at the sample place by a calibrated diode power meter FieldMaster-GS (Coherent) with sensors 

LM-2-UV (in the region between 250-400 nm) and LM-2-VIS (400-800 nm ). The second order of the 

excitation light and contribution of the stray light was attenuated by using a 715 nm cut-off filter 

(Roper Scientific). The remaining contribution of the stray light above 715 nm was measured 

separately and subtracted from the excitation spectra. Optical density of the samples was adjusted to 

~0.15 at the Qy maximum of BChl c to minimize the reabsorption of the emitted photons. 

 A set-up for femtosecond transient absorption measurements was based on an amplified laser 

system Integra-i (Quantronix), consisting of Er-fiber oscillator and Ti:Sapphire amplifier. It was used as 

a source of ~120 fs pulses centered at 786 nm at a repetition rate of 1 kHz. Excitation pulses were 

obtained by directing a part of the amplifier output to the optical parametric amplifier (TOPAS, Light 

Conversion). A fraction of the 786 nm beam was focused to a 2 mm sapphire plate where it generated 

broadband white-light pulses. The white-light pulses were further divided into the probe beam that 

overlapped with the excitation beam at the sample, and a reference beam. A spectrograph equipped 

with a double photodiode array (1024 elements) was used as a detector for both probe and reference 

beams. This arrangement allowed measurements of transient spectra in a spectral window of ~240 nm. 

In all measurements the mutual polarization of pump and probe beams was set to the magic angle 

(54.7˚) by placing a polarization rotator in the pump beam. Instrument response function was estimated 

on the basis of the onset of instantaneous bleaching signal to be Gaussian with the full width at half 

maximum of 150 fs. Sample was placed in a rotating cuvette consisting of two 1 mm quartz windows 

separated by a 1 mm Teflon spacer. Excitation intensities of ~4 × 10
14

 photons pulse
-1

 cm
-2

 (450-490 

nm) and ~10
15

 photons pulse
-1

 cm
-1

 (710 nm) were used. Steady-state absorption spectra were measured 

before and after the experiments to ensure that no degradation occurred during the data acquisition. 

Spectral bands did not change their shape during experiments, but overall decrease of absorbance about 
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5% occurred in some measurement. This is likely due to precipitation which is the consequence of the 

assembly formation and is further described in the Results. 

 

Results 

Self-assembly experiments 

In contrast to other chlorophyll-like molecules, pure BChl c is partly soluble in aqueous buffer in a 

form with an absorption spectrum basically identical to that of an antiparallel piggy-back dimer, as 

determined by NMR in CH2Cl2 (Umetsu et al. 2003). This form is characterized by a Qy absorption 

maximum between 710 and 715 nm and two weaker peaks or shoulders at ~680 and ~635 nm, and is 

denoted as 'dimers' throughout this study.  

 Figure 2 compares the steady-state absorption spectra of pure BChl c in aqueous buffer (i.e. 

dimers) with those of BChl c assemblies with varying amounts of admixed astaxanthin. These spectra 

differ markedly from those of BChl c aggregates with lipids, carotenes or quinones, which were shown 

to induce aggregation of BChl c in aqueous solutions. The main difference is that astaxanthin does not 

induce any pronounced red shift of the BChl c Qy band, instead the band remains at a position 

comparable to that of BChl c dimers (~715nm).  

 Like BChl c, astaxanthin is not freely soluble in aqueous buffer, but it can remain dispersed at 

low concentrations in buffer if it is first dissolved in a small amount of THF, and then injected into the 

buffer in a way similar to the method used for the preparation of BChl c assemblies. Despite this, we 

can exclude that the BChl c assemblies with astaxanthin consist of a mixture of BChl c dimers and free 

astaxanthin dissolved in the buffer. The most compelling evidence of incorporation of astaxanthin into 

BChl c assemblies comes from the analysis of the astaxanthin-to-BChl c energy transfer (see below), 

but several other arguments arise from a closer inspection of the absorption spectra of the assemblies.  

