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Preface

In 1827 Robert Brown discovered the erratic movement of small particles in
a liquid. As a botanist he considered a biological reason for it but about 80
years later Einstein [1] and Smoluchowski [2] explained the effect as the re-
sult of many erratic collisions with the liquid’s molecules due to the thermal
movement.

Applying mathematical models to true biological effects goes back to about
the same time. In 1906 Pearson and Blakeman wrote Mathematical contri-
butions to the theory of evolution containing A mathematical theory of ran-
dom migration [3]. Lotka (1924) [4] and Voltera (1926) [5] proposed in-
dependently nonlinear interactions between different species and obtained
non-trigonometric periodic solutions. As the relation between populations of
predators and prey it represents one of the first models in mathematical ecol-
ogy. Similar considerations for relations between sane, infected and recovered
people give rise to the Kermack-McKendrik model (1927) [6], an early proto-
type for studies of epidemic outbreaks.

In the 1950s and 60s nonlinear models like the Hodgkin-Huxley and
the Fitzhugh-Nagumo model started to explain neuronal cells and they ac-
count for effects like spiking and bursting. A freely available source on neu-
ron dynamics is Dynamical Systems in Neuroscience by Eugene M. Izhike-
vich (2007) [7].

When a (non-linear) dynamical system is subject to a weak periodic forc-
ing it might show large-scale fluctuations entrained to the periodicity of the
“signal”. If the response is enhanced or induced by random fluctuations the
effect is known as stochastic resonance. Although in 1981 it was initially pro-
posed to account for the 100.000 year periodicity in the Earth’s ice ages, the
first experimental demonstration of stochastic resonance was with an elec-
tronic device called the Schmitt trigger in 1983. In a living system stochastic
resonance was shown at first with single mechanoreceptor cells from crayfish
(1993). A Review of stochastic resonance is found in Gammaitoni et al. (1998)
[8]. Russell et al. (1999) [9] showed that the juvenile paddlefish, which lo-
cate their single prey with an electrosensory antenna, have enhanced capture
capabilities when an optimal level of electric noise is added to their environ-
ment. Furthermore, Freund et al. (2002) [10] investigated how the sum of the
swarm’s uncorrelated electric fields could generate the necessary noise for en-
hancing the weak signal of a single animal swimming outside the swarm.
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As a side effect of these paddlefish experiments at the Center for Neu-
rodynamics in the University of Missouri at St Louis (USA) the group’s at-
tention was drawn to the swarming behaviour of paddlefish’s preferred prey,
the Daphnia. The animal’s limited perception of the whole population does
not hinder a coherent movement under certain circumstances. Swarming is
known from many animals and much theoretical and experimental activity to
reveal the basic mechanisms has been pursued.

When the knowledge of stochastic and nonlinear dynamical systems is ap-
plied to chemical reactions, a lot of cellular and subcellular processes can be
studied. For example Thattai et al. showed how negative feedback in gene
transcription can efficiently decrease system noise (2001) [11]. Enzyme kinet-
ics, another dynamical system, have a long history. The experimental work
of Lu et al. (1998) [12] prove the existence of fluctuations inherent in the en-
zymatic turnover rate of cholesterol oxidase, as well along many turnovers of
a single enzyme as in comparison with other (structurally identical) enzyme
molecules.

As a consequence of growing interdisciplinarity in modern science many
projects require the cooperation of scientists with different backgrounds. In
December 2004 the European Commission initiated BioSim, a Network of Ex-
cellence. It joins the forces of pharmacokinetics, computer simulation and
complex systems theory in a network to “...develop in silico simulation models
of cellular, physiological and pharmacological processes to provide a deeper
understanding of the biological processes...”1. The many academic partners
study a variety of problems: the “deep brain stimulation” is a technique used
to tackle several neurological diseases which focuses on the desynchroniza-
tion of neuronal cells, “Modelling of molecular regulatory mechanisms of cir-
cadian rhythms” looks for the underlying mechanisms that control biological
rhythms, “Models of mental diseases and sleep regulation” aims to shed light
on the regulatory networks of hormones and other factors in mental disorders.
This is to name just a few of the fields of investigation in BioSim.

The development of therapies undergoes a long and difficult way. When
a chemical compound is found to be a candidate for some cure, one of the
many steps in development has to determine the bioavailability of the drug:
the fraction of administered dose of unchanged drug that reaches the circula-
tion. This is partly determined by the ability of the drug to pass into the body
(through the skin, intestine, lung etc.). Much experimental activity is carried
out to study these mechanisms.

The presented work was supported financially by the BioSim network of
excellence and the Government of the Balearic Islands. Scientific, logistic and
moral assistance came from the IFISC.

1http://www.biosim-network.net/



Chapter 1

Introduction

This work deals with two different fields of research. The first is dedicated
to the modelling of motion found in biology. We will give a short introduction
to the topic and present two possible ways to describe biological motion. Both
were inspired by the research on swarming in the Humboldt University Berlin
and applied to model the motion of the water flea (Daphnia). One of them is
presented in more detail in chapter 2. The second field of research is related
to the work at the IFISC (UIB-CSIC) within the BioSim network. It is about
drug absorption through cell monolayers. In this introduction we will intro-
duce some aspects of biological research at the level of dynamical systems and
present the results from the analysis of a drug absorption model in chapter 3.

1.1 Motion in biology as a dynamical system
In the preface we mentioned the Brownian motion which is a consequence of
an external energy source known as “heat”. Brownian particles do not have
internal energy, thus moving around passively. It is in contrast to real biolog-
ical motion where the “particles” have an internal source of energy. Moreover,
their motion does not depend only on external conditions, such as tempera-
ture, pressure etc., but on some internal conditions. For example, different
goals like feeding, protection and reproduction result in different behaviours
like grazing, swarming and searching. In general, biological locomotion can
be seen as a continuous process (e.g. swimming fish) or discrete (hopping
fleas). It can happen in a three dimensional space like the air or in two di-
mensions like the earth’s surface. One interesting aspect of animal motion
which is worth studying is the propelling mechanism. It can be as different
as the flagellar motor in some bacteria, the walk with two, four or more legs
and the creeping of worms, snakes and slime molds. Another aspect concerns
the way the motion is controlled internally and externally or addresses the
question whether the locomotion is performed in some “optimal” way [13].

When it comes to modelling, different dynamical systems are available. If
the path of motion is piecewise straight a random walker might do the job.
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Below (section 1.1.1) we will introduce the basic concept of a simple random
walker. Many extensions have been developed since its introduction more
than a hundred years ago and nowadays the random walker can be applied to
many cases, for example when the path is not really straight. These kind of
models are easy to implement computationally with rapid algorithms, which
is an advantage over continuous models.

In many situations, however, it is not possible to track down individual mo-
tion and one rather focuses on population densities. In this case one can take
the so-called diffusion-limit and assume that the population density changes
according to some diffusion-drift equation. Further down, in chapter 2, we
present an example, where a diffusing population is grazing on a density of
some food. Many more examples and a thorough analysis of problems and
methods can be found in Diffusion and Ecological Problems: Modern Perspec-
tives by Akira Okubo [14].

A third way, and from the physicist point of view probably the most con-
venient one, is the description by means of Newtonian equations of motion -
differential equations describing the motion of individual particles (animals,
plants, bacteria etc.). If these equations are deterministic the initial condi-
tions determine the whole trajectory. Since the biological environment is usu-
ally not deterministic, stochastic differential equations are a better approach.
They go back to the work of Paul Langevin. A special model of stochastic
differential equation, which was used successfully to explain the display of
swarming motion, is introduced in section 1.1.2.

Another class of models which allow the description of some biological mo-
tion is the class of cellular automata. They are described as systems in a spa-
cial grid where the locations are occupied by state variables. The variables
change their values at discrete time steps according to some deterministic or
stochastic rule. Although it is not described in detail here we want to men-
tion it, at first because it is similar to the random walker model and second
because it allowed for the first time the description of gliding and aggregation
effects of myxobacteria [15].

