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Novel Class III peroxidase biocatalyst from Chamaerops excelsa palm tree.  

The steady state kinetic mechanism of the H2O2-supported oxidation of different organic 

substrates by this peroxidase (CEP) has been proposed. 

An analysis of the initial rates versus H2O2 and reducing substrate concentrations is consistent 

with a substrate-inhibited Bi-Bi Ping-Pong reaction mechanism. 

The corresponding kinetic parameters 22OH

mK , 2AH

mK , kcat, 22OH

SIK
, 

2AH

SIK and the microscopic 

rate constants k1 and k3 of the shared three-step catalytic cycle of peroxidases have been 

determined.  
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Abstract 

The steady state kinetic mechanism of the H2O2-supported oxidation of different organic 

substrates by peroxidase from leaves of Chamaerops excelsa palm trees (CEP) has been 

investigated. An analysis of the initial rates vs. H2O2 and reducing substrate concentrations is 

consistent with a substrate-inhibited Bi-Bi Ping-Pong reaction mechanism. The 

phenomenological approach expresses the peroxidase Ping-Pong mechanism in the form of the 

Michaelis-Menten equation and leads to an interpretation of the effects in terms of the kinetic 

parameters 22OH

m
K , 2AH

m
K , kcat, 22OH

SI
K

, 
2AH

SI
K and of the microscopic rate constants k1 and k3 of 

the shared three-step catalytic cycle of peroxidases.  

 

Keywords: Chamaerops excelsa; Peroxidase; Reaction Mechanism; Steady-State Kinetics; 

Substrate Specificity; Inhibition. 
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1. Introduction 

Peroxidases (EC 1.11.1.7; donor: hydrogen peroxide oxidoreductase) are enzymes that are 

widely distributed in the living world ant that are involved in many physiological processes. 

The oxidation of many biological substances in body fluids produces a certain amount of 

hydrogen peroxide. In this sense, although the function of peroxidases is often seen primarily 

in terms of causing the conversion of toxic H2O2 to H2O, this should not be allowed to obscure 

their wider participation in other reaction, such as cell wall formation, lignification, the 

protection of tissues from pathogenic microorganisms, suberization, auxin catabolism, defense, 

stress, etc [1]. 

In addition to their biological functions, peroxidases are important from the point of view 

of many biotechnological applications. This group of enzymes, in particular those from plants, 

enjoys widespread use as catalysts for phenolic resin synthesis [2,3] as indicators for food 

processing and diagnostic reagents [4,5], and as additives in bioremediation [6,7]. Under 

specific conditions, the radicals formed can break bonds in polymeric materials, resulting in 

their destruction [8]. 

Peroxidases reduce hydrogen peroxide and oxidize a broad number of compounds 

including phenols, aromatic amines, thiosanisoles, halide and thyocianate ions, fatty acids. 

Selectivity towards reducing substrates depends on the type of peroxidase [9]. It is quite 

difficult to determine which substrates are physiologically relevant for plant peroxidases owing 

to their ability to oxidize a broad variety of organic an inorganic substrates [8].  
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Peroxidases have been identified throughout the plant kingdom but that from horseradish 

root (HRP), and in particular the slightly basic C isoenzyme (HRPC), has been the one most 

thoroughly investigated. Despite this, in recent years more data have become available 

regarding peroxidases from other plants, such as peanut [10], barley [11], tea [12], Arabidopsis 

thaliana [13], and palm trees [14-18]. 

The shared three-step catalytic cycle of peroxidases, involving different intermediate 

enzyme forms, is known as Poulos-Kraut mechanism [19,20]. Catalysis is initiated by the 

binding of H2O2 to the high-spin ferric haem iron of resting peroxidase, followed by the 

heterolytic cleavage of the peroxide oxygen-oxygen bond under the influence of highly 

conserved histidine and arginine residues in the active site [21]. The haem undergoes a two-

electron oxidation to form an intermediate (compound I) containing an oxyferryl species 

(Fe(IV)=O) and a porphyrin –cation radical. A water molecule is generated as the co-product 

of the reaction. Completion of the catalytic cycle most often consists of two successive single-

electron transfers from separate reducing substrate molecules to the enzyme. The first 

reduction, of the porphyrin –cation radical in compound I, yields a second enzyme 

intermediate, compound II, which retains the iron in the oxyferryl state [22]. Reduction of 

compound II, to recover the ferric enzyme, is often rate-limiting under steady-state conditions. 

