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We investigate the transport properties of ballistic quantum wires in the presence of Zeeman spin splittings
and a spatially inhomogeneous Rashba interaction. The Zeeman interaction is extended along the wire and
produces gaps in the energy spectrum, which allow electron propagation only for spinors lying along a certain
direction. For spins in the opposite direction, the waves are evanescent far away from the Rashba region, which
plays the role of the scattering center. The most interesting case occurs when the magnetic field is perpendicu-
lar to the Rashba field. Then, the spins of the asymptotic wave functions are not eigenfunctions of the Rashba
Hamiltonian, and the resulting coupling between spins in the Rashba region gives rise to sudden changes of the
transmission probability when the Fermi energy is swept along the gap. After briefly examining the energy
spectrum and eigenfunctions of a wire with extended Rashba coupling, we analyze the transmission through a
region of localized Rashba interaction, in which a double interface separates a region of constant Rashba
interaction from wire leads free from spin-orbit coupling. For energies slightly above the propagation thresh-
old, we find the ubiquitous occurrence of transmission zeros �antiresonances�, which are analyzed by matching
methods in the one-dimensional limit. We find that a minimal tight-binding model yields analytical transmis-
sion line shapes of Fano antiresonance type. The general angular dependence of the external magnetic field is
treated within projected Schrödinger equations with the nondiagonal Hamiltonian matrix elements mixing
different wave function components. Finally, we consider a realistic quantum wire where the energy subbands
are coupled via the Rashba intersubband coupling term and discuss its effect on the transmission zeros. We find
that the antiresonances are robust against intersubband mixing, magnetic field changes, and smooth variations
of the wire interfaces, which paves the way for possible applications of spin-split Rashba wires as spintronic
current modulators.
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I. INTRODUCTION

A. Motivation

Since the pioneering Datta-Das proposal of an electronic
field-effect transistor in which the current flow is controlled
by magnetic means only,1 the study of the Rashba2,3 spin-
orbit interaction in one-dimensional �1D� and quasi-one-
dimensional ballistic channels �quantum wires� has attracted
a lot of interest.4–35 Precise tunability of the strength of the
Rashba coupling has also been experimentally demonstrated
in quantum wells.36–38 Typically, semiconductor quantum
wires are built from two-dimensional electron gases formed
at the interface of a semiconductor heterostructure when the
lateral motion of electrons is restricted by a transversal con-
finement potential to effective widths of the order of the de
Broglie electron wavelength. For very clean quantum wires
�e.g., quantum point contacts�, transport is ballistic and con-
ductance is quantized to integer values of e2 /h.39,40

The presence of impurities or defects in the vicinity of the
constriction destroys conductance quantization.41–46 A strik-
ing effect arises when the impurity potential is attractive and
enables the existence of at least one bound state whose en-
ergy is degenerate with the continuum band of propagating
states. As a consequence, for energies close to the transition
threshold, a direct transmission channel can interfere with a
wave trajectory that travels across the bound state, and this
interference is destructive, leading to enhanced backscatter-
ing and Fano asymmetric line shapes.47–50 Recently, two of

us30 have demonstrated that a spin-orbit interaction of the
Rashba type localized in an infinitely long quantum wire
plays a role similar to an attractive potential, and pronounced
dips are seen in numerical simulations of the conductance
curves.20,27,30,33 It is remarkable that the Rashba interaction
provides both the attractive potential that supports bound
states51,52 and the mixing term that couples the localized and
the propagating states.30 Interestingly, when charging effects
are taken into account, Coulomb blockade resonances can be
tuned, directly modulating the strength of the Rashba
coupling.53

A magnetic field applied in the wire plane leads to Zee-
man spin splitting of the 1D modes. Evidence of this is seen
in the appearance of conductance plateaus at odd multiples
of e2 /h.40 In the first plateau, the current is fully polarized
since only one spin species is allowed to propagate. Quan-
tum states with opposite spins are evanescent asymptotically
and do not take part in electron transport unless there exist
inhomogeneities that give rise to resonances or Fano-type
interferences, in which case evanescent states are crucial.
Reference 54 presents a theoretical method to calculate eva-
nescent states in quantum wires with uniform Rashba inter-
action.