 Firstly, although some precipitation occurs for any BChl c assembly with astaxanthin, it is 

significantly slower for samples with high pigment content containing both BChl c and astaxanthin 

than for the pure pigments dissolved in the buffer separately (i.e. BChl c and astaxanthin assemblies are 

soluble in aqueous buffer in higher concentrations than pure pigments). This cooperation is effective 

only up to a molar ratio of ~0.35:1 (astaxanthin to BChl c), which is the highest pigment molar ratio 

achieved without a significant precipitation. In addition, the assemblies of BChl c with astaxanthin 

exhibit slightly enhanced amplitude of the monomer-like BChl c absorption at ~675nm compared with 

BChl c dimers, and its relative intensity increases with the astaxanthin concentration in the sample. It 

should be noted that monomeric bacteriochlorophyllide c, whose absorption spectrum is the same as 
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that of BChl c (e.g. in methanol), is soluble in aqueous buffer and has its absorption maximum at 675 

nm (Zupcanova et al. 2008). Therefore, it is expected that monomer-like BChl c in buffer would also 

have an absorption maximum at 675 nm. To emphasize the structural difference with aggregates of 

BChl c with lipids, carotenes or quinones, we call the formed complexes with astaxanthin 'assemblies' 

instead of 'aggregates'.  

 The formation of BChl c-astaxanthin assemblies also led to an increase of the light-scattering by 

the samples. For the comparison with the fluorescence excitation spectra, and in order to determine the 

number of excited molecules at several wavelengths in the time resolved experiments, the correction of 

the absorption spectra for scattering was required (as described in Materials and Methods). As the 

absorption of BChl c in the Soret region overlaps with that of astaxanthin, it is not straightforward to 

determine the number of photons absorbed by each of the pigments in the BChl c-astaxanthin 

assemblies at a given wavelength. However, it can be done if the absorption spectrum of the assemblies 

is compared with the one of BChl c dimers and the contribution of the BChl c dimers is subtracted. 

Figure 3 shows difference spectra between absorption spectra of BChl c-astaxanthin assemblies with 

variable astaxanthin content and BChl c dimers. The difference spectra reflect the contribution of 

astaxanthin to each of the absorption spectra. A comparison of the difference spectra with the 

absorption spectrum of astaxanthin in THF (Figure 3) shows that the main absorption peak of 

astaxanthin in assemblies is broader and shifted to longer wavelengths, similarly as observed in 

artificial aggregates of BChl c with β-carotene and native chlorosomes (Arellano et al. 2000; Alster et 

al. 2010). In addition, the band at ~300nm is more pronounced for astaxanthin in BChl c assemblies. 

Besides the contribution of astaxanthin to the difference spectrum, other minor contributions come 

from the changes in the Soret band (~400-450 nm) and Qy band (700-750nm) of BChl c upon 

formation of the assemblies with astaxanthin. 

 

Excitation spectra 

Fluorescence excitation spectra were measured in order to determine whether astaxanthin in the 

assemblies was able to transfer energy to BChl c. Figure 4 compares the absorption (1-T) spectrum, 

corrected for the light-scattering, with the fluorescence excitation spectrum detected at 770 nm. 

Excitation spectrum exhibited clear features of the astaxanthin absorption (a pronounced shoulder at 

around 525 nm), clearly demonstrating that excitation energy is transferred from astaxanthin to BChl c. 

The quantum efficiency of the transfer could be determined by comparison with the absorption (1-T) 

spectrum of BChl c dimers. The difference between the absorption (1-T) spectra of BChl c assemblies 
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with astaxanthin and BChl c dimers reflected the total astaxanthin absorption in the sample (similarly 

as in Figure 3). On the other hand, the difference spectrum between absorption and excitation spectrum 

of the BChl c assemblies with astaxanthin revealed the portion of the photons absorbed by astaxanthin 

and not transferred to BChl c. In Figure 4, it can be clearly seen that also the latter difference spectrum 

resembles the astaxanthin absorption in the sample, including the band at 300 nm. The quantum 

efficiency of the energy transfer from astaxanthin to BChl c could be determined from these spectra. 

The assessment was complicated by the accompanying changes in the BChl c Soret band upon the 

formation of the assemblies, mainly in the spectral range between 400-450 nm. This contributed to a 

rather large uncertainty of the determined efficiency, which was found to be 40±7%, taking into 

account both measurement errors and confidence of corrections.  

 

Transient absorption 

To determine the kinetics and pathways of the excitation energy transfer from astaxanthin, transient 

absorption spectra for the BChl c assemblies with astaxanthin were recorded. Additionally, the transient 

absorption spectra of samples without astaxanthin were measured for comparison purposes and 

determination of relaxation processes in BChl c not affected by the presence of astaxanthin. 