It follows the introduction of the random walker and that of the active
Brownian particles.

1.1.1 Random walkers
The random walker model goes back to the work of Karl Pearsson in the year
1905 [16]. He asked for the probability to find a drunk man the morning af-
ter he left the bar, when had been doing steps of constant length in arbitrary
direction throughout the night. Rayleigh answered that he had found the so-
lution in a different context about 15 years earlier and the highest probability
to find the man is in front of the bar were he started his walk home.

Let’s have a look at the basic ingredients. A random walker as proposed
by Pearson is a (point like) agent which moves at discrete moments i a certain
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Figure 1.1: Four steps of eight random walkers.This is the most probable realisation. One
sees that most particles are found at the origin.

vector ~ri. This vector has constant length but the direction is chosen at ran-
dom. In one dimension this obtains a very simple structure since this motion
leads to a discrete space as well (fig. 1.1).

Written in mathematical terms, the displacement vector of this simple
model in one dimension is

ri =

{
+1 with p = 1

2

−1 with p = 1
2

. (1.1)

The probability for each possible direction is called p. If this uncorrelated
walker starts at rt=0 = 0 then the position of the walker after an even (odd)
number of steps is even (odd, respectively). Therefore both, the sum and the
difference of step number n and position m, will be an even number always. If
we call the number of steps to the left l and the number of steps to the right
r, we obtain:

n = r + l, m = r − l, (1.2)

or

r = (n + m)/2, l = (n − m)/2 . (1.3)

l and r are well defined by n and m but for every (n,m) there is a number of
possible paths, i.e. of possible sequences of steps to the right and to the left.
The number of possible paths P (n,m) is

P (n,m) =
n!

r!l!
(1.4)

and from (1.3) follows
P (n,m) =

n!(
n+m

2

)
!
(

n−m
2

)
!
. (1.5)

This equation has to be normalised by the number of all possible paths with n
steps (2n) to find the probability p(n,m) for a walker to be at position m after
n steps:

p(n,m) =
1

2n

n!(
n+m

2

)
!
(

n−m
2

)
!
. (1.6)

This binomial distribution has a limit for large n which is found with the
Stirling’s approximation to be

p(n,m) ≈ 1√
2nπ

e−
m2

2n . (1.7)
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Now we will use this expression for long time to quantify the dynamics. The
mean squared distance is calculated to:〈

m2
〉

=

∫ ∞

∞
m2 1√

2nπ
e−

m2

2n dm = n . (1.8)

It is proportional to time (step n), a result which coincides with Fick’s diffu-
sion. Therfore a walker starting at the origin will be with a probability of 68%
within the interval [−

√
n,

√
n] after n steps.

1.1.2 Active Brownian particles
The base of active Brownian particles is the Langevin-equation which in turn
goes back to a Newtonian equation of motion (~F = m~a) with an additional
force of fluctuating character. In its simplest form the force is made up of
linear (Stokes’) friction kv plus the fluctuating term ξ(t):

mv̇ = −kv + ξ(t) . (1.9)

v is the velocity, i.e. the temporal derivative of position x. The nature of
ξ is subject to a lot of investigation and here we cannot go into too many
details. When ξ is a force as a consequence of uncorrelated collisions (as for
the concept of Brownian motion) one considers that accelerating and slowing
parts are equally distributed. In other words, the mean over time is zero:

〈ξ(t)〉t = 0 . (1.10)

In addition it is supposed to be δ-correlated, so that we can write

〈ξ(t)ξ(t + τ)〉t = 2Dδ(τ) . (1.11)

Under these conditions the mean squared distance of many realisations for
eq. (1.9) can be solved to: 〈

x2
〉

=
2D

km
t , (1.12)

the linear connection known from free, or passive, diffusion processes. It is
the solution of the Brownian particle.

In the general case the friction does not have to be constant. One could
write:

v̇ = f(v) + ξ(t) (1.13)

or, if f(v) can be written as the derivative of a potential U(v), as

v̇ = −∂U

∂v
+ ξ(t) . (1.14)

If f(v) is a (piecewise) integrable function, one finds as stationary probability
distribution for v:

Pst(v) = Ne
1
D

R

f(v)dv = Ne−
U(v)

D . (1.15)
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If we consider the particle to have an internal energy source, thus moving on
its own behalf and only additionally being disturbed by a random force, we
obtain the active Brownian particle [17]. Instead of a linear friction as in (1.9)
one puts a nonlinear friction

k(v) = −α + v2 , (1.16)

which describes a source of energy for a velocity lower than α and a dissipation
otherwise. The absolute value of the stationary velocity is

√
α.

Additional forces can be added to the Newtonian equations (1.9) and (1.13).
In this way one can add correlation to the direction of motion or terms like the
flow of surrounding media.

1.2 Biochemical and biophysical reactions
Biochemical and biophysical processes are probably the lowest level of de-
scription of living systems. Ion channels, synaptic connections, the propa-
gation of information in form of electric currents in neuronal cells, photo-
synthesis, enzymatic reactions, absorption and dissolution, transcription and
translation of DNA and many more; all are elementary processes in biology,
described by chemical reactions and physical processes. Some of these pro-
cesses are topic of this work.

At the turn of the eighteenth century the meat digestion by stomach se-
cretions or the conversion of starch to sugar by saliva were known effects.
However, the underlying mechanism had not been identified. Identification of
“nonliving” substances produced by living organisms took until the end of that
century when the term “enzyme” was coined. It is still a large field of interest
now and the kinetics of enzymatic reactions are similar to some processes in
drug absorption. For that reason we will now introduce the dynamical system
for basic enzyme reactions and will introduce a system with identical dynam-
ics in the section on drug absorption models.

1.2.1 Simple enzyme reactions
Enzymes are molecules that regulate reaction rates by changing the activa-
tion energy for a given chemical process. In the simplest form this can be
described with the following reaction equation:

S + E
k1

GGGGGGBFGGGGGG

k−1

SE
k2

GGGAP + E

The idea is that a substrate molecule S binds to an enzyme molecule E and
together they form the complex SE. k1 and k−1 determine the rate of the
reaction. The complex decays with rate k2 into the product molecule P and
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the enzyme. In fact in some cases the complex decays into P and a refractory
conformation of E which then goes back into the ground state. If this is a fast
process it can be neglected. The product P is typically quickly absorbed into
the background, therefore the rate k−2 can be neglected as well. The reaction
equation can be written as a dynamical system. Using lowercase letters for
concentrations (c(t) for the complex concentration) we find:

ṡ(t) = k1c(t) − k1s(t)e(t) (1.17)

ė(t) = (k−1 + k2)c(t) − k1s(t)e(t) (1.18)

ċ(t) = −(k−1 + k2)c(t) + k1s(t)e(t) (1.19)

ṗ(t) = k2c(t) (1.20)

If there are a lot of substrate molecules present one can assume its con-
centration to be rather constant, i.e. ṡ(t) ≈ 0. After some transient time the
process will reach some steady production flow and the same amount of com-
plex is generated as it decays. This means the concentration c(t) is constant
(ċ(t) ≈ 0) and we can eliminate another variable. We obtain from (1.19):

c(t) =
k1s(t)e(t)

k−1 + k2

. (1.21)

With no complex molecule initially present (ct=0 = 0) we know that the sum of
complex plus enzyme will be constant (c(t)+ e(t) = e0). Replacing e(t) in above
equation the time course of c is

c(t) =
e0s(t)

s(t) + k−1+k2

k1

≡ e0s(t)

s(t) + Km

(1.22)

and when put into (1.20) one gets the product generation:

ṗ(t) =
k2e0s(t)

s(t) + Km

≡ Vmax
s(t)

s(t) + Km

. (1.23)

Vmax is the maximum production rate and KM is called the Michaelis con-
stant. It denotes the concentration where the production rate reaches half
of its maximum value. Equation (1.23) was first derived by Michaelis and
Menten in 1913 [18]. Although it is presented here in the context of enzy-
matic reactions, we will see further down that it is used to describe other
bind-react-release types of processes.