To determine the full transmission pattern of a generic
quantum wire, one must first analyze the energy spectrum of
the wire. For quantum wires with uniform Rashba interaction
in the absence of external magnetic fields, free-electron en-
ergy bands are parabolas shifted apart for opposite spin
directions.8 The splitting size is proportional to the spin-orbit
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interaction strength �, and in the quasi-1D case the Rashba
interaction produces anticrossings between bands corre-
sponding to opposite spins and adjacent modes.5,10 More-
over, the propagation threshold is shifted, compared to the
case with no spin-orbit coupling, down by an energy of
m�2 /2�2. In the presence of an in-plane magnetic field, the
energy spectrum changes dramatically even for arbitrarily
small fields. The field can be either externally applied or
originated from stray fields of the ferromagnets coupled to
the wire in the Datta-Das setup.1 It is shown14,16,26 that the
interplay between the magnetic field and the Rashba interac-
tion leads to the openings of gaps in the 1D energy bands at
small wave numbers. In a quasi-1D wire, most of the energy
dispersions around the gap form energy minima locally in
contrast to the maxima encountered in the 1D case.26 In
those energy windows, in which the gap consists of an en-
ergy local maximum followed by a local minimum, the con-
ductance curves present anomalous steps for Fermi energies
within the gap.16,26

In short, external magnetic fields lead to the formation of
energy gaps in the spectrum, while local Rashba interactions
produce Fano-type antiresonances due to the formation of
quasibound states coupled to the channel of direct transmis-
sion states. Therefore, we expect a rich interplay between
in-plane fields and localized Rashba spin-orbit couplings in
the transport properties of a ballistic quantum wire. This pa-
per presents a generic theoretical description of the quantum
transmission of an electron subject to Zeeman splittings and
spatially modulated Rashba fields.

B. Main findings

We find the occurrence of exact transmission zeros in the
conductance curves of a Zeeman-split wire with local Rashba
interaction as a function of the Fermi energy. Central to the
existence of the transmission zeros are the formation of a
Zeeman gap arising from an in-plane magnetic field and the
role of the evanescent states within the Rashba region. In
fact, the Rashba interaction couples the propagating and eva-
nescent states precisely in the interior of the Rashba region.
The transmission antiresonances are almost universal, show-
ing a vanishingly small transmission at moderately low mag-
netic fields. This might be relevant for applications since it
provides two operation points for working transistors �low
and high current states�. It is important to stress that these
transmission zeros are fundamentally distinct from the sup-
pressed transmission that may take place in a Datta-Das
setup due to spin precession1 even in the presence of in-plane
magnetic fields.35 The antiresonance position can be tuned
with a slight change of � and is robust against changes of the
magnetic field. We only require that the Fermi energy lies
within the gap.

C. Outline

The outline of the paper is as follows. Section II is de-
voted to analyzing the transport properties of a 1D wire,
where only one subband is taken into account, and Rashba-
induced intersubband coupling is then neglected. In Sec.
II A, we discuss the eigenstates and energy spectrum of a 1D

wire subject to Rashba interaction and Zeeman spin split-
tings. In Sec. II B, we consider a finite Rashba region with
constant Rashba strength and a magnetic field pointing in a
direction perpendicular to the Rashba field and we calculate
the transmission within the scattering formalism and numeri-
cal matching. A tight-binding description of the problem is
considered in Sec. II C. We derive an exact expression for
the transmission in the limit of a minimal Rashba region and
discuss the Fano form of the line shape. To end Sec. II, we
present in Sec. II D results for the angular dependence of the
magnetic field direction. In Sec. III, we examine a quasi-1D
wire. The numerical results are in agreement with the 1D
case, thus demonstrating that the sharp antiresonances are
robust even when intersubband coupling is present like in
realistic wires. We also discuss the case of an arbitrary de-
pendence of the Rashba strength with the position and com-
pare our results when the Rashba interaction smoothly in-
creases at the interfaces. Finally, Sec. IV contains the
conclusions.

II. ONE-DIMENSIONAL WIRE

We consider a two-dimensional �2D� electron gas formed
in the x−y plane due to a strong confinement in the z direc-
tion. As a result of the interfacial electric field, there arises a
spin-orbit coupling of the Rashba type with a Hamiltonian
given by

HR =
��x�
2�

�py�x − px�y� + H.c., �1�

where the Rashba strength ��x� can be spatially modulated.
The limit of a purely 1D system is obtained by further con-
straining the electron motion along, e.g., the x direction.
Then, the py�x term in Eq. �1� is neglected and the Rashba
interaction plays the effective role of a momentum-
dependent magnetic field with a direction along the y axis. In
the following section, we discuss the spectrum and eigen-
functions of a 1D wire when the Rashba strength is uniform
and the external magnetic field points either in the x−y plane
�“in-plane” field� or along the vertical z direction �“perpen-
dicular” field�.