Unfortunately, BChl c dimers quickly precipitate after preparation at the concentration needed for 

transient absorption measurements. Therefore, a small amount of lecithin (≤ 0.1 mol/mol lecithin to 

BChl c) was added to the BChl c dissolved in methanol before injection into the buffer, which 

prevented (fast) precipitation of the sample and led to a negligible shift of the Qy absorption band 

compared to BChl c dimers. This sample is hereafter referred to as BChl c dimers with lecithin.  

 Transient spectra were measured after excitation at three different excitation wavelengths: 450, 

490 and 710 nm. Excitation at 710 nm was used to check whether there was any significant exciton 

coupling between BChl c and astaxanthin. In such a case, transient changes in the region of astaxanthin 

photobleaching or stimulated emission (PB/SE) would be expected, even though at 710 nm only BChl c 

is excited. However, transient spectra of samples with astaxanthin differed only slightly from those 

with lecithin by a weak signal (4% of the PB/SE signal amplitude in the BChl c Qy region, not shown) 

observed in the region of astaxanthin PB/SE. Such a small difference excludes any significant exciton 

coupling between BChl c and astaxanthin in our samples. 

 To determine the pathway of the energy transfer from astaxanthin to BChl c, which was 

revealed by excitation spectra, two excitation wavelengths were used: Soret band of BChl c was 

preferentially excited at 450 nm and astaxanthin at 490 nm. However, strictly speaking, both pigments 
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were excited at both wavelengths, although in a different ratio. Figure 5 shows the transient spectra of 

BChl c assemblies with astaxanthin (astaxanthin-to-BChl c molar ratio of 0.2:1) after excitation at 

490nm. Transient signal under ~550 nm reflects mainly PB/SE of the S2 state of astaxanthin, while 

excited state absorption (ESA) of the astaxanthin S1 state is dominating between 550-700 nm, and 

PB/SE of the BChl c Qy band above 700 nm. Similar results were also obtained for a sample with an 

astaxanthin-to-BChl c molar ratio of 0.35:1. The lifetimes reported further in the text are representative 

values for all samples under study.  

 Assuming multi-exponential relaxation, the data can be analyzed by a global analysis (van 

Stokkum et al. 2004) which provides rate constants and pre-exponential factors (the decay associated 

spectra - DAS). This procedure reveals the most important relaxation processes occurring in the 

assemblies. However, this approach leads to a mixing of contributions from BChl c and astaxanthin 

states, which spectrally overlap and exhibit similar lifetimes. This complication can be avoided by 

separating transient data into two parts: relaxation following excitation of astaxanthin, and BChl c, 

respectively (see Appendix). Subsequently global analysis was performed on both parts separately. As a 

consequence of the equations (A5), both parts of transient data are normalized to the same number of 

absorbed photons. 

 The astaxanthin part of the transient data (Figure 6a) retains almost all of the negative signal 

below 550 nm, most of the positive signal around 600 nm, and a part of the PB/SE of the BChl c Qy 

band. The transient data reveal that the decrease in the transient absorption of the astaxanthin S2 state 

(<550 nm) is connected with a concomitant rise of ESA signal around 620 nm (mainly from the 

astaxanthin S1 state) and PB/SE signal in the Qy region of BChl c. This process is reflected by the 

fastest component (~140 fs) obtained from a global analysis performed on the xanthophyll part of 

transient data (Figure 6c), clearly showing energy transfer from astaxanthin to BChl c.  

 The second fastest component has a lifetime of ~0.5 ps and an amplitude negative below ~600 

nm and positive between 600-700 nm. Such a lifetime and spectral profile are typical for vibrational 

relaxation within the S1 state of carotenoids. For instance, the 0.6 ps component was attributed to 

vibrational relaxation in the S1 state of astaxanthin bound to α-crustacyanin (Ilagan et al. 2005). This 

and all subsequent components have also a minor contribution from the PB/SE of the BChl c Qy band. 

The global analysis mainly reflects the relaxation of dominating components (i.e. those of astaxanthin) 

and is not able to distinguish weaker components with similar lifetimes in the case of insufficient signal 

to noise ratio of the data. Therefore, more representative lifetimes for the decay of the BChl signal can 

be found in the BChl part of the transient data. Third component has a lifetime of 4.4 ps and 
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corresponds to the main decay of the S1 state of astaxanthin.  