Extremely reactive free radicals released from the catalytic cycle quite often condense 

spontaneously, giving rise to polymers. 

The peroxidase cycle is generally considered irreversible. However, there is no doubt that 

adsorption complexes between the enzyme and its substrates exist physically [23]. The 

microscopic constants governing the equilibrium between aromatic compounds and peroxidase 

have been estimated. Even though the presence of the co-substrates (donor or H2O2) in the 

enzyme modulates affinity for the other, the mechanism may proceed via random binding. This 
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finding, together with retain special kinetic features [24], supports the notion that there is no 

need for the peroxide to bind to the enzyme prior to donor adsorption.  

In this work, the kinetic mechanism of the H2O2-supported oxidation of different organic 

substrates by means of a novel plant peroxidase from Chamaerops excelsa palm tree (CEP) has 

been investigated.  

Among the broad variety of organic and inorganic substrates of peroxidases, here four 

organic substrates were studied: the chromogenic substrates guaiacol (2-metoxiphenol) and 

ABTS, often used as reference substrates, and o-dianisidine and o-phenylendiamine, the latter 

three suitable for use in ELISA procedures that employ peroxidase conjugates [25-28]. 

Since these oxidation reactions exhibit Michaelis-Menten saturation kinetics with respect to 

both substrates, the system was amenable to steady state kinetic experiments, which were used 

to deduce the kinetic mechanism of the reaction following the methodologies established for 

two-substrate enzyme systems [29]. The results of the initial rate and inhibition studies carried 

out here indicate that the H2O2-supported oxidation of different organic substrates catalyzed by 

this peroxidase proceeds via a Ping-Pong mechanism mediated by the oxidized enzyme 

intermediate compounds I and II. 

2. Experimental  

2.1. Materials 

Analytical or extra-pure grade polyethyleneglycol (PEG), guaiacol (2-methoxyphenol), 

ammonium sulfate, sodium phosphate and Tris-HCl were purchased from Sigma Chemical Co. 

(St. Louis MO, USA) and were used without further purification. H2O2 was from Merck 

(Darmstadt, Germany). Superdex-200 columns and Phenyl-Sepharose CL-4B columns were 

from GE Helthcare Bio-Sciences AB (Uppsala, Sweden). TSK-Gel DEAE-5PW was purchased 
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from Tosoh Co. (Tokyo, Japan). Cellulose membrane tubing for dialysis (avg. flat width 3.0 in) 

was purchased from Sigma Chemical Co.; slide A-lyzer dialysis cassettes (extra-strength, 3-12 

mL capacity, 10.000 MWCO) were form Pierce Biotechnology, Inc. (Rockford, IL, USA) and 

filter devices (Amicon Ultra Cellulose 10.000 MWCO, 15 mL capacity) were from Millipore 

Corp. (Billerica, MA, USA). All other reagents were of the highest purity available. The water 

used for preparing the solutions was double-distilled and then subject to a de-ionisation 

process. 

2.2. Enzyme purification 

CEP was purified from palm tree Chamaerops excelsa as described [15,17] but with 

essential modifications. Leaves (1820 g) from three-year-old palm tree were milled and 

homogenized in 7.28 L distilled water for 22-24 h at room temperature. Excess material was 

removed by vacuum filtration and centrifugation (10000g, 277 K for 15 min). Pigments were 

extracted by phase separation over 20-22 h at 277 K after the addition to the supernant of solid 

PEG to 14% (w/v) and solid ammonium sulfate to 10% (w/v). Two phases were formed after 

addition of ammonium sulfate: an upper polymer phase (dark brown), which contained 

pigments, phenols, polyphenols, oxidized phenols and PEG, and lower aqueous phase (yellow) 

containing peroxidase. Each phase consisted of 50% of the initial volume. These phases were 

separated and the phase containing peroxidase activity was centrifugated. The clear supernant 

containing peroxidase activity was titrated with ammonium sulfate to a conductivity value of 