A. Extended Rashba interaction

1. In-plane field

We consider an in-plane magnetic field with arbitrary di-

rection, B� = �B cos � ,B sin � ,0�, giving rise to a Zeeman
interaction.16,26 Then, the single-particle Hamiltonian reads

H1D =
− �2

2m

d2

dx2 +
�Z

2
��x cos � + �y sin ��

−
1

2�
�y���x�,− i�

d

dx
� , �2�

where �Z=g�BB is the Zeeman splitting. When we assume a
constant Rashba strength ��x���=const from −� to �, the
Hamiltonian H1D is diagonalized using the spinor wave
functions �we take the spin quantization direction along z�,
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�	�x� =
1
�2

� ei
k/2

	e−i
k/2 �eikx, �3�

where 	=± is the branch-splitting quantum index and k is
the wave vector associated with free motion along x. The
spin orientation is determined from

tan 
k��� =
�k − ��Z/2�sin �

��Z/2�cos �
. �4�

We note that there exists no common spin quantization axis
since 
k depends on k.26 This is due to the existence of a
magnetic field since for �Z=0 the spinors lie along y �the
Rashba axis�. The effect is akin to a 2D system with Rashba
interaction for which tan 
=kx /ky. However, in the 2D case
the spin orientation is always perpendicular to k� whereas in
the 1D case only for asymptotically large momenta �	k	
→�� the spin is quantized along y. A similar effect arises
from Rashba intersubband coupling in quasi-1D systems.10

From the Schrödinger equation, H1D�	=E	�	, one finds
the energy spectrum,

E	�k� =
�2k2

2m
+ 	��2k2 + ��Z/2�2 − �k�Z sin � . �5�

For �=0, the case of interest occurs for small Zeeman split-
tings, �Z�2m�2 /�2 
see Fig. 1�a��. This gives the condition
for the opening of a pseudogap region for which the lowest
branch of the spectrum develops a local maximum around
k=0. This fact has important consequences for the electronic
transport.14,16,17,26 �Larger magnetic fields, �Z�2m�2 /�2,
turn the local maximum into a local minimum, but this case
is less interesting and will not be treated in this work.� For
Fermi energies lying in the pseudogap region, −�Z /2�EF
��Z /2, there is only a wave function with a given spin
direction for each mover �right moving or left moving�. In
addition, there also exist evanescent waves, which are crucial
when the Rashba interaction is confined to a finite region.
Outside the pseudogap region, there are four real wave vec-
tors for a given EF.

Increasing � from 0 to  /2 leads to the progressive re-
duction of the pseudogap size 
see Figs. 1�b� and 1�c��. For
�= /2, the gap vanishes and the spinors point along the y
axis since in this case the field axis and the Rashba axis
coincide.

We note in passing that when ��x� is constant �or, more
generically, an even function of x�, there exists a symmetry
property of the Hamiltonian given by Eq. �2�. Let us concen-
trate on the case �=0. Thus, H1D is invariant under the trans-
formation

Ẑ = i� exp
− i�̂x� = ��̂x, �6�

namely, the rotation by  around the x axis in the spin space
followed by the parity operator �, which yields inversion in
the x direction. The additional factor of i is to ensure that

Ẑ2=1. Similar symmetry properties have been discussed in
Refs. 7, 25, and 55, which find that the spin parity, i.e., the
combination of parity and a Pauli matrix, is a constant of
motion for B=0. Here, ��̂x commutes with H1D even for
nonzero fields when �=0. Hence, one can find a common

basis of eigenstates for H1D and Ẑ. The wave functions given

by Eq. �3� are not eigenstates of Ẑ. In fact, 	�	,+	k	�
=	Ẑ	�	,−	k	� since 
→−
 when 	k	→−	k	. Therefore, one

could construct states with definite parities with regard to Ẑ
from even �e� and odd �o� combinations of 	�	,±	k	�, i.e.,
	�	

e/o�= 	�	,+	k	�±		�	,−	k	�.

2. Perpendicular field

For fields pointing along z, B� = �0,0 ,B�, the Zeeman term
in Eq. �2� is expressed as ��Z /2��z. The spectrum is identical
to the �=0 case 
Fig. 1�a��. Therefore, for the sake of the

present discussion, the cases B� parallel to z and B� parallel to
x are equivalent in the 1D case since both are perpendicular
to the Rashba field direction �along y�. Of course, in the
quasi-1D case, one should also take into account orbital ef-
fects, but in this section we can neglect this. Let us focus on
the 	=−branch and energies within the pseudogap. We will
find that strong transmission changes take place in that re-
gion.