 The next component, with a lifetime of ~14 ps, is dominated by a peak at 560 nm. A peak at 

similar position, although with a significantly shorter lifetime (1.9 ps) was observed for astaxanthin 

dissolved in carbon disulfide (Ilagan et al. 2005) and it was suggested that the signal is due to either a 

S* state or excited state solvation. Though we observed much longer lifetime, it is worth noting that S* 

lifetime of 7 ps was measured in a water-soluble analog of astaxanthin, astalysine (Chabera et al. 2010), 

indicating that the S* lifetime may be sensitive to environment. Consequently, we assign the 14 ps 

component to the S* state of astaxanthin in the assemblies.  

 The last resolved component has a lifetime longer than the longest measured delay (130 ps) and, 

in the region of the astaxanthin signal, corresponds to relaxation of an ESA signal centered at 580 nm. 

This long-lived ESA signal is assigned to an astaxanthin triplet-triplet absorption based on comparison 

with previous results on aggregates of BChl c with β-carotene, where a similar signal was centered at 

550 nm (Alster et al. 2010). This assignment is further supported by observation of the triplet state of 

spheroidene and spheroidenone in reaction centres from Rhodobacter sphaeroides 2.41 and the mutant 

RCO2 (Arellano et al. 2004). The spheroidenone contains a keto group and shows a broader and red 

shifted triplet-triplet absorption spectrum compared to spheroidene, i.e. similar differences as observed 

between β-carotene and astaxanthin.  

 The BChl c part of the transient data (Figure 6b), on the other hand, retained most of PB/SE 

signal in the Qy region of BChl c and some broad ESA signal between 550-680nm. As expected, it is 

very similar to the transient signal of BChl c dimers with lecithin (Figure 5b). This corroborates the 

relevance of the decomposition method. The only difference is found in somewhat bigger amplitude of 

the ESA signal around 630nm in the BChl part of the transient data. Assuming no energy transfer from 

BChl c to astaxanthin (see below), this signal must come from the xanthophyll contribution admixed to 

the BChl c part of transient data during decomposition; this is most probably caused by small 

unavoidable errors in determining populations of initially excited states.  

 It may be expected that the fastest relaxation process observed within the BChl c part of the 

transient data is internal conversion from the Soret to Qy band. This process is connected with the fast 

increase of the SE signal of the BChl c Qy band. It is also reflected as the fastest DAS component 

resolved by global analysis (Figure 6d), with a lifetime of ~100 fs. It should be stressed that this 

lifetime is shorter than the instrument response time; therefore it is determined with a rather high 

uncertainty and the spectral profile of this component most probably also contain some artifacts 

originating from coherent processes caused by excitation and/or the fact that the model used for global 
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analysis does not account for a variable width of the excitation pulse over the whole spectral region. 

Thus the only conclusion we can draw is that the lifetime of internal conversion from the Soret to Qy 

band is up to ~100fs.  

 The next two components revealed by global analysis have lifetimes of ~0.4ps, attributed to 

energy redistribution in the BChl c Qy band, and 2.4ps, corresponding to the main decay of BChl c. The 

last two components, with lifetimes of 18 ps and >130 ps, are due to the relaxation of BChl c to the 

ultimate acceptor state of the assembly. We cannot exclude that the relaxation within the BChl c 

manifold is affected by annihilation, as observed in BChl aggregates in chlorosomes (Psencik et al. 

2003). There is no signal which could be attributed to energy transfer from BChl c to astaxanthin. This 

fact further supports an interpretation of the extraneous ESA around 610 nm in the BChl c part of the 

transient data as an artifact of the transient data decomposition. 

 

Discussion 

In previous works, we have demonstrated that, in addition to lipids, specific carotenes and quinones 

induce aggregation of BChl c in aqueous buffers (Klinger et al. 2004; Alster et al. 2008; Alster et al. 

2010). The aggregation is manifested by a red shift of the BChl c Qy transition, which increases with 

the concentration of the aggregation-inducing species. However, the xanthophyll astaxanthin used in 

this work behaves differently. The red shift of the Qy band of BChl c upon addition of astaxanthin is 

nearly absent, indicating that the assemblies of BChl c with astaxanthin are formed in a different 

manner. As the most plausible explanation we propose that the hydroxyl group of the astaxanthin end 

ring (Figure 1) competes for the Mg coordination with hydroxyl group of another BChl c. Similarly 

keto oxygen of the astaxanthin end ring and BChl c (Figure 1) may compete for hydrogen bonding with 

hydroxyl groups of both pigments. However, at this stage we do not have any direct evidence 

concerning the nature of interactions between astaxanthin and BChl c.  