232 mS cm
-1

 and was applied on a Phenyl-Sepharose column (1.5 x 35 cm) equilibrated with 

100 mM phosphate buffer, pH 6.5, with 1.7 M ammonium sulfate, which has the same 

conductivity as the sample. The enzyme was eluted with 100 mM phosphate buffer, pH 6.5, 

plus 0.2 M ammonium sulfate at a flow rate of 1 mL min
-1

. 15 mL fractions were collected and 

those showing peroxidase activity were dialyzed against 5 mM Tris buffer, pH 9.3, for 72 h, 

with constant stirring at 277-278 K. these fractions were membrane-concentrated (Amicon, 10 
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kDa cutoff) to 15 mL and applied onto a TSK-Gel DEAE-5PW column (1 x 30 cm) 

equilibrated with 5 mM Tris buffer, pH 9.3. Elution was carried out with a linear 0-300 mM 

NaCl gradient in the same buffer at a flow rate of 1 mL min
-1

. The fractions with peroxidase 

activity were collected, membrane-concentrated (Amicon, 10 kDa cutoff), and applied on a 

Superdex-200 column equilibrated with 5 mM Tris buffer, pH 9.3. Elution was carried out in 

the same buffer at a flow rate of 1 mL min
-1

. Finally, the peroxidase was dialyzed against 

distilled water and freeze-dried. 

The purity of the CEP was determined by SDS-PAGE as described by Fairbanks et al. [30] 

on a Bio-Rad Minigel device using a flat block with 12% polyacrylamide concentration; by gel 

filtration, which was performed using a Superdex 200 10/30 HR column in an FPLC 

Amersham Äkta System; and by UV-visible spectrophotometry (RZ = A403/A280 = 2.8 – 3.0). 

Analytical isoelectrofocusing was performed on a Mini IEF cell model 111 (Bio-Rad 

Laboratories, Hercules, CA, USA) using Ampholine PAG-plates, pH 3.5-9.5 (GE Healthcare 

Biosxiencies AB, Upsala, Sweden). The electrophoretic conditions and Silver Staining Kit 

Protein were as recommended by manufacturer. The standards used were from a broad-range 

pI calibration kit (4.45-9.6) from Bio-Rad Laboratories (Hercules, CA, USA.).  

2.3. Enzymatic activity of CEP 

The initial rates of appearance of the products of oxidation of different substrates (guaiacol, 

ABTS (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid), o-dianisidine and o-

phenylendiamine) due to the catalytic action of CEP in the presence of H2O2 were measured by 

electronic absorption spectroscopy at the characteristic wavelengths of such products (470, 

414, 420 and 445 nm, respectively) [31]. The reactions, initiated by the addition of CEP, were 

performed at 25 
o
C in 20.0 mM universal buffer, pH 7.0 except for substrate ABTS for which 
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pH was 3.0, containing variable concentrations of the reducing substrate at fixed H2O2 

concentration and viceversa.  

The concentration of peroxidase was measured spectrophometrically at 403 nm, using the 

experimentally determined extinction coefficient value of 48.0 ± 0.5 mM
-1

 cm
-1

 for the protein 

monomer [17].  

To determine the microscopic rate constants and other kinetic parameters for the oxidation 

of the substrates by CEP in the presence of H2O2, the mathematical treatment of Morales and 

Ros-Barceló [32] was applied. The initial reaction rates were obtained from the kinetic runs 

and fitted vs. substrate concentration, at fixed H2O2 concentration, and viceversa, according to 

the generally accepted two-substrate Ping-Pong mechanism for the peroxidases [19,20]. 

3. Results and discussion 

3.1. Steady-state rate equation and kinetic parameters of CEP-catalyzed oxidation reactions  

In a two-substrate enzyme system, two general mechanisms are possible for the interaction 

of the substrates with the enzyme: namely, a sequential mechanism or a Ping-Pong mechanism. 