1.3 Drug absorption
Orally administered drugs are mainly absorbed in the small intestine. The
molecules have to pass through the epithelial cells where, depending on drug
composition and size, a variety of processes act upon the molecules [19]:
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Figure 1.2: From the small intestine to the three-compartment model. left: small intestine
with lamina propria and embedded capillary, middle: Schematic view of mono layer experi-
ment. right: Sketch of mathematical model.

Due to the tight junctions which connect epithelial cells among each other,
only very small and hydrophilic molecules can pass along the contact of
two cells (paracellular route). Therefore transport along this pathway is
very small except for when a modulator of tight junctions is present. If
the compound has the appropriate physical and chemical properties it can
cross the cell’s membranes passively (transcellular passive diffusion). These
compounds may be substrate for intracellular metabolism and they are more
likely to be substrate for efflux transporters, extracting them from the cell
back into the intestine. However, the transcellular passive way (limited by
efflux transporters) is the main route of absorption for orally taken drugs.
In other cases transcellular absorption can be mediated by naturally occur-
ring carriers which normally transport vitamines or nutrients. A rather sel-
dom pathway in adult small intestine absorption is via endocytosis, where the
transported material is coated with part of the cell membrane on one side,
incorporated into the cell and then released from the cell on the other side.

When it is inside the small intestine the drug has to be considered outside
the body. On the other side of the epithelial cells the drug is inside the body.
It reaches the lamina propria and passes from there into the blood stream in
the capillaries (fig. 1.2 (left)).

Much experimental activity aimed at analysing the kinetic aspects of the
process of drug absorption has been pursued recently. For better control, a va-
riety of in-vitro methods on drug absorption have been developed [20]. Epithe-
lial cell cultures can be seeded in a mono-layer on semipermeable membranes,
forming the contact surface of two little pots (fig. 1.2 (middle)). Concentrations
of an applied drug can be measured over time in both chambers.

Two well known cell culture models are Caco-2 cells [21] and MDCK
cells [22]. Caco-2 cells were derived from a human colon carcinoma. After
they are seeded they differentiate into an “...highly functionalized epithelial
barrier with remarkable morphological and biochemical similarity to small
intestine columnal epithelium.” [22]. Therefore they are used to asses trans-
port properties of new developed compounds. The MDCK cell line was derived
from canine kidney cells and as well differentiates into epithelium and form
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Figure 1.3: Comparison between catenary (left) and mammillary (right) compartment mod-
els.

tight junctions. One downside of these cell models is that they are seeded
on a flat surface, whereas the intestine forms folded walls with much higher
surface area than just the inside of a tube. As a consequence only high per-
meability drugs are well represented by this model, whereas the permeability
for low permeability drugs is underestimated when compared with in vivo
values [23].

A layer seeded in this way is a monocellular layer, in direct contact with the
liquids above and below through the semipermeable membrane. It suggests
modelling with a set of compartments.

1.3.1 Compartment models
Trying to break systems of drug action down into smaller units, pharmacology
came up with the so-called compartment models. A number of compartments
are connected with each other in different ways and the mass flux of a given
substance through the system is the object of interest. The models can be split
into classes according to their topology. The catenary models (’catena’ Latin =
’chain’) are compartments connected in a row whereas the mammillary mod-
els have a central compartment with others surrounding it (fig. 1.3). A mix
of both types is possible as well. A different form of classification looks at the
level of abstraction, i.e. that if the compartments correspond to a well defined
volume in the organism the model is said to be physiological whereas other
models, where no such correspondence exists, are called mechanistic models
[24]. The considerations in chapter 3 will concern a purely catenary model
and we do not distinguish between physiological and mechanistic model. The
presented method applies to both classes. However, the experimental work
we have chosen to compare our theory with is about a physiological one.

The data of absorption experiments, with cell cultures mentioned in above
section, is usually compared with compartment models where some specific
simplifications are in order: It is considered that two volumes (e.g. gastroin-
testinal lumen and blood plasma in-vivo or apical and basolateral chamber
in-vitro) are connected through a third, in-vitro: cellular, volume. One con-
tact has additional flux depending non-linearly on one concentration. When
applying to in-vitro experiments, it is assumed that the concentrations in the
different cells of the mono-layer are equal (which is exact only if all cells have
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the same parameters), such that the absorption can be seen as a transport
from one large volume to another through a third (the cellular) volume [25].
Figure 1.2 (right) sketches the simplifications of the model. There is no spa-
tial dependence and molecules can pass through the two cell membranes. The
overall amount of drug molecules is considered to be constant, a hypothesis
that assumes a closed system and that metabolism does not occur. In prac-
tise, those conditions are fulfilled if the experiment does not last for a very
long time. The result is a three-compartment model; a model that describes
the behaviour of solutions or emulsions in connected volumes by analysing
the molecule flux in between them and all sources and sinks.

1.3.2 Multi Drug Resistance (MDR) transporter
Absorption of many drugs is seriously limited by P-glycoprotein (P-gp), the
multidrug transporter [26]. It acts upon a broad spectrum of chemical com-
pounds and limits their absorption drastically. Especially in cancer cells an
overexpression of this protein leads to resistance to the drug.

This particular protein (fig. 1.4) is expressed on the apical membrane of
intestinal epithelium cells [27, 28, 29]. The molecule to be transported has to
bind on the protein and will then be “flipped” [19] onto the other side of the
membrane, where it is no more available for the “reaction”. This makes its
dynamics similar to enzyme reactions and therefore the flow J of chemicals
is often represented by the sigmoid shape of a Michaelis-Menten reaction-
rate (1.23):

J (QC) =
SVMQC/VC

KM + QC/VC

. (1.24)

VM determines the maximal reaction velocity, S is the surface area and KM

is the concentration for which the velocity reaches half of the maximum. In
this intracellular binding, the relevant variable is the concentration QC/VC

around the binding site of the transporter, inside the cell.
In other cases, the efflux pump has an extracellular binding site. Con-

sequently, the transport is determined by the drug concentration, QA/VA, in

Figure 1.4: Schematic view of the P-gp transporter protein. It penetrates inner and outer
leaflet of the cellular membrane.
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the apical compartment and corresponding Michaelis-Menten expression is:

J (QA) =
SVMQA/VA

KM + QA/VA

. (1.25)

Both, eq. (1.24) and (1.25) are known from section 1.2.1 and will be dis-
cussed in detail in chapter 3.

1.4 Outline
In the preceding sections of the introduction we have presented a small selec-
tion of known dynamical systems which were constructed to describe effects
observed in the living nature.

The random walker (sec. 1.1.1) can be extended in many ways. A special
way, with correlated step directions, was developed in chapter 2. It was used
for describing the movement of water fleas. The concept of active Brownian
particles will not be detailed any further than was presented in sec. 1.1.2,
however, it was shown that when modelled in this way, a population can be
described as a continuous concentration diffusing in space. This idea has
been put into relation with food uptake of animals, grazing in large popula-
tions (sec. 2.2).

We have seen how drug absorption experiments can be described by mod-
elling the flux between three compartments (sec. 1.3). The respective dynam-
ical system will be constructed in chapter 3, where a transformation into a
problem from classical mechanics is applied and an adequate approximation
proposed. We will give analytical expressions for the concentration develop-
ment in the different compartments.



Chapter 2

The Daphnia

The Daphnia is a 2-4 mm large crustacean like crabs, lobsters and crayfish are
(fig. 2.1, left) and is prey to a variety of larger animals. It moves with a veloc-
ity of 4 to 16 mm/s through the water and maintains a rather constant depth.
Under certain light conditions and the presence of kairomones (chemical sub-
stances originating from the predator) Daphnia start moving in a coherent
fashion, swirling around a common vertical centre in a common circling di-
rection [30, 31, 32]. Minimal requirements for for swarming to occur were
investigated by e.g. [33, 34, 35].