 The suggested involvement of astaxanthin in the hydrogen bonding pattern thus prevents the 

stacking of many BChl c molecules, a prerequisite for their strong exciton coupling and, consequently, 

for the red shift of the BChl c Qy band in the assemblies. It also explains the enhancement of the 

monomer-like peak in the absorption spectra, which certainly cannot originate from free monomers of 

BChl c in buffer. The interference of the astaxanthin functional groups with those involved in the 

aggregation of BChl c may be the reason why xanthophylls are not usually found in chlorosomes, 

although hydroxyl chlorobactene or OH--carotene have been detected in minor amounts (< 2% of total 

carotenoid content) in cells of some strains of Chlorobaculum tepidum (Takaichi et al. 1997). 
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Chlorosomal carotenoids, e.g. chlorobactene, posses neither keto nor hydroxyl groups, and interact 

with BChl c mainly by hydrophobic and/or π-π interaction. The difference spectra between the BChl c 

assemblies with higher molar ratio of astaxanthin and BChl c dimers indicate the presence of some 

aggregates absorbing at around 740 nm (judging from the wave-like pattern in the Qy band region; 

Figure 3), however, most of the BChl c molecules exhibit spectral features of BChl c dimers.  

 Compelling evidence of energy transfer from astaxanthin to BChl c, with quantum efficiency of 

about 40%, was obtained by fluorescence excitation spectra. Further support comes from the global 

analysis of the transient data, which revealed a fast component of ~140 fs following the excitation of 

astaxanthin with a spectral profile characteristic for energy transfer. This component indicates that the 

excitation absorbed by the S2 state of astaxanthin (PB/SE below 550 nm) partly undergo relaxation into 

the astaxanthin S1 state (arrival of the energy reflected by a negative amplitude of this component 

between 550-700 nm which corresponds to a rise of ESA) and partly to BChl c, which is manifested by 

a positive amplitude above 700 nm (rise of PB/SE). In addition, the amplitudes of the transient data 

(PB/SE of the BChl c Qy band) decomposed into part following excitation of astaxanthin and BChl c 

reflect the quantum efficiency of the astaxanthin-to-BChl c energy transfer, which is consistent with 

that determined by fluorescence excitation spectra.  

 Support for the suggested energy transfer pathway in the BChl c assemblies with astaxanthin 

can be found from the comparison of our transient data with some results derived from measurements 

of the S1 and S2 states lifetimes of astaxanthin in several solutions. Ilagan et al. (2005) determined the 

S1 state lifetime of astaxanthin in methanol, acetonitrile and carbon disulfide to be ~5ps, and the 

lifetime of S2 state to be between 105 fs (methanol) and 165 fs (acetonitrile). Kopczynski et al. (2005) 

also reported a lifetime of ~5ps for the S1 state of astaxanthin in various solutions ranging from toluene 

to methanol and a lifetime of ≤120fs for S2 state of astaxanthin in acetone and dimethyl sulfoxide. The 

S2 state relaxation was also measured by photon echo spectroscopy for astaxanthin in THF and a 

lifetime of 160 fs was determined using the excitation pulses of ~30 fs width  (Christensson et al. 

2009).  

 The lifetime of the S1 state of astaxanthin in assemblies with BChl c was found to be 4.4 ps in 

this study. Such small shortening of the S1 state lifetime compared to the lifetime in solution is at the 

edge of reliability, yet it may indicate a low efficiency S1-mediated energy transfer pathway to BChl c. 

However, as there is no rise component in the BChl c PB/SE region matching the decay of astaxanthin 

S1 state, we can safely conclude that S1 pathway is closed in these assemblies and all energy transfer 

proceeds via the S2 route. This conclusion is also corroborated by the fact that carotenoids with 
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effective conjugation length comparable to astaxanthin (e.g. lycopene or spirilloxanthin) have S1 

energy below 13 000 cm
-1

 (Billsten et al. 2002; Papagiannakis et al. 2003), thereby preventing energy 

transfer to Qy state of BChl c in the assemblies. 