In a sequential mechanism, both substrates combine with the enzyme to form a ternary 

complex before catalysis occurs. The substrates can combine with the enzyme in a random 

fashion (Random Bi-Bi) or in an obligatory order (Ordered Bi-Bi) to form the ternary complex. 

The products formed from the reaction can therefore be released in an ordered or random 

fashion. In a Ping-Pong mechanism, a ternary complex of substrates and enzyme is not formed. 

The first substrate in a Bi-Bi Ping-Pong mechanism combines with the enzyme to form a 

substituted enzyme intermediate, with the concomitant release of the first product. The second 

substrate then interacts with the substituted enzyme intermediate to form the second product 

and regenerate the native enzyme. Ping-Pong and sequential mechanisms can be differentiated 
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by a steady-state kinetic analysis of the reaction using the procedures described by Cleland 

[33,34]. 

The kinetic mechanism of the H2O2-assisted CEP-catalyzed oxidation of reducing 

substrates AH2 was investigated using initial rate measurements, in which the concentrations of 

both substrates, - H2O2 and AH2 - were varied systematically and the results were analyzed 

assuming steady state conditions. The initial rates, v, as a function of hydrogen peroxide or 

AH2 concentration were fitted to the Michaelis-Menten rate equation (Eq. (A2)) by an iterative 

process [35]. 

At pH 3.0, double-reciprocal plots of initial steady-state rates of ABTS oxidation vs. 

hydrogen peroxide concentration (0.1-2.1 mM), at fixed reducing substrate ABTS 

concentrations, afforded a set of approximately parallel lines, as show in Figure 1. A similar 

graphic behaviour of the double-reciprocal plots of the data was obtained upon studying the 

effect of ABTS concentrations on the initial rates of the oxidation reaction at different fixed 

H2O2 concentrations (data not shown). Similar trends towards parallel lines in double-

reciprocal plots were also observed at pH 7.0 for guaiacol, o-dianisidine and o-

phenylendiamine. The obtained trends towards such linear parallel plots point to a Ping-Pong 

mechanism involving two independent enzyme forms (i.e. enzyme forms separated by an 

irreversible step).  

Figure 1 

Thus, upon representing the intercept (1/V) of the above lines and the inverse of the K  

parameter vs. the reciprocal of the fixed substrate concentration, linear relationships are 

obtained (insets in Figure 1 for the ABTS case). The values of 22H

m

O
K , 2AH

m
K  Vmax and kcat, 

shown in Table 1, were calculated from the slopes and intercepts of the corresponding linear 

fittings of data following equations (A6) and (A7). 
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Table 1 

The highest turnover number, kcat, of CEP was found for the substrate guaiacol, followed 

by o-phenylenediamine, o-dianisidine and ABTS. The highest affinity of the enzyme (1/Km) 

was for ABTS, followed by o-phenylenediamine, o-dianisidine and guaiacol. However, the 

greatest specificity constant or catalytic efficacy of the enzyme (kcat/Km) was seen for ABTS, 

followed by o-phenylenediamine, o-dianisidine and guaiacol. Similar reactivities for these 

substrates have been found for African [31] and royal [18] palm tree peroxidases.  

3.2. Microscopic rate constants 

Peroxidases catalyzed the oxidation of AH2 organic substrates, using H2O2 (or other 

peroxides) as electron acceptor, in a three-step catalytic cycle involving different intermediate 

enzyme forms [19,20]: 

OHEIOHE 222
1 

k
      (1) 


 AHEIIAHEI 2

2
k

      (2) 


 AH OHEAHEII 22

1k
     (3) 

where E is the native enzyme. The monoelectronic oxidation of the native state E gives rise to 

an intermediate state termed EI (Eq. (1)). EI is responsible for the oxidation of the electron-

donor substrate (AH2), accepting one proton and one electron, and generating its free radical 

(AH
•
) and another enzyme state, designated EII (Eq. (2)). Finally, EII is reduced by a second 

molecule of substrate (Eq. (3)), giving rise to a second free radical (AH
•
). The microscopic 

constant k1 (the constant of EI formation) indicates the reactivity of the enzyme towards 

hydrogen peroxide and k3 (the constant of EII reduction) represents the reactivity of the 

enzyme towards the reducing substrate. 
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To calculate the microscopic constants (k1 and k3) for the oxidation of the substrates by 

CEP, the rates of oxidation of the substrates were fitted for each concentration of AH2 and 

H2O2, assuming the steady-state approach and considering that k2 > k3.  