When Daphnia are studied individually, without light and without kairo-
mones, obviously they display a different motion. About intention one can
only speculate, however, the movement is not uncorrelated. They direct their
swim strokes slightly upwards to balance negative buoyancy and change hor-
izontal direction in a way which prefers angles between successive strokes of
around 30◦ (see fig. 2.1, right). Other crustacean have shown a similar distri-
bution [37]. When one models the movement as a sequence of constant steps
in a plane, with one-step correlated turning angles, one can show that the
mean square distance approaches a linear asymptote. The proportionality
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Figure 2.1: left: Picture of a Daphnia from [36]. right: distribution of angles between
successive hops (black line) and comparison with a Gaussian distribution of same mean and
variance (mean 48◦, variance 36◦). Data from [30], 1600 moves from tracks of eight different
Daphnia
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can be calculated straight from the distribution and one can determine the
time it takes to approach the line. This was carried out in [38] and in the
following section we want to give a short summary of the results.

In the last section of this chapter we summarised a very simple model for
a diffusing species grazing on a not growing and not moving food supply. De-
pending on initial food distribution and grazing rate the consumed food shows
a maximum for a certain spacial diffusion coefficient. These results are part
of [39], where results from [38] could be reproduced qualitatively using the
concept of active Brownian particles [17], rather than that of random walk-
ers.

2.1 Daphnia as random walkers
The hopping movement of the animal suggests a discrete description of the
process. The standard random walker was described in an earlier section. In
order to model the correlated direction changes as observed in the experiment,
we propose the following random walker

~ri =

(
λ cos θi

λ sin θi

)
(2.1)

θi = θi−1 + ηi , (2.2)

where λ is the constant step length and ηi is a random number drawn from a
distribution f(η).

After n steps the mean squared displacement is the sum of all steps and
when averaged over a large ensemble one finds

〈
~R2

n

〉
=

〈(
n∑

i=1

~ri

)2〉

= nλ2 + 2λ2

n−1∑
i=1

n∑
j>1

〈cos(θi − θj)〉 . (2.3)

Defining the angular correlation γ as

γ = 〈cos(θi − θi+1)〉 = 〈cos η〉 =

∫ π

−π

f(η) cos ηdη (2.4)

and excluding correlation over more than one step one can show that

〈cos(θi − θi+s)〉 = γs . (2.5)

With this equation (2.3) reduces to:〈
~R2

n

〉
= λ2

(
n

1 + γ

1 − γ
− 2γ

1 − γn

(1 − γ)2

)
, (2.6)
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a relationship which was derived first by Kareiva and Shigesada [40]. We see
that the averaged motion depends only on the angular correlation γ. Since
|γ| < 1 the second term on the right hand side will be a constant for large
n. Simulation of random walker populations and the solution of (2.6) are
compared in fig. 2.2, left. The linear regime and how it is approached is shown
as well. When the dependence is linear one can give a diffusion coefficient D
as

4 D =
1 + γ

1 − γ

λ2

τ
, (2.7)

with τ defined as the duration of each step. We call

Dn =
1 + γ

1 − γ
(2.8)

the reduced diffusion coefficient which is greater than one if the diffusion is
faster than for the uncorrelated case and between 0 and 1 for slower diffusion.

How many steps does it take until the time dependence in the second term
of (2.6) vanishes? If we think of a line parallel to the asymptote we can ask
for when the averaged trajectory will cross this line. Setting the distance of
the two lines to a fraction ε of

e =
2γ

(1 − γ)2
(2.9)

we require:

Dnn − e + eγn .
= Dnn − e + ε e (2.10)

and find

ncrossover =
ln ε

ln γ
. (2.11)
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Figure 2.2: left: simulation of 1000 random walkers with Gaussian angular distribution
(mean: 10◦ (+), 90◦ (*), 170◦ (x); variance 36◦ for all. Line is analytic solution according to
(2.6), dashed line is linear asymptote. right: Time needed to approach the asymptote. Line
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This relationship is compared with simulations in fig. 2.2, right. The step like
behaviour of the simulation data is owed to the discrete nature of a random
walker, apart from that one finds good coincidence.

As we have seen before, the obtained results depend on the angular cor-
relation γ so we will explicitly calculate this value for two different types of
distributions.

2.1.1 Two angles
In the histogram of turning angles (figure 2.1) we can see that backward
jumps are exercised and, moreover, that another local maximum of proba-
bility for backward jumps exists. Maximal probability is centred around 150◦

and it accounts for roughly a tenth of the occurrences of the main peak. Thus
we propose a angular distribution f(η) composed of two δ-peaks

f (η) =
1

2
[a δ(|η| − η1) + (1 − a) δ(|η| − η2)] (2.12)

with a controlling the relative weight and η1 and η2 positions of the peaks. γ
is easily derived to

γ = a cos η1 + (1 − a) cos η2 . (2.13)

The reduced diffusion coefficient as a function of γ for this solution is shown
in the left graph of figure 2.3. With the larger peak fixed to the maximum in
the experimental distribution (48◦) the position of the second peak is crucial to
the diffusion coefficient. Increasing η2 > η1 the enhanced diffusion is damped
up to 40%.

2.1.2 Gaussian distribution
If the turning angles are distributed according to a Gaussian function with
mean 〈η〉 and variance σ the angular correlation γ can be determined as well.
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Figure 2.3: Reduced diffusion coefficient for two δ-peaks with a weight of 10:1 left and for
Gaussian distributed turning angles right. The arrow marks Dn for the values obtained in
the experiment.
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Carrying out the integration in (2.4) one comes up with the term

γ (〈η〉 , σ) =
cos 〈η〉 · < [erf(b) − erf(c)] − sin 〈η〉 · = [erf(b) − erf(c)]

e
σ2

2

[
erf

(
π−〈η〉√

2σ

)
+ erf

(
〈η〉√
2σ

)] (2.14)

The terms b = 〈η〉+i σ2
√

2 σ
and c = −π+〈η〉+i σ2

√
2 σ

are replaced to give a more concise
formula. < and = denote the real and imaginary part, consequences of the
obtained complex error function, and we have a real function for all 〈η〉 and σ.
Introducing (2.14) into (2.8) one obtains the reduced diffusion coefficient (see
right graph in fig. 2.3). In the case of 〈η〉 = π/2 we have γ = 0 and therefore
Dn = 1. This is equal to the value of free diffusion and does not depend on the
variance. The reduced diffusion coefficient of the Daphnia is is 3.1, indicating
a diffusion three times faster than a free diffusing particle.

2.2 A food model
Here we want to develop a simple approach on how much food a single animal
could consume along its path. Although not limited to Daphnia it was created
in that context and therefore we will present it here.

The model assumes an animal density ρ(~r, t) which obeys a diffusion equa-
tion of constant spacial diffusion coefficient D

∂ρ

∂t
= D∆ρ . (2.15)

A random walker as presented above seems a crude realisation for (2.15) but
if the step size is small enough in relation to the system size it should be an
appropriate assumption. Furthermore, in [39] a way is shown which maps the
Daphnia motion with its angular correlation to the continuous model of an ac-
tive Brownian particle. As such the density ρ and a continuous expression for
the diffusion is exact. The solution of the resulting density in two dimensions
is

ρ(~r, t) =
1

4πDt
exp

[
− ~r2

4Dt

]
. (2.16)

If we consider now that along their path the particles of density ρ consume
food C of density c(~r, t) at constant rate k, then the food density is described
by the dynamics

∂

∂t
c(~r, t) = −kc(~r, t)ρ(~r, t) . (2.17)

When ρ is replaced by eq. (2.16) the latter equation can be solved exactly. In
terms of the exponential integral [41], E1(a) =

∫ ∞
a

e−t

t
dt, the solution is given

as

c(~r, t) = c0 exp

[
− ρ

4π D
E1

(
~r2

4Dt

)]
. (2.18)
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How the food density evolves can be seen in fig. 2.4, left.
For simplicity we’ll have a look at the evolution of a spherical food patch of

radius R. We imagine a circle centred at the origin where the grazing species
starts at t = 0 with its highest density. Outside the circle no food is found.
The food which is left over after a time T is obtained by integrating (2.18)
over space and time:

C(T,R,D) = 2πc0

∫ R

0

exp

[
− k

4πD
E1

(
r2

4DT

)]
rdr . (2.19)

The right graph in figure 2.4 shows this result for different grazing rates and
a minimum in the curve determines a diffusion constant where most food
is ingested. Since the diffusion coefficient in the random walker model pre-
sented above depends monotonously on the mean turning angle it implies a
minimum with respect to the turning angle as well. If the mean turning angle
is to small, animals move in a rather straight line and leave the food patch
too fast. On the other hand if the turning angle is too large, the hopping stays
a too long time on the same spot and consumes all present food. Therefore an
optimum is observed.