 The S2 state lifetime of astaxanthin, determined here, corresponds to the fastest component of 

the astaxanthin relaxation (140fs). Since astaxanthin-to-BChl c energy transfer takes place in the 

assemblies, we must expect that the S2 state lifetime of astaxanthin becomes shorter in assemblies 

compared to that in solution. Using the lifetime of 160 fs (Christensson et al. 2009), which fits within 

the uncertainty of 145±50fs obtained by Ilagan et al. (2005) in carbon disulfide, then, to ensure 40% 

efficiency determined by excitation spectra, the calculated energy transfer time is 240 fs. These values 

lead to the shortening of the S2 state lifetime to ~100 fs, which is shorter than the S2 state lifetime in the 

presence of energy transfer determined by global analysis. However, the S2 state lifetime is comparable 

with the instrument response time (~150 fs) , and as such determined with a rather high uncertainty. On 

the other hand, the spectral shape of the 140 fs DAS component clearly indicates energy transfer to 

BChl c and therefore the energy transfer observed by excitation spectra certainly occurs from the S2 

state of astaxanthin and the energy transfer time should be less than 500 fs. It should be noted that 

fixing the lifetime of this component to 100 fs does not affect DAS of this component and the change 

of the residues is below the noise level. The rather efficient and very fast energy transfer indicates that 

the BChl c and astaxanthin form assemblies with a close distance between both pigments. This, 

together with other arguments reported in the Results section, excludes the possibility that our samples 

were just a mixture of dissolved BChl c and astaxanthin. 

 The lifetimes reported above were determined from transient data decomposed into parts 

following excitation of astaxanthin and BChl c, respectively, as described in Results. It should be 

stressed that standard global analysis applied to non-separated transient data leads to very similar 

results, but the main advantage of the decomposition is the very illustrative analysis of the relaxation 

after excitation either to BChl c or astaxanthin. 

 The fast formation of the triplet state excludes its origin in intersystem crossing, and suggests 

singlet homofission similarly as for the BChl c aggregates with β-carotene (Alster et al. 2010). As 

described above, the S1 lifetime of astaxanthin in the assemblies (4.4 ps) is slightly shorter than in 

solution (~5 ps). Since it was concluded that this shortening cannot be due to energy transfer to BChl c, 

it is possible to speculate that the shortening is caused by additional weak relaxation channel leading to 

the triplet state formation by a singlet homofission mechanism with a quantum efficiency of ~10%. 

Alternatively, the triplet state may be formed by the homofission from the S* state, which was detected 
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in the assemblies studied here. Since the S* state is known to be a precursor of the homofission-

generated triplet state in some proteins containing carotenoids (Gradinaru et al. 2001), it is feasible that 

local environment of astaxanthin in the assemblies also provides favorable conditions for such pathway. 

 In conclusion, astaxanthin forms assemblies with BChl c, which exhibit rather efficient and fast 

energy transfer from the S2 state of astaxanthin to BChl c. Astaxanthin absorption in the assemblies 

covers mainly the spectral region between 500-550 nm, filling a substantial part of the gap between the 

Soret and Qy band of BChl c. As the BChl c assemblies with astaxanthin are formed by self-assembly, 

their absorption covers a substantial part of the visible spectrum, and are relatively stable, they might 

be an interesting model system for artificial light harvesting systems. 
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Appendix A. Transient data analysis 

We assume simple kinetic model for excited state population Ni  

A1) 
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where kij is the rate constant for energy/population transfer from the state i to the state j and dot 

represents derivative with respect to time. By solving set of equations A1 (one for each state) and 

considering that each state contributes to transient signal proportionally to its population, we get the 

following model for describing transient absorption data 

A2) 
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where j, i iterates over all energy states present in the sample, kj is overall rate constant of the state j 

(


i
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), ε is a spectral profile associated with the given state, and coefficients Kij describe energy 
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transfer between states, typically ij
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 or product of similar terms. We can then perform global 

analysis, i.e. fit this model on the data resulting in overall rate constants and corresponding pre-

exponential factors (the decay associated spectra - DAS) 
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Let's assume in accordance with the multi-exponential model that relaxation pathways from an excited 

state are the same regardless of its population. This is of course an approximation, because relaxation 

within the BChl c manifold is likely to be influenced by singlet-singlet annihilation which the model 

does not describe. It follows that the transient signal consists of parts proportional to the initial 

population of states directly excited by pump pulse (the other way of summation in A2) 

A4) 
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If we perform at least P measurements with different ratio of initial population of excited states, where 