Following the Appendix, double-reciprocal plots (1/v vs. 1/[H2O2]) allowed us to calculate 

A and B values for each AH2 concentration. Figure 2 shows the plot of A vs. B values (Eq. 

(A8)) for three ABTS concentrations. From this straight line it is possible to calculate the value 

of k1 (formation constant of compound I) for peroxidase-mediated ABTS oxidation. The value 

obtained, as well as those obtained for guaiacol, o-dianisidine and o-phenyldiamine are shown 

in Table 2.  

Figure 2 

Figure 3 

According to the Appendix, double reciprocal plots (1/v vs. 1/[AH2]) allowed us to 

calculate the A and B values (Eq. (A9)) for each H2O2 concentration. Figure 3 shows the plot 

of A vs. B values for three H2O2 concentrations during the oxidation of ABTS. From this 

straight line it is possible to calculate the value of k3 (formation constant of compound II) for 

peroxidase-mediated ABTS oxidation. The value obtained, as well as those obtained for 

guaiacol, o-dianisidine and o-phenylenediamine are also listed in Table 2. 

Table 2 

These A vs. B plots allowed us to calculate true reaction constants (ki) from steady-state 

measurements of the oxidation rate, avoiding their dependence on substrate concentration [20]. 

From the rate constant values (ki) shown in Table 2, it may be deduced that the CEP is 

capable of oxidizing phenolic and aromatic amine substrates. The data obtained show that the 

most reactive substrate for CEP was ABTS, followed by the aromatic amines o-dianisidine and 
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o-phenylendiamine, guaiacol being the least reactive substrate. The high reactivity of ABTS is 

due to its greater number of H-bond acceptor atoms, because the highest values of reactivity 

constants are for substrates with the most acceptor H-bonds (www.chemicalregister.com). 

ABTS has ten H-bond acceptor sites, o-dianisidine four, o-phenylendiamine two and guaiacol 

two. With regards to H-bond acceptor sites - ABTS, o-dianisidine, o-phenylendiamine - each 

has two H-bond donor sites and guaiacol only one. 

Similar studies addressing kinetic parameters and microscopic rate constants carried out 

with African [31] and Royal [18] palm tree peroxidases revealed that these enzymes exhibit 

greater reactivity towards ferulic acid and ABTS, followed by the aromatic amines o-

dianisidine, o-phenylendiamine and, finally, by phenolic substrates with one or two hydroxyl 

groups in their chemical structures. In contrast, both soybean and peanut peroxidases are more 

reactive towards guaiacol than towards amines [31,36]. Both horseradish and tobacco 

peroxidases have been reported to be equally reactive towards guaiacol and o-dianisidine and 

about 10-15 times less reactive towards o-phenylendiamine [37]. 

Substrate specificity studies of peroxidases are usually performed with only one substrate 

present, besides H2O2, in the reaction mixture at a given time; i.e. without any alternative 

substrates able to undergo the same reaction. This is because the presence of competing 

substrates tends to complicate the analysis without providing much more information than 

would be obtained by studying the substrates separately. However, this implies an important 

difference between experimental practice and the physiological conditions under which 

enzymes usually exist. In this sense, most enzymes are not perfectly specific for a single 

substrate and must often select between several that are available simultaneously. Therefore, to 

be physiologically meaningful enzyme specificity must be defined in terms of how well the 

enzyme can discriminate between substrates present in the same reaction mixture. This does 

not mean that it cannot be determined from the kinetic parameters of the enzyme for separate 
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substrates, but it does mean that these parameters need to be interpreted correctly and not on a 

casual basis [38]. 

3.3. Substrate inhibition 

In order to further verify the kinetic mechanism of the substrate oxidation reactions 

catalyzed by CEP, inhibition studies were carried out. One of the characteristic features of 

Ping-Pong reaction mechanisms is the occurrence of competitive substrate inhibition by both 

substrates [29].  