Figure 2.4: left: evolution of food density along a straight line for diffusing species released
at r = 0. right: left over food after fixed time T within a path of fixed radio. Different lines
for different feeding pace k. The curve clearly shows a minimum.



Chapter 3

A Three-Compartment Model

In the introduction it was reported that drug absorption experiments are often
modelled by a three-compartment model. Now we will see, how the according
dynamical system is constructed. Then it can be transformed into a problem
in classical mechanics, suggesting an appropriate approximation: a damped
linear oscillator.

Further down this method is applied to a specific form of non-linearity,
used to represent the efflux of the multi drug resistance transporter P-gp. The
results are compared with an absorption experiment done with an antibiotic.
The solution allows to analyse the influence of the physiological parameters
on the measurements and the propagation of errors and diversity in the pa-
rameters through the process.

In the last section of the present chapter we have a quick look on a three-
compartment model with an additional parameter which stands for the reten-
tion of drug molecules within the cell.

3.1 Model and method

Passive transport across the membrane is mediated, to a first approximation,
by the concentration gradients according to FICK’s law [42], which specifies
a linear relation between the flux of particles and the concentration gradi-
ent. When the passive absorption is accompanied by energy consuming efflux
transporters, it is represented by a non-linear function term in the kinetic
transport equations. A variety of transporter types could be involved in the
absorption of the molecules. In our work we consider that the non-linear
transporters are present only on one (the apical) cell membrane, but our re-
sults could be extended straightforwardly to the case that those transporters
are located on the basolateral membrane (or even in both membranes). In-
cluding both linear and non-linear terms, the time evolution of the amount
of diluted molecules (QA/C/B) in the three compartments can be described as
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follows:

dQA(t)

dt
= +ClAC

(
QC

VC

− QA

VA

)
+ J (3.1)

dQC(t)

dt
= −ClAC

(
QC

VC

− QA

VA

)
− J − ClCB

(
QC

VC

− QB

VB

)
(3.2)

dQB(t)

dt
= +ClCB

(
QC

VC

− QB

VB

)
(3.3)

Q0 = QA + QB + QC , (3.4)

where equation (3.4) stands for the conservation of overall molecule num-
ber, Q0. The indices denote the corresponding compartment (Apical, Cellular,
Basolateral), VA/C/B are the respective volumes. The apical, cellular and ba-
solateral concentrations are given respectively by a = QA/VA, c = QC/VC and
b = QB/VB. The passive, linear, diffusion terms are proportional to the con-
centration difference, being ClAC and ClCB the clearances indexed with their
respective membrane index. In the equations, J represents the non-linear
contribution due to specific efflux transporters, depending either on QA or QC .
As it is an energy-consuming process, this can happen both along or against
the gradient.

3.1.1 Potential and friction
Due to the supposed conservation of mass the system (3.1-3.4) has only two
degrees of freedom. In other words: it can always be represented by two
differential equations of first order or by one differential equation of second
order. With rescaled concentrations and a rescaled time s the set of equations
is:

ẋ(s) =
dx(s)

ds
= a11x + a12y + a13 + j(x) (3.5)

ẏ(s) =
dy(s)

ds
= a21x + a22y + a23. (3.6)

The exact appearance of the factors aij is determined by the dependent vari-
able of the original function J . If it is QC (intracellular binding sites) the
variable x is the (rescaled) concentration inside the cell, if it is QA (extracel-
lular binding site) the variable x is the (rescaled) concentration in the apical
compartment (see section 3.2.1). The rescaling factor has to be chosen for a
specific non-linear function J and will be shown later. The factors are sum-
marised in table 3.1.

Now, if we differentiate (3.5) with respect to s and replace in the resulting
expression ẋ(s) with (3.5) and ẏ(s) with (3.6) we obtain a differential equation
of second order. Collecting the terms one can write:
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Table 3.1: Coefficients for equations (3.5-3.6). VI is the volume of compartment where the
drug is loaded initially and c0 is the rescaled initial condition.

Parameter INTRAcellular EXTRAcellular
a11 −

[
VB

VC
+ ClAC

ClCB

(
VB

VC
+ VB

VA

)]
−ClAC

ClCB

(
VB

VC
+ VB

VA

)
a12

VB

VC

(
1 − ClAC

ClCB

VB

VA

)
−ClAC

ClCB

V 2
B

VAVC

a13
ClAC

ClCB

VBVI

VAVC
c0

ClAC

ClCB

VBVI

VAVC
c0

a21 1 −VA

VC

a22 −1 −
(

VB

VC
+ 1

)
a23 0 c0

VI

VC

Table 3.2: Positive-defined, dimensionless constants determining friction and force/potential
in (3.7).

Γ0 −a11 − a22 = VB

VC
+ ClAC

ClCB

(
VB

VC
+ VB

VA

)
+ 1

α a12a23 − a13a22 = ClAC

ClCB

VBVI

VAVC
c0

β a11a22 − a12a21 = ClAC

ClCB

VB

VAVC
(VA + VB + VC)

ẍ = −Γ (x) ẋ + F (x), (3.7)
with the friction coefficient Γ(x) and the force F (x) given by:

Γ (x) = Γ0 − j′(x), F (x) = α − βx − a22j(x). (3.8)

Γ0, α and β are dimensionless and positive-defined constants, containing
all information of the passive absorption process. The relation to the coeffi-
cients aij can be seen in table 3.2. Note, that only α depends on the initial
concentration. The nonlinearity is only in the function j(x) and its derivative
j′(x).

3.1.2 An approximated solution
The force in (3.7) defines a potential V (x) through F (x) = −dV (x)

dx
. One can try

to approximate this potential by a parabola around its minimum. The quality
of this approximation depends on the specific j(x) but it always has the form:

V (x) = Veq +
1

2
V ′′

eq (x − xeq)
2 . (3.9)

The potential’s second derivative we will call ω2 and from (3.8) we obtain:

V ′′(xeq) = ω2 = β + a22j
′(x) . (3.10)
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xeq denotes the value of x at equilibrium, i.e. where the force equals zero.
As a second approximation we set the friction coefficient Γ(x) to its value in
equilibrium Γeq = Γ0 − j′(xeq). The resulting differential equation ẍ = −Γeqẋ−
ω2(x − xeq) is linear and has the following solution [43]:

x(s) = C̃1e
−s/τ1 + C̃2e

−s/τ2 + xeq . (3.11)

The time scales result in:

τ1 =
2

Γeq −
√

Γ2
eq − 4ω2

and τ2 =
2

Γeq +
√

Γ2
eq − 4ω2

, (3.12)

which will be complex whenever Γeq < 2ω, resulting in an oscillating relax-
ation.