For −�Z /2�EF��Z /2, there are two propagating solu-
tions,

��x� =±sin

p

2

i cos

p

2
�e±ikpx, �7�

with wave vector 
see Fig. 1�a��

kp = �kF
2 + 2kR

2 + �kB
4 + 4kR

2�kR
2 + kF

2� , �8�

where we have defined

kF = �2mEF/�2, �9�

kR = m�/�2, �10�

-3 0 3
k

0

1

2

E
ne

rg
y

-3 0 3
k (units of mα/h

2
)

0

1

2
E

ne
rg

y
(u

ni
ts

of
m

α2 /h
2 )

-3 0 3
k

-1

0

1

2

E
ne

rg
y

∆
Z

(a) (b)

(c)
E

F

-k
p

k
p

-k
e k

e

FIG. 1. Energy spectrum for a 1D quantum wire with uniform
Rashba coupling for a Zeeman splitting �Z=0.4m�2 /�2 and differ-
ent magnetic field angles: �a� �=0, �b� �= /4, and �c� �= /2.
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kB = �m�Z/�2. �11�

As discussed above, the angle 
p depends on the wave vec-
tor,

tan 
p =
2kRkp

kB
2 . �12�

Further, the pseudogap region admits two more solutions,
which are evanescent waves. For EF�−�2B2 /2m�2 �i.e.,
kF

2 �kB
4 /4kR

2�, we find

��x� =�sinh

e

2

cosh

e

2
�e±kex. �13�

For EF�−�2B2 /2m�2, one must make the replacements
sinh→cosh and cosh→sinh. Moreover,

ke = �− kF
2 − 2kR

2 + �kB
4 + 4kR

2�kR
2 + kF

2� . �14�

and

tanh 
e =
2kRke

kB
2 . �15�

In Fig. 1�a�, we illustrate the “dispersion” relation for the
evanescent states and the location of ±ke. The evanescent
states make sense only for nonvanishing �Z, as can be
readily seen by setting kB=0 in Eqs. �8� and �14�. kp becomes
kR+�kR

2 +kF
2 and ke becomes purely imaginary, ke= i�kR

−�kR
2 +kF

2�. This corresponds to four propagating solutions

�two left moving and two right moving� with a definite spin
direction.8

B. Local Rashba interaction

We now consider a double interface at x=0 and x= l be-
tween a normal conduction band �x�0 and x� l� and a re-
gion of localized Rashba interaction extending from x=0 to
x= l �see Fig. 2�. Then, ��x���=const for 0�x� l and
��x�=0 elsewhere. Our basic goal is to find the transmission
T through the Rashba region when the magnetic field is
present all along the wire, producing a Zeeman gap. For

convenience, we take the B� direction along z since the solu-
tions for x�0 are simpler to write down.

We are interested in energies inside the spin pseudogap,
−�Z /2�EF��Z /2, for which a spin-down �spin-up� elec-
tron wave is propagating �evanescent�. In the scattering prob-
lem, an electron with spin down is injected from −� and
reflected with a certain probability R=1−T. Since the spin
quantization axis in the region 0�x� l depends on the wave
vector, we must also take into account the spin-up evanes-
cent waves at x�0 and x� l. As a consequence, the scatter-
ing wave function for −�Z /2�EF�−�2B2 /2m�2 reads

��x� =�
�0

1
�eik1x + �0

1
�Ae−ik1x + �1

0
�Bek2x, x � 0

sin

p

2

i cos

p

2
�Ceikpx +− sin


p

2

i cos

p

2
�De−ikpx +sinh


e

2

cosh

e

2
�Fe−kex +− sinh


e

2

cosh

e

2
�Gekex, 0 � x � l

�0

1
�Jeik1�x−l� + �1

0
�Ke−k2�x−l�, x � l ,

� �16�

whereas for −�2B2 /2m�2�EF��Z /2, one should make the
replacements sinh→cosh and cosh→sinh in the expressions
for the evanescent states of the Rashba region. In Eq. �16�,
the wave vector k1=�kF

2 +kB
2 is written in terms of the Fermi

wave vector kF
2 =2mEF /�2 and kB

2 =m�Z /�2, defined as be-
fore. We note that kF can be purely imaginary for EF�0,
though the physical wave vector k1 is always a quantity
manifestly positive and real. The evanescent wave is de-
scribed with an exponentially decreasing wave with range of
�1 /k2, where k2=�kB

2 −kF
2; therefore the probability of find-

ing a spin up on the left or right sides is nonzero. At small
�Z, the propagating states with wave vector ±kp have their
spins approximately along ±y 

� /2 in Eq. �3��.