In the Ping-Pong reaction mechanism, since the three forms of the enzyme - E, CoI and 

CoII - are so similar, it is reasonable to expect AH2 to have some affinity for E as well as CoI 

and CoII and, if the actives sites in CoI and CoII are not too full for the adsorption of H2O2, for 

H2O2 to show some affinity for CoI and CoII [39]. In peroxidases, the formation of a non-

productive or dead-end complex between AH2 and E and the reaction of high concentrations of 

H2O2 with CoI affording H2O2 and O2 have been found [40].  

According to the Appendix, following the reciprocal of equation (A13), plots of 1/v vs. 

1/[H2O2] at fixed [AH2] should be linear and should intersect on the y axis. This graphical 

behaviour was observed at fixed ABTS inhibitory concentrations (Figure 4).  

In this sense, Figure 4 (inset) shows this linear plot for ABTS. For the other substrates 

studied, a similar degree of substrate competitive inhibition was found (data not shown). 

Figure 4 

Alternatively, at fixed inhibitory values of H2O2 concentration, the v vs. [AH2] data 

analysis provided a series of alternative equations similar to equations (A13-A16). 
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Accordingly, the corresponding plots of 1/v vs. 1/[AH2] at fixed [H2O2] are also linear and 

intersect on the y axis and the plots of K/V vs. [H2O2] should also be linear. This graphic 

behaviour was obtained for ABTS at fixed [H2O2] (Figure 5) and also for the rest of substrates 

studied (data not shown). 

Figure 5  

Consequently, competitive substrate inhibition was observed in the H2O2-assisted CEP-

catalyzed oxidation reactions for both substrates, as expected for a Ping-Pong reaction 

mechanism. The corresponding inhibition constants obtained - 22OH

SI
K and 2AH

SI
K - for the 

substrates studied are shown in Table 3. 

Table 3 

Thus, the combined initial rate and substrate inhibition results exclude an ordered or 

random sequential reaction mechanism, and are only consistent with the Bi-Bi Ping-Pong 

mechanism following the notation of [29] as the minimal kinetic model for H2O2-assisted CEP-

catalyzed substrate oxidation reactions. 

Ping-Pong reaction kinetics has also been observed for several other peroxidase-catalyzed 

oxidations mediated by compound I. The results of initial rate studies of the hydrogen 

peroxide-supported oxidation of guaiacol by turnip peroxidase [41] and of the oxidation of 

ferrocytochrome c catalyzed by horseradish peroxidase [42] and yeast cytochrome c peroxidase 

[43] are consistent with a Ping-Pong mechanism. The initial rate kinetic studies of the 

oxidation of ferrocytochrome c by Pseudomonas aeruginosa cytochrome c peroxidase yielded 

intersecting plots, which were initially interpreted as indicating a sequential reaction 

mechanism [44]. However, subsequent studies demonstrated that the intersecting plots arose 

from the formation of an inactive hydrogen peroxide-enzyme complex, and the mechanism of 
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the reaction was reinterpreted to be of the modified Ping-Pong type [45]. Recently, it has been 

found that Royal palm tree peroxidase also exhibits a Bi-Bi Ping-Pong mechanism for the 

H2O2-assisted catalyzed oxidation reactions of o-dianisidine, o-phenylenediamine, ferulic acid, 

guaiacol and catechol [37]. 
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Figure legends 

Fig. 1. Primary double-reciprocal plot of the initial rate of ABTS oxidation as a function of 

hydrogen peroxide concentration at fixed ABTS concentrations (0.032 mM (□), 0.04 mM (○), 

0.05 mM (Δ)). The inserts show the secondary plots of 1/V vs. 1/[ABTS] (a) and of 1/K vs. 

1/[ABTS] (b). See text for other experimental conditions. 

Fig. 2. Secondary plot of parameters A (nmol s
-1

) vs. B (mM) obtained by varying H2O2 

concentrations for three ABTS concentrations (0.032, 0.04, 0.05  mM). See text for other 

experimental conditions. 