The coefficients C̃1/2 in the solution are drawn from the initial conditions
x0 and ẋ0 via eq. (3.5) replacing x and y with y0 and x0. The expressions are
found in table 3.3. The second variable y(s) can be calculated by integrating
eq. (3.6) after inserting it into the solution x(s):

y(s) = ea22s

[
y0 +

∫ s

0

ds′ e−a22s′ (a21x(s′) + a23)

]
, (3.13)

which yields
y(s) = D̃1e

−s/τ1 + D̃2e
−s/τ2 + D̃3e

−s/τ3 + yeq . (3.14)

The constants D̃1/2/3 are found in table 3.3 as well. The third time constant
is:

τ3 = − 1

a22

. (3.15)

The last dynamic variable z(s) is obtained by means of the conservation law.
Undoing the rescaling of concentration and time we obtain the following solu-
tion for the dissolved amount in the three compartments:

QA(t) = Qeq
A − A1e

−t/t1 − A2e
−t/t2 − A3e

−t/t3 (3.16)

QB(t) = Qeq
B − B1e

−t/t1 − B2e
−t/t2 − B3e

−t/t3 (3.17)

QC(t) = Qeq
C − C1e

−t/t1 − C2e
−t/t2 − C3e

−t/t3 , (3.18)

where the expression for the constants are collected in table 3.4.
After having solved the approximated problem, one can derive some con-

clusions from the solution. Although we do not know in advance how good
the approximation is, we will derive some quantities. Usually pharmacologi-
cal experiments do not measure the whole time course of concentrations until
saturation but the so-called apparent permeability [44, 29, 45, 46, 25]:

P app =
dQ/dt

SC0

, (3.19)
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Table 3.3: Coefficients of dimensionless solution eqs. (3.11) and (3.14).

C̃1 (x0 − xeq + τ2 (a11x0 + a12y0 + a13 + j(x0)))
τ1

τ1−τ2

C̃2 x0 − xeq − C̃1

D̃1 − a21C̃1τ1

a22τ1 + 1

D̃2 − a21C̃2τ2

a22τ2 + 1
D̃3 y0 − yeq − D̃1 − D̃2

where S denotes the surface area of the absorbing material. The initial con-
centration C0 is loaded into one compartment and one measures the amount
of material Q(t) on the receiving side in the linear regime at the beginning
of the process. Then the material is loaded in the opposite compartment, the
amount of the substance on the receiving side is measured and then one can
compare P app from both directions.

The above mentioned time scales divide a process into a linear regime, an
exponentially changing one and a saturation at very large times. It seems
that usually one time scale t2 can be ignored since it is very short and mea-
surements are done after saturation of the t2-process [25, 44, 47]. When this
is the case the apparent permeabilities are calculated to

P app
BA =

1

SC0

(
A1

t1
+

A3

t3

)
(3.20)

in the case that the drug is initially delivered in the basolateral site, and

P app
AB =

1

SC0

(
B1

t1
+

B3

t3

)
(3.21)

when the drug is delivered in the apical side. In the case that t2 can not be
omitted the expansion of (3.20) and (3.21) to the missing term is straightfor-
ward.

3.2 Michaelis-Menten type flux
In the previous section we developed a method to treat a non-linear three
compartment model and proposed a way of approximating it. In this way we
obtained analytic expressions for the evolution of the concentrations in the
three chambers. Furthermore these solutions allow us to have specific formu-
las for experimentally accessible quantities, thus knowing their dependence
on physiological parameters. In this section we will apply our method to a
specific form of efflux used as a model flux in a variety of pharmacological
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Table 3.4: Coefficients of solutions (3.16-3.18). Appearing constants C̃i and D̃i are shown
in table 3.3. Equilibrium values in the according section of specific non-linearities. N is the
constant which rescales the concentration. It is chosen depending on the specific flux term.

INTRA EXTRA
A1 N

(
VCC̃1 + VBD̃1

)
−NVAC̃1

A2 N
(
VCC̃2 + VBD̃2

)
−NVAC̃2

A3 NVBD̃3 0
Qeq

A Q0 −N (VCxeq + VByeq) NVAxeq

B1 −NVBD̃1 −NVBD̃1

B2 −NVBD̃2 −NVBD̃2

B3 −NVBD̃3 −NVBD̃3

Qeq
B NVB yeq NVB yeq

C1 −NVCC̃1 N
(
VAC̃1 + VBD̃1

)
C2 −NVCC̃2 N

(
VAC̃2 + VBD̃2

)
C3 0 NVBD̃3

Qeq
C NVCxeq Q0 −N (VAxeq + VByeq)

absorption studies. We will use values and data from a work done recently
in another group and validate the assumption of a linear regime in said ex-
periment with our results. Furthermore we can predict for each parameter,
how important it is for the measured quantities. With our method this can
be done much easier than by numerically integrating the trajectories for all
parameter sets, a usual practice in pharmaceutical science.

In the introduction we mentioned that drug absorption can be limited by
P-gp, the multi-drug transporter. We have shown two ways of representing
its dynamics, one with an intracellular binding site, another with extracellu-
lar binding site. Both situations will be considered here. For simplicity we
have considered that the efflux pumps depend on the concentration on one of
the two sides of the membrane [29, 25]. However new results suggest that
the transporter binding site for the molecule is inside the inner leaflet of the
membrane [48]. If we think of the space inside the phospholipid bilayer as an
additional volume with two permeable walls on either side the concentration
in that volume would be in between those in the adjacent volumes.

3.2.1 Method application
The treatment starts with transforming the equations, now with the specific
non-linearity, into the form given by (3.5),(3.6). The efflux terms (1.24) and
(1.25) from chapter 1 suggest using KM as the concentration rescaling term N .
On the other hand we will rescale the time to obtain dimensionless equations.
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Thus we define s = ClCB

VB
t. Following above section the function j(x) is given

by:

j(x) = γ
x

1 + x
(3.22)

and γ is a parameter depending on the situation of the binding site. We find:

γ = − SVM

ClCBKM

VB

VC

intracellular binding (3.23)

and

γ =
SVM

ClCBKM

VB

VA

extracellular binding (3.24)

Now the friction and force term are defined (eqs. 3.8). As we said before,
the equilibrium concentration is found by finding the minimum in the poten-
tial. In the case of a Michealis-menten type flux the corresponding equation

dV (x)

dx

∣∣∣∣
xeq

= −F (xeq) = 0 (3.25)

can be solved exactly, without the use of any approximation. The solution is:

xeq =
α − β − γa22 +

√
4αβ + (α − β − γa22)2

2β
. (3.26)

Clearly the other saturation values can be derived through (3.6):

yeq = −a21xeq + a23

a22

(3.27)

and using the conservation law to:

zeq =
Q0

VzN
− xeq

Vx

Vz

− yeq
VB

Vz

. (3.28)

Together with tables (3.1-3.4) all factors and constants are determined.

3.2.2 Comparison with experiment
We want to find out how good this approximation is. We will compare the
result of our treatment with the numerical integration of the original system
(eqs. 3.1-3.4), which does not contain approximations. A special showcase
system is an absorption study of antibiotic CNV97100 [25]. In this study ab-
sorption of the antibiotic was investigated in Caco-2 cell cultures and four dif-
ferent models were considered. They differ in location of the efflux transporter
(apical or basolateral membrane) and in location of the binding site (intra- or
extracellular). Among these models the apical located pump with intracellu-
lar binding site was considered to be the model of best fit to the data. Thus,
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Figure 3.1: Time evolution of concentrations on either side of the cells and inside. Dotted
line: Numerical integration of Eq. (3.1-3.4). Continuous line: explicit solution Eq.(3.16-3.18).
Parameters taken from [25], intracellular binding site with MICHAELIS-MENTEN dynam-
ics (1.24) is considered. Initial concentration C0 = 7500µM is applied on the basolateral side.
Right graph: first hour amplified.

in the following we will focus on that case, however the other cases can be
treated with the same method by changing the sign of VM (efflux/influx) and
interchanging compartments A with B or initial conditions (membrane where
the pump is located). The form of binding site is chosen by the specific form of
J , here by the choice of γ to be either eq. (3.23) or eq. (3.24).