We numerically find the coefficients A, B, C, D, F, G, J,
and K from matching equations. At the interfaces, the wave
function must be continuous, e.g., ��0−�=��0+�. Moreover,
the flux, given by the velocity operator v̂, must also be con-
tinuous, i.e., v̂��0−�= v̂��0+�. On the normal sides, v̂ is trivi-
ally given by −i�� /m�d /dx, while in the spin-orbit region
one has8

0x=

α=0 α=0 α=0

x=l

FIG. 2. Schematic representation of a local Rashba interaction
in a 1D quantum wire.
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v̂ =
i�

m−
d

dx
kR

− kR −
d

dx
� . �17�

Importantly, the flux associated with Eq. �7�, which is pro-
portional to

�v̂� = ± kp − kR sin 
p, �18�

is positive �negative� for +kp �−kp�.
The transmission and reflection probability are given by

T= 	J	2 and R= 	A	2, respectively. Since we are interested in
the relative influence of � and �Z while keeping the Rashba
region length l constant, in the numerical results we give the
energies as a function of the energy unit �2 /ml2. A charac-
teristic transmission curve is plotted in Fig. 3 for �Z
=12.8�2 /ml2, whereas � is slightly varied. We make the im-
portant observation that there arises an exact transmission
zero near EF=�Z /2 when �=6.4�2 /ml. On increasing �, the
resonance position shifts to lower energies and, at the same
time, the resonance broadening is enhanced. This depen-
dence with � will become clear later when we discuss the
tight-binding model.

The transmission for �=6.4�2 /ml and various magnetic
fields is shown in Fig. 4. The transmission curves are remi-
niscent of Fano line shapes. An interesting question is thus
whether the transmission behavior is indeed related to a
Fano-type interference effect. While in strict one-
dimensional systems the interference giving rise to Fano line
shapes is not possible due to the existence of one channel
only, in this case and due to the Zeeman splitting there exist
two modes, namely, the propagating mode �spin down� and
the evanescent mode �spin up�. Both modes become coupled
locally within the Rashba region. As a result, the effect is due
to a subtle combination of spin-orbit interaction and Zeeman
splitting, which leads to destructive interference in the
Rashba region. A simplified model, discussed below, will
shed light on this. For the moment, we note that Fig. 4 shows
that it is sufficient to have a rather small Zeeman gap �Z

crit

above which the antiresonance develops. For �=6.4�2 /ml,
we find �Z

crit�0.064�2 /ml2.

The energy and length scales we considered above are
within the scope of present techniques. For example, for a
Rashba region of size l=2 �m, the value �=6.4�2 /ml cor-
responds to ��10 meV nm, which is accessible in an InAs
wire.36 The Zeeman energy �Z=12.8�2 /ml2 used in Fig. 3
corresponds to a magnetic field B�10 mT in the same ma-
terial, and �Z

crit in Fig. 4�c� is only 60 �T. Notably, the effect
scales with l. Therefore, a smaller � would require a larger
wire for the antiresonance to be observable.

C. Tight-binding model

The continuum model discussed above leads to remark-
able predictions for the conductance of a spin-split quantum
wire with a local Rashba interaction, but to gain further in-
sight it would be highly desirable to have a simplified model
capable of yielding closed analytical formulas for the dip
position and shape. In this subsection, we consider a dis-
cretized version of the Hamiltonian H1D 
Eq. �2��. The infi-
nite 1D wire is modeled with a linear chain of sites. Thus, we
obtain the following tight-binding Hamiltonian:56

Htb = �
i

��ci�
† ci� − �

�ij�
t�ci�

† cj� + H.c.�

+ ��
n

�cn↑
† c�n+1�↓ − cn↓

† c�n+1�↑ + H.c.� , �19�

where the summations over i and j are carried out on an
infinitely extended 1D wire and the last summation is over
the sites of the Rashba region. In this equation, t=�2 /2ma2