Fig. 3. Secondary plot of parameters A (nmol s
-1

) vs. B (mM) obtained by varying ABTS 

concentrations for three H2O2 concentrations (1.2, 1.6, 2.1 mM). See text for other 

experimental conditions. 

Fig. 4. Primary double-reciprocal plot of the initial rate of ABTS oxidation as a function of 

ABTS concentration at fixed hydrogen peroxide inhibitory concentrations (0.12 mM (□), 0.4 

mM (○), 0.6 mM (Δ)). The insert shows the secondary plot of K/V vs. H2O2 concentration. See 

text for other experimental conditions. 

Fig. 5. Primary double-reciprocal plot of the initial rate of ABTS oxidation as a function of 

hydrogen peroxide concentration at fixed ABTS inhibitory concentrations (0.32 mM (□), 0.4 

mM (○), 0.5 mM (Δ)). The insert shows the secondary plot of K/V vs. ABTS concentration. 

See text for other experimental conditions. 
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APPENDIX 

The rate equation for an enzyme-catalyzed Ping-Pong reaction with two substrates, H2O2 

and AH2, in the absence of products and at non-inhibitory substrate concentrations, is given by 

V H O AH2 2 2
v

H O AH
2 2 2AH H O H O AHm m2 2 2 2 2 2K K



 

      

              

   (A1) 

which can be cast in the form of a rectangular hyperbola for fixed values of [AH2]: 

 

 
2 2

2 2

V H O
v

H OK



      (A2) 

where V and K parameters are as follows:  

 

2

max

AH

m

2

V
V

1
AH

K




      (A3) 

 2

AH
m

OH
m

AH
1

2

22

K

K
K



        (A4) 

Thus plots of 1/v vs. 1/[H2O2] are linear and parallel at different fixed [AH2] since: 

 2 2

1 1

v V V H O

K
        (A5) 

Furthermore, the reciprocals of equations (A3) and (A4) are given by: 

                                             

 2max

AH
m

max AH

1

VV

1

V

1 2K


                          (A6)  
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 2
OH

m

AH
m

OH
m

AH

111

22

2

22 K

K

KK


                       (A7) 

For non-inhibitory concentrations of H2O2, the initial rates of the substrate oxidation can be 

fitted to the following equation: 

 
 22

22

OHB

OHA
v


       (A8) 

where A = 2[E]k3[AH2] and B=(k3/k1)[AH2]. Double-reciprocal plots (1/v vs. 1/[H2O2]) 

allowed us to calculate A and B values for each AH2 concentration 

Similarly, the dependence of v on [AH2] may be written as: 

 
 2

2

AHB

AHA
v


       (A9) 

where A = 2[E]k1[H2O2] and B = (k1/k3)[H2O2]. Double reciprocal plots (1/v vs. 1/[AH2]) 

allowed us to calculate the A and B values for each H2O2 concentration 

From equation (A8), the catalytic efficacy for the utilization of H2O2 would be given by:  

 

   1
213

23

OH
m

cat 2
AH/

AH2

22

k
kk

k

K

k
     (A10) 

while the catalytic efficacy for the utilization of the substrate AH2 would be given by: 

 
   3

2231

221

AH
m

cat 2
OH/

OH2

2

k
kk

k

K

k
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Consequently, the reactivity of the enzyme with hydrogen peroxide is determined by the 

value of the constant k1. However, its reactivity with the reducing substrate is determined by 

the constant k3. 

The occurrence of competitive substrate inhibition by both substrates in the reaction 

mechanism means that in the denominator of the rate equation (A1), the  2 2H O

m 2AHK  term can 

be multiplied by    2AH

2 IS1 AH / K  and the  2AH

m 2 2H OK  term by   2 2H O

2 2 IS1 H O / K  

where 2AH

IS
K

 
and 2 2H O

ISK are the dissociation constants of AH2 from EAH2 and of H2O2 from CoI 

H2O2 and/or CoII H2O2 complexes, respectively, (Eq. (A15)), and double competitive substrate 

inhibition would be exhibited when AH2 and H2O2 are varied. Thus, the corresponding rate 

equation would be: 