The parameters observed in mentioned study are summarised in table 3.5.
Using these values one can compare the two solutions: the numerical integra-
tion and the approximated solution. Figures 3.1 and 3.2 show two different
experimental situations, 7500µM loaded basolateral and 50µM loaded into the
apical chamber. The first hour is amplified and one sees clearly the existence
of time scales of different orders. One part of the process, the rapid absorp-
tion into the cellular compartment, is saturated after less than a quarter of
an hour. Later the relaxation into the steady state is much slower and as we
now from our analysis, governed by the sum of only two exponentials. Table
3.6 has all time scales and we see that 50µM loaded in the apical compart-
ment yields time scales of 5 minutes on one hand and 14h and 24h on the
other. Measurements at moments after a few minutes can be fitted to the
sum of two exponentials rather than three. Besides we see that the measure-
ments between 30 minutes and two hours are sufficiently far away from the
discovered timescales, thus satisfying a linear consideration of the apparent
permeability.

Coincidence of approximated with the numeric1 solution is quite good. The
thickness of the lines covers the differences between the two curves. We can
conclude that at least under the studied circumstances the approximation is
valid. If we now calculate the apparent permeabilities (eqs. 3.20 and 3.21)

1For this numerical solution we have used a forth-order Runge-Kutta algorithm with a
time step of 1s.
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Figure 3.2: Same as figure 3.1, but initial concentration 50µM applied apically.

Table 3.5: Experimental parameters drawn from [25] used for the calculations.

Parameter Measured Value
ClAC 14.49 × 10−5cm3/s
ClCB 3.528 × 10−3cm3/s
VM 6.17 × 10−12mol/(cm2s)
KM 0.376mol/cm3

S 4.2cm2

VA 2cm3

VB 3cm3

VC 0.0738cm3

we can compare our approximation with the experimental data. The num-
bers for the permeabilities are found in table 3.6 together with the quotient of
both, called the efflux ratio. This value is of great significance for the exper-
imentalist since it is a clear indicator for the presence of a (nonlinear) active
absorption mechanism. In a purely passive absorption process it would not
depend on initial concentration. Figures 3.3 compare the found values with
the measurements of concentration on the receiving side. The lines drawn
over the points correspond to their apparent permeability. When the drug
initially is loaded into the apical chamber (top row) the coincidence is really
good. In the case where the drug is loaded in the other (basolateral) cham-
ber, one sees that the theory underestimates the pump’s efficiency more and
more the lower the amount of drug in the system is. This is not a conse-
quence of our approximations as one can see in the graphs to the left. There
we overlay the data once more with the numerical solution (dashed line) and
since it underestimates the result in the same way, we conclude that the used
Michaelis-Menten kinetics is insufficient to represent P-gp efflux at low initial
concentrations when loaded basolaterally. Considerations of other pathways
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Table 3.6: Time scales (when loaded apically) and apparent permeabilities predicted for
different initial concentrations and different models (internal/external binding site).

C0 binding t1 t2 t3 P app
BA

(
cm
s

)
P app

AB

(
cm
s

) P app
BA

P app
AB

7500 int 12.3h 6.38min 23.6h 6.70×10−6 6.37×10−6 1.05
ext 11.9h 6.67min 0.567h 6.80×10−6 4.12×10−6 1.65

5000 int 12.5h 6.27min 23.6h 6.73×10−6 6.26×10−6 1.07
ext 11.9h 6.67min 0.567h 6.86×10−6 3.97×10−6 1.73

1000 int 13.5h 5.59min 23.6h 6.88×10−6 5.57×10−6 1.24
ext 12.5h 6.70min 0.567h 7.18×10−6 3.10×10−6 2.32

50 int 13.8h 4.90min 23.6h 7.10×10−6 4.88×10−6 1.45
ext 15.7h 6.73min 0.567h 6.94×10−6 2.07×10−6 3.35
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Figure 3.3: Antibiotic’s concentration on the receiving side. (Top: drug loaded in apical
compartment, bottom: basolateral loading.) Experimental values are from CNV97100 study.
The solid line’s slope is the prediction from the theoretical solution (shown in table 3.6) for
intracellular binding, which was considered to be the model of best fit. The dashed line in the
graphs on the right shows the numerical integration of the full system (3.1-3.4).

in the P-gp transporter protein are found in [49] and others.

3.2.3 Parameter dependence
One of the main points of our analysis is the ability to determine explicit ex-
pressions for the dependence of experimental quantities from the parameters
of the system. Here lies one of the strengths of our solution: In figure 3.4 we
plot the characteristic time scale for absorption t1, the equilibrium concentra-
tion ratio on both cell sides beq/aeq and the efflux ratio P app

BA /P app
AB as a function

of the clearances ClAC and ClCB, the pump parameters VM and KM and the
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initial concentration of drug C0. Analytic formulas give access to these results
much easier than repetitive integration throughout parameter space plus ex-
tracting the data from the resulting trajectories.

Again, for simplicity, we limit our presentation to the case of a secretory
pump located apically with intracellular binding site, the best model accord-
ing to the analysis of [25]. As observed in fig. 3.4, an increase in the initial
concentration C0 implies a decrease in the characteristic time t1 from a fi-
nite value to a minimum value, limiting t1 to a range. Rising C0 increases
the equilibrium concentration ratio beq/aeq. Although this ratio varies sig-
nificantly, the steady concentration in the basolateral site, beq, shows a good
linear dependence with C0 (not shown in the figure). Note that the efflux ra-
tio P app

BA /P app
AB also decreases with increasing initial concentration, a feature

supported by the experimental data, although the theoretical values deviate
from the experimental results at low concentrations, a fact already discussed
in the previous section. The clearance ClCB of the membrane where the pump
is not situated has no influence on the equilibrium concentration and efflux
ratios, but an increase of ClCB decreases the characteristic time t1, indicating
a faster transport of the drug. On the other hand, an increase in the clear-
ance ClAC of the cell membrane where the pump is located has the effect of
decreasing the efflux ratio and increasing the equilibrium concentration ra-
tio. For large initial concentrations, C0 = 7500µM , the characteristic time t1
shows an interesting behaviour with ClAC since it first increases and then de-
creases, indicating a very slow drug absorption for some intermediate values
of the clearance.

At large concentrations, the three quantities analysed show a small de-
pendence with respect to the pump parameters VM and KM , since the corre-
sponding curves are almost flat. This makes it difficult to extract from the
data accurate values of the pump parameters at those large concentrations.
This suggests that lower concentrations would allow for a better experimental
determination of the pump parameters - a practise used by experimentalists -
but we have to take into account, as discussed above, that the accuracy of the
model might worsen with decreasing concentration. In the graph, we have
included negative values for VM , which is equivalent to a change in the flow
direction of the pump.

3.2.4 Error propagation
Apart from these considerations the analysis of parameter dependence is the
first step towards examining the propagation of errors into the experimentally
available quantities. For example it is clear from figure 3.4 (third and fourth
column), that small differences in ClAC would be nearly unnoticed, due to the
rather flat curve around its measured value (marked by the black arrow on top
of the figures). On the other hand a small change in ClCB yields a big variation
of time scale t1. We want to use an example to make this clear. Again we will
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Figure 3.4: Secretory pump, intracellular binding site - Top and middle: equilibrium con-
centration ratio (basolateral/apical) and characteristic time (both for apical loading), bottom:
efflux ratio P app

BA /P app
AB . Dependence on VM and KM (transporter parameters) and clearances

ClAC/CB . Continuous line: C0 = 7500µM , dot-dashed line: C0 = 50µM . On the very right: de-
pendence on initial concentration C0. Arrows on top mark the experimentally derived value.
(Values for the respectively fixed parameters taken from table 3.5.)

use parameters derived in the CNV97100 absorption study and evaluate in
which way a change in parameter influences the measurable quantities. This
can be imagined as the variability in different sample cultures.