couples nearest neighbors, �=� /2a is the Rashba interaction
strength, which couples electronic states with opposite spin
directions along z ��= �↑ , ↓ ��, and a is the lattice parameter.
The on-site energies are given by ��=s�Z /2 
s= + �−� for
�= ↑ �↓��. The Hamiltonian Htb is equivalent, in the limit a
→0, to H1D whose transport properties have been analyzed
above. Here, in order to obtain simplified expressions, we
consider a localized Rashba interaction restricted only to two
sites, 0 and 1 �see Fig. 5�. We note that this is the minimal
model that characterizes the transport properties of a 1D wire
with a Rashba region.
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FIG. 3. �Color online� Transmission through a Rashba region for
�Z=12.8�2 /ml2 and different spin-orbit intensities: �=6.4�2 /ml
�full line�, 6.64�2 /ml, �dashed�, 6.88�2 /ml, �dot-dashed�, and
7.12�2 /ml �dotted�.
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FIG. 4. Transmission versus Fermi energy for �=6.4�2 /ml and
different Zeeman splittings: �Z=0.384�2 /ml2 �a�, 0.128�2 /ml �b�,
and 0.064�2 /ml �c�.
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For �Z=0 and �=0, the energy band spectrum is given by
the well known expression E=−2t cos ka. In the presence of
a magnetic field, the spectrum becomes spin split. We now
focus on an energy range close to the band bottom, −2t
−�Z /2�E�−2t+�Z /2. Then, the eigenfunctions corre-
sponding to spin ↓ �↑� are propagating �evanescent� waves.
Since we intend to solve the scattering problem of an
↓-electron wave impinging onto the Rashba region, we now
introduce the wave amplitudes �n↓=eik↓na+re−ik↓na for
n�−1 and �n↓=�eik↓na for n�2, with � and r as the trans-
mission and reflection probability amplitudes. The wave
number k↓ is related to the total energy E by means of k↓a
=cos−1
�E+�Z /2� / �−2t��. For electrons with spin ↑, their en-
ergy outside the Rashba region falls below the band bottom.
As a result, we take the wave amplitudes given by �n↑
=cek↑na for n�0 and �n↑=de−k↑na for n�1, where k↑a
=cosh−1
�E−�Z /2� / �−2t��. Substituting the total wave func-
tion into the Schrödinger equation and projecting over the
sites of the Rashba region �n�	, we find the transmission,

� = �1 +
�2

t2

t2�1 − ek↑a+ik↓a� + ��2 + t2�e2ik↓a

��2 − t2�e2k↑a − 1���e2ik↓a − 1� �−1

, �20�

which allows to determine the exact condition for the occur-
rence of zeros in the transmission function T= 	�	2:

E�0� =
�Z

2
− 2t

1 + �2/2t2

�1 + �2/t2
. �21�

This expression has a very appealing form. For a given value
of �, the antiresonance energy E�0� lies to the left of −2t

+
�Z

2 , as shown in the numerical results of Figs. 3 and 4.
Moreover, it predicts that the dip shifts to lower energies as
the Rashba interaction strength increases. This is reproduced
in Fig. 6, where we plot a characteristic T as a function of
energy for �Z=0.1t. In addition, the dip broadens as � in-
creases, in excellent agreement with the numerical results of
the continuum model �see Fig. 3�. Equation �21� also ex-
plains why the critical Zeeman splitting �z

crit below which the
dip disappears is so small since the antiresonance is observ-
able only if E�0� lies above the band bottom, i.e., E�0��−2t

−
�Z

2 . It then follows that �z
crit=2tf�� / t�, where f�x�= �1

+x2 /2� /�1+x2−1 is a slowly increasing function of x for 0
�x�1. As a result, �z

crit�0.12t, which is around 2 orders of
magnitude smaller than the bandwidth. Incidentally, we also
find an upper bound of the Rashba strength, �crit

=��Z
2 /2+2�Zt+ �t+�Z /2���Z

2 +4t�Z, above which the dip
vanishes. For �Z=0.1t, we obtain �crit�0.94t. This is an
interesting feature for applications since very strong Rashba

couplings are not necessary to generate the antiresonance.
The considerations made above suggest that the antireso-

nance has a Fano line shape ���+q�2 / ��2+1�, but it is hard
to demonstrate with controlled approximations that Eq. �20�
has exactly this form. Perhaps it is more instructive to con-
sider a closely related model, in which the spin flip interac-
tion due to the Rashba coupling is restricted to a single point
�see Fig. 7�. Then, the Hamiltonian reads

Hsf = �
i

s
�Z

2
ci�

† ci� − �
�ij�

t�ci�
† cj� + H.c.� + ��c0↑

† c0↓ + H.c.

�22�

As before, the spin-up and spin-down energy bands are
shifted by a Zeeman splitting. The coupling between spins at
the central site may represent the action of external magnetic
field pointing in a direction perpendicular to the spin quan-
tization axis or other source of spin flipping. Spin flip inter-
actions in quantum dots have recently received much
attention.57–60

We take the wave function ansatz �n↓=eik↓n+re−ik↓n for
n�−1 and �n↓=�eik↓n for n�1 for the propagating states
and �n↑=cek↑n for n�−1 and �n↑=de−k↑n for n�1 for the
evanescent states. From the tight-binding equations, we ob-
tain the transmission amplitude,