  
            

222

OH

IS2222

AH

m

AH

IS22

OH

m

222

AHOH/OH1OH/AH1AH

AHOH

222222 


KKKK

V
v (A12) 

 

At fixed inhibitory values of the AH2 concentration, the v vs. [H2O2] data were fitted to the 

following rate equation of competitive inhibition: 

 

 
 2 2

2

max 2 2

H O 2
m 2 2AH

IS

V H O
v

AH
1 H OK

K


 
  

 

     (A13) 

For competitive inhibition, the K and V of equation (A2) are defined by  

 
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m
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V
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AH
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      (A14) 
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 
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Thus, following the reciprocal of equation (A13), plots of 1/v vs. 1/[H2O2] at fixed [AH2] 

should be linear and should intersect on the y axis.  

Furthermore, the plots of K/V vs. [AH2] should be linear because 

 2 22 2

2

H OH O
m 2m

AH

IS max

AH

V V V

KK K

K
       (A16) 
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Table 1 

Kinetic parameters obtained for the H2O2-mediated oxidation of substrates by CEP. See text 

for experimental conditions. 

Substrate 22OH

mK  

(M) 

2AH

mK  

(M) 

Vmax 

 (Ms
-1

) 

[E0]/10
8
 

(M) 

kcat 

(s
-1

) 

22/
OH

mcat Kk  

(M
-1 

s
-1

) 

2/
AH

mcat Kk
 

(M
-1 

s
-1

) 

ABTS 7.10·10
-5

 6.15·10
-4

 1.07·10
-4

 9.19 1.16·10
3
 1.63·10

7
 1.89·10

6
 

Guaiacol 3.58·10
-3

 9.25·10
-3

 8.39·10
-4

 9.19 9.13·10
3
 2.55·10

6
 9.87·10

5
 

o-dianisidine 3.25·10
-3

 6.77·10
-3

 3.24·10
-4

 9.19 3.52·10
3
 1.08·10

6
 1.08·10

6
 

o-phenylendiamine 9.26·10
-4

 3.03·10
-3

 5.06·10
-4

 9.19 5.51·10
3
 5.96·10

6
 1.82·10

6
 

  

 

 

 

 

 

 

 

 

 

Table 1
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Table 2 

k1 (M
-1

 s
-1

) and k3 (M
-1

 s
-1

) values at 25 ºC for the H2O2-mediated oxidation of substrates by 

the CEP. See text for experimental conditions.  

Substrate k1 k3 

ABTS 1.29 4.35 

Guaiacol 0.45 0.01 

o-dianisidine 0.15 0.27 

o-phenylendiamine 0.19 0.05 

 

   

 

 

 

 

 

 

 

 

 

 

 

Table 2
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Table 3 

Competitive substrate inhibition constants.  

Substrate 2 2H O
SIK

(M)
 2AH

SIK
(M)

 

ABTS 7.71·10
-4

 6.56·10
-8

 

Guaiacol 4.39·10
-3

 1.31·10
-3

 

o-dianisidine 3.77·10
-4

 2.13·10
-3

 

o-phenylendiamine 8.78·10
-3

 4.56·10
-4

 

 

 

 

 

Table 3
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Fig 1

http://ees.elsevier.com/molcab/download.aspx?id=87628&guid=5495f2a9-6e0c-44ab-853c-bac16f043058&scheme=1
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Fig 2

http://ees.elsevier.com/molcab/download.aspx?id=87629&guid=7cbd83a3-3852-490b-bbde-eb3513e7108b&scheme=1
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Fig 3

http://ees.elsevier.com/molcab/download.aspx?id=87630&guid=2a88f44d-9283-46c7-a74c-59f934d246f3&scheme=1
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Figure4

http://ees.elsevier.com/molcab/download.aspx?id=87635&guid=fec3a878-8119-4d24-9c9e-f2243cdbf624&scheme=1
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Fig 5

http://ees.elsevier.com/molcab/download.aspx?id=87632&guid=5fb11480-da06-48c2-9993-dd0b303455f5&scheme=1