P is the number of the initially excited states (with non-zero Ni(0)), we can determine the parts of 

transient data corresponding to the relaxation from each of the initially excited states (ai in equation 

A4). Note that these parts should be the same in all measurements, only their weight differs. Here we 

assume that only the S2 state of astaxanthin and Soret band of BChl c are directly excited, and the 

transient data separates into two parts: relaxation following excitation of astaxanthin, and BChl c, 

respectively. Therefore we need to perform two transient absorption measurements with a different 

ratio between initial populations of the S2 state of astaxanthin and the Soret band of BChl c. One 

theoretically possible way to change excited state population is to use one excitation wavelength and 

two samples with different astaxanthin to BChl c molar ratios. However, different sample composition 

in this case results in different way of assembly and therefore in different absorption spectra, breaking 

the condition that relaxation from excited state is the same. The other way is to use one sample and two 

different excitation wavelengths (close enough to excite the same electronic transition and far enough 

to achieve significant change of excited populations ratio). In this case we populate different parts from 

the inhomogeneously broadened electronic transition peaks; this however should not influence 

relaxation from the higher excited state significantly. We measured transient data after excitation at two 

different wavelengths, 450 and 490 nm; therefore, we can rewrite the equation (A4) describing global 

decay at two excitation wavelength as  
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where ΔA450 and ΔA490 represent transient data after excitation at 450 and 490 nm, respectively.   

The initial excited state populations Nλ
molecule

(0) could be determined directly from steady-state 

absorption spectra corrected for scattering, and energy in the pump pulse. From the two equations two 

unknown matrices ΔaBChl and ΔaCar, which represent BChl c and astaxanthin part of the transient data, 

could be calculated (Figure 6). 

 

Appendix B. Supplementary material 

Supplementary material is available...  
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Figure captions 

Figure 1: Molecular structure of BChl c (a), and astaxanthin (b). Substituents of BChl c at R8 can be 

ethyl, propyl or isobutyl, at R12 methyl or ethyl. Astaxanthin is drawn as a (3S,3´S) isomer. 

 

Figure 2: Absorption spectra of BChl c assemblies with astaxanthin with different astaxanthin-to-BChl 

c molar ratios, corrected for the light scattering. Absorption spectrum of BChl c dimers (solid line) is 

shown for comparison. Spectra are normalized at 439 nm and offset by 0.5 a.u. to ease visualization. 

The vertical line is located at 715 nm to facilitate comparison. 

 

Figure 3: Difference spectra between BChl c assemblies with astaxanthin and BChl c dimers, showing 

the contribution of astaxanthin to the absorption spectrum of the assemblies. Spectra are compared with 

the absorption spectrum of astaxanthin in THF (dotted line). 

 

Figure 4: Absorption (1-T) spectra of BChl c assembly with astaxanthin (solid line) and BChl c dimers 

(dashed line). The absorption spectra are compared to the fluorescence excitation spectrum of BChl c 

assembly with astaxanthin (circles). The difference spectrum between both  absorption (1-T) spectra 

(dash dot line), and the difference spectrum between the absorption (1-T) spectrum and the excitation 

spectrum of BChl c assembly with astaxanthin (dotted line) are also shown. 

 

Figure 5: Transient spectra of BChl c-astaxanthin assemblies after excitation at 490nm (a). Transient 

spectra of BChl c dimers with lecithin after excitation at 490nm (b; negative peak at 590nm is Raman 

scattering of water). The spectra were smoothed by adjacent averaging. 

 

Figure 6: Transient data of BChl c assemblies with astaxanthin with a an astaxanthin-to-BChl c molar 

ratio of 0.2:1 after decomposition into a part corresponding to excitation of astaxanthin (a – transient 

spectra, c – decay associated spectra) and BChl c (b – transient spectra, d – decay associated spectra). 

Arbitrary units for the panels a) and b) are the same and so are they for panels c) and d). The spectra 

were smoothed by adjacent averaging. 
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SUPPLEMENTAL INFORMATION 

Figure S1: Correction of the absorption spectra of BChl c-astaxanthin assemblies for light scattering. 

Spectra were measured at a position further (solid line) and closer (dotted line) to the detector of the 

spectrophotometer. The difference between them rescaled to fit the uncorrected spectra above 850 nm 

reflects the scattering part of the spectra (dashed line). The corrected spectrum (dash-dot line) was 

obtained by subtracting the scattering part from the solid line. 
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