� =
2it sin k↓a

2it sin k↓a +
�2

2t sinh k↑a

. �23�

We can define the broadening �, which measures the cou-
pling strength between spin-up and spin-down states and is

t t t t

t t t t

−2 −1 1 20
λ

FIG. 5. In the minimal tight-binding model, the system consists
of a linear chain of coupled sites with a localized Rashba interaction
at sites n=0 and n=1.
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FIG. 6. Transmission versus Fermi energy for �Z=0.1 and dif-
ferent spin-orbit strengths. All energies are given in units of t.
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FIG. 7. Sketch of the system considered in the discussion for a
pointlike spin-flip interaction between propagating �spin-down� and
evanescent �spin-up� states along a one-dimensional site lattice.
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proportional to the density of states �per unit length� for elec-
trons with spin down. It reads

� = �2�↓ =
�2

2t sin k↓a
. �24�

Using this result and the expressions for k↑ and k↓ written
above, we find the expression for the transmission probabil-
ity,

T = 	�	2 =
�E − �Z/2�2 − �2t�2

�E − �Z/2�2 − �2t�2 + �2 , �25�

valid for energies around the T=0 point E=−2t+�Z /2. We
note that Eq. �25� has the desired Fano form. In the conven-
tional Fano effect, the coupling takes place between a bound
state immersed in a continuum band and the propagating
states.47 Here, the role of the bound state is played by the
evanescent modes which, due to the spin flip interaction, are
coupled to the propagating states with opposite spins.

D. Angular dependence

We now discuss the angular dependence of the B� field
direction. In the strict 1D case, only one mode is needed.
Thus, we expand the wave function in the two-spinor basis

which, in the case of an in-plane field B�

= �B cos � ,B sin � ,0�, takes the form

��x� = �1�x��+�	� + �2�x��−�	� , �26�

with

�± =
1
�2

� 1

±ei� � , �27�

the spinors in the B� direction.
Substituting � in the Schrödinger equation with the

Hamiltonian given by Eq. �2�, we obtain a pair of coupled
equations for �1 and �2:

�1� − 2ikR sin ��1� + �kF
2 − kB

2 − ikR� sin ���1

= − �2kR�2� + kR��2�cos � , �28�

�2� + 2ikR sin ��2� + �kF
2 + kB

2 + ikR� sin ���2

= �2kR�1� + kR��1�cos � , �29�

where primes indicate d /dx, and we recall kR�x�=m��x� /�2.
We use the following gauge transformation:

�1 = �̃1ei sin ���x�, �30�

�2 = �̃2e−i sin ���x�, �31�

where ��x�=�xdx�kR�x��, in order to eliminate the first de-
rivatives in Eqs. �28� and �29�, which are transformed into

�H11 H12

H21 H22
���̃1

�̃2

� = EF��̃1

�̃2

� , �32�

where the elements of the Hamiltonian matrix are

H11 = �� d2

dx2 + kR
2 sin2 � −

m�Z

�2 � , �33�

H12 = � cos �e−2i� sin ��2ikR
2 sin � − kR� − 2kR

d

dx
� , �34�

H21 = � cos �e2i� sin ��2kR
d

dx
+ 2ikR

2 sin � + kR�� , �35�

H22 = �� d2

dx2 + kR
2 sin2 � +

m�Z

�2 � , �36�

with �=−�2 /2m. It is clear that for �= /2 the amplitudes �̃1

and �̃2 decouple and for energies inside the gap the transmis-

sion is given simply by the propagating state �̃2. Then,
propagating and evanescent states become decoupled, and no
dip is expected. Only for angles away from  /2 does the

problem become nontrivial since �̃2 couples with the evanes-

cent amplitude �̃1. Numerical results shown in Fig. 8 confirm
this expectation.

III. QUASI-ONE-DIMENSIONAL WIRE

The preceding section has shown that the Fano resonance
phenomenon manifests itself in 1D quantum wires with Zee-
man splitting and a local Rashba interaction. Real wires, of
course, have always some small extension in the lateral di-
rection. In this section, we analyze the influence of this extra
dimension by considering a quasi-1D wire, including the y
direction. This lateral y confinement is usually weaker than
the vertical z confinement. Thus, we neglect the contribution
of the y-confining electric field to the Rashba strength �see,
however, Ref. 61�. For simplicity, we consider a transverse
potential of parabolic type, m�0

2y2 /2.
The additional spatial dimension is relevant now because

the transverse momentum py explicitly appears in the Rashba
spin-orbit interaction, as shown by Eq. �1�. It is also worth
stressing that the new term in Eq. �1�, proportional to py�x,
precludes the use of the analytical solution discussed in Sec.

����

0000oooo

45454545oooo

90909090oooo

FIG. 8. �Color online� Transmission as a function of Fermi en-
ergy varying the orientation of the in-plane magnetic field. The
azimuthal angle � for each curve is given in the legend. We take
�=6.8�2 /ml and �Z=6.4�2 /ml2.
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II A for a wire with an extended Rashba interaction. In fact,
it is well known that it causes the formation of textured spin
states lacking well defined spin quantization axis even for a
fixed value of the wave number k.10,26 The Rashba coupling
��x� is assumed to be nonzero only in a region of length l,
where it takes the value �, as in Sec. II B. We also include
the Zeeman coupling, as in Sec. II A, of a magnetic field
oriented along a certain azimuthal angle �. The full Hamil-
tonian thus reads

HQ1D =
px

2 + py
2

2m
+

1

2
m�0

2y2 +
�Z

2
�cos ��x + sin ��y� + HR.

�37�

A natural unit system for the present quasi-1D model is
set by the wire transverse potential, with energy unit ��0
�oscillator energy� and length unit l0=�� /m�0 �oscillator
length�. In what follows, the numerical values for the Rashba
region length l, spin-orbit intensity �, and Zeeman energy �Z
will be given in these oscillator units. In order to obtain the
transmission of the system modeled by Eq. �37�, we have
used the quantum transmitting boundary algorithm as in Ref.
30. The Schrödinger equation is discretized on a uniform
grid using finite differences for the derivatives and imposing
scattering boundary conditions. The reader is referred to
Refs. 30 and 62 for additional details of the method.

The existence of the Fano line shapes in a quasi-1D wire,
with a transmission zero at a given energy, is clearly shown
in Fig. 9. This result proves that the physical effect eluci-
dated with the tight-binding model of Sec. II C is robust and
persists in more realistic models. There is also a nice quali-
tative agreement with the 1D results of Fig. 3. In all three
cases �tight binding, 1D, and quasi-1D�, increasing the value
of � leads to a shift toward lower energies of the transmis-
sion zero and to an important broadening of the transmission
dip. These are very appealing features related to practical
applications in spintronic devices since they could allow to
control the transmission by tuning �; the device operation

would not be very sensitive to small changes in � due to the
broadness of the dip.

The scales used in Fig. 9 are of the same order as in Fig.
3. For example, for a confinement strength ��0=0.1 meV in
an InAs wire, we obtain l�1.5 �m, �Z�0.02 meV �B
�20 mT�, and ��9 meV nm.

When the magnetic field is oriented along the wire as in
Fig. 9, the interference leading to the Fano profiles in the
transmission is maximal. On the contrary, for transverse ori-
entation �= /2, it completely disappears �see Fig. 10�. This
behavior is in agreement with the analysis of Sec. II D in the
1D case, where it was shown that the mixings H12 and H21
vanish for �= /2.

The evolution with the Zeeman field intensity for the
quasi-1D case is shown in Fig. 11. The behavior is again
qualitatively similar to the 1D case of Fig. 4, with the dip
evolving toward smaller energies when decreasing the value
of �Z. We also notice that, as predicted by the tight-binding
result, even for quite small Zeeman energies there is a dip in
the transmission.

Thus far, we have considered abrupt interfaces between
the normal sides and the Rashba region. Using the quasi-1D
grid calculation, we can also address the influence of the
smoothness in the transition of the Rashba coupling strength
from zero to the finite value �, which is closer to reality. We
model each interface using a Fermi function with a diffusiv-
ity d,

��x� = �� 1

1 + e�x−l/2�/d −
1

1 + e�x+l/2�/d� . �38�

Figure 12 shows the results for different values of d. The
transmission curve coincides with the abrupt interface limit
when d�0.2l0, while for increasing d the interface becomes
smoother but the transmission zero remains visible and the
dip position does not change much. This is a crucial
observation—the transmission zeros we find are roughly in-
dependent of the precise profile of the Rashba strength. This
robustness has an obvious importance for potential spintronic
applications.
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FIG. 9. �Color online� Transmission as a function of the Fermi
energy for a quasi-1D wire with transverse parabolic confinement
characterized by �0. A Rashba region of length l=8l0 and a Zeeman
energy �Z=0.2��0 with the magnetic field along the wire ��=0�
have been used. The legend gives the numerical values of � /��0l0

for the different curves.
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FIG. 10. �Color online� Transmission versus Fermi energy vary-
ing the orientation of the in-plane magnetic field. The azimuthal
angle � for each curve is given in the legend. We use a Rashba
region of length l=8l0, Zeeman energy �Z=0.2��0, and spin-orbit
coupling strength �=0.5��0l0.
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IV. CONCLUSIONS

We have performed a theoretical analysis of the transport
properties of a ballistic quantum wire with a spatially inho-
mogeneous Rashba interaction in the presence of an external
magnetic field giving rise to Zeeman spin splitting. When the
Rashba coupling dominates the magnetic field, an energy
pseudogap develops in