The distribution fx of a value x in function of the distribution fα of the
parameter α is given by:

fx(x) = fα(α)

∣∣∣∣dα(x)

dx

∣∣∣∣ . (3.29)

Knowing the distribution of value x, the mean value of x is defined by:

〈x〉 =

∫ x2

x1

xfx(x)dx . (3.30)

Alternatively, if this integration cannot be solved, one uses eq. (3.29) and
writes:

〈x〉 =

∫ α(x2)

α(x1)

x (α) fα(α)dα . (3.31)

Correspondingly one finds: 〈
x2

〉
=

∫ x2

x1

x2fx(x)dx (3.32)
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Figure 3.5: The mean basolateral concentration (left) and its relative error (right) in the case
of 7500µM loaded apically, depending on the relative error of ClAC . A Gaussian distribution
of clearance was assumed.

and the relative standard deviation

σ =

√
〈x2〉 − 〈x〉2

〈x〉
. (3.33)

Due to the nonlinearity it is not always easy to derive explicit expressions
but having found the parameter dependencies before, above integrations are
easily done numerically up to arbitrary precision.

Now we use the parameter set from [25] as done before. We chose an ex-
perimental set up (apical loading, C0 = 7500µM ) and the “model of best fit”
(apical pump, intracellular binding) and can calculate for example the equi-
librium concentration, or rather its distribution, on the receiving side. Figure
3.5 shows the mean value and the relative error versus the relative error of
ClAC , the clearance of the apical membrane. Clearly one sees that the mean
value itself is biased towards lower values by a (symmetric) error in the clear-
ance. The relative error of the beq is a rising function with the remarkable
feature of a range of very high slope. At a diversity in the clearance of about
30% the rise of the concentration’s error is much higher than for other val-
ues. How large the diversity of the cell membrane’s clearance is, is not the
concern of this work but it allows to estimate the reasons for fluctuations in
measurements.

3.3 Other nonlinearities and extensions of the
model

The method we presented in section 3.1 to treat a three-compartment model
and the proposed approximation are valid for a general form of nonlinear
flux. We presented a solution for a specific form of flux known from enzyme
dynamics in section 3.2. In the following we want to give a short analysis for
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a different form of flux. Afterwards we suggest a possible extension of the
model.

3.3.1 Michaelis-Menten with cellular retention
To account for the amount of drug which retains bound in the cell and is
not available as substrate anymore, Korjamo et al. [50] used an additional
constant K which rescales the intracellular concentration. In this case the
dynamical equations (3.1-3.3) and the flux definition (1.24) become

dQA(t)

dt
= +ClAC

(
QC

VC

1

K
− QA

VA

)
+ J (3.34)

dQC(t)

dt
= −ClAC

(
QC

VC

1

K
− QA

VA

)
− J − ClCB

(
QC

VC

1

K
− QB

VB

)
(3.35)

dQB(t)

dt
= +ClCB

(
QC

VC

1

K
− QB

VB

)
(3.36)

J =
SVM

QC

VC

1
K

KM + QC

VC

1
K

(3.37)

When our transformation is applied to this system (here only intracellular
binding is considered), the matrix element a21 is multiplied with a factor 1/K
and the same factor rescales the parameter γ (eq. 3.23). With these changes
the obtained results can be used. We will not go into much detail but the efflux
ratio (ratio of (3.20) to (3.21)) as the value of main interest to the experimen-
talist has been calculated. For a parameter set as derived in the CNV97100
study one sees a lowering of the whole curve for rising retention (fig. 3.6).
Retention of values smaller than one would raise the curve, but this is not
reasonable. The curve does not change its shape much. We conclude that this
extension of the three-compartment model is not good for fitting better to the
experiment.

3.3.2 Outlook
The proposed method and approximation could be applied to many different
systems. A consideration which might be of interest to pharmacology is an

efflux J of Hill type,
xα

kα + xα
, with exponents different α than 1. This formula

is used to describe cooperative binding. Other possible fluxes could be anal-
ysed always if assumptions of a closed system with three compartments are
fullfilled.

As an extension of this model one could overcome the coarse-grained pic-
ture of a cellular volume as one. It is known for example that P-gp expression
is not the same along the intestinal wall. Spacial dependencies and diversity
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Figure 3.6: Efflux ratio versus initial concentration for different retention constants (K =
1, 1.1, 1.3, from top to bottom). The rest of parameters is taken from the CNV97100 experi-
ment (section 3.2). K = 1 represents the case with no retention like in fig. 3.4, bottom, right.
The experimental values are overlaid

in the amount of expressed transporter proteins could be added to the model.
Assuming no horizontal transport (between the cells) one gets a row of similar
equations, all coupled through the apical and basolateral volume. One could
then expand the averaged dynamics around the mean value (similar to what
was done in [51, 52]) and investigate the system with diverse parameters.





Chapter 4

Conclusions

We have analysed three different types of dynamical systems, all inspired by
observations in biological systems.

The first presented system is a random walker in a plane, which correlates
the direction of its steps with the one done before. It is thought to describe
the motion of the zooplankton Daphnia, where such correlation between swim
strokes were observed. The model predicts a linear growth of the averaged
squared distance, after some time of transition. The angular correlation (2.4)
determines both, the proportionality and the transition. For two distribution
types these calculations were carried out explicitly: a sum of two delta peaks
and a cut Gaussian. In the first case we could show that the position of the
second peak, although accounting for only a tenth of the jumps, is crucial
for the speed of diffusion. Different distributions could be investigated and
the angular correlation can be drawn directly from experimental measured
distributions. The presented results were published in [38].

In the same chapter we propose a simple model of food consumption. The
food is a limited patch of diluted matter in a plane and does not grow again
nor move in space. In the same plane there is other “matter” which diffuses
freely along its gradient of concentration and additionally consumes the first
matter. The consumption is proportional to the product of concentrations. We
showed that under these circumstances a diffusion coefficient exists for which
the uptaken food is maximal. Faster diffusion leads away from the food patch,
slower diffusion means that one keeps too long on the same place and exhaust
the provided food. These results, together with a mapping of the movement
to the concept of an active Brownian particle, were published in [39].

In the subsequent part (chapter 3) we summarise a work on drug absorp-
tion. A model widely used in pharmacology for absorption studies has been
examined. Being a mass conserving three-compartment model it has two de-
grees of freedom and we showed how to transform it into a problem of classical
mechanics, a mass in a potential subjected to friction. Approximating the po-
tential by a parabola and assuming the friction as a constant value taken at
equilibrium, a closed form for the evolution of concentrations in the different
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chambers has been given. The factors and constants in the solution depend
on the specific form of the nonlinear flux. In the case of Michaelis-Menten
flux the saturation concentration of the given model can be calculated ex-
actly. Around this steady state the potential is expanded to second order.
The resulting formulas are given. Furthermore the method was applied to an
absorption experiment, done in the Pharmaceutical Department of the Uni-
versity of Valencia. Doing so we could validate the simplifications applied in
the theoretical method, since the difference to the model used to fit the data is
very small. Our results justify the linear assumption that was made in order
to analyse the experimental data. The closed formulas of our approach allow
to investigate how important the different parameters are on the experimen-
tal outcome and how an error or uncertainty in a parameter is propagated
into the measurement. This might help to define experimental setups when
new models are invented. In the last part we have shown how the proposed
method is applied to another kind of nonlinear flux. The results are submit-
ted to the European Journal of Pharmaceutical Sciences and available as a
preprint version on an e-print server (arxiv.org).

Following the presented line of research within biological systems, a huge
number of nonlinear systems or systems with many coupled subunits can be
studied. One focus of further research lies in the circadian clocks, collec-
tions of neuronal cells acting as pacemakers for hormone release in mam-
mals, whose phase is triggered by the natural change of light and darkness.
Preliminary theoretical results reveal a constructive effect of cell’s diversity
for synchronisation with an external signal. For studying these systems a
formerly developed method can be refined and be used for calculating approx-
imate solutions. Validation of this refinement by applying it to known systems
and usage on yet unknown systems will be another focus of future work. The
expertise developed towards pharmacological processes might help to identify
other systems in medical research, which permit the kind of treatment we
have carried out concerning the active drug absorption.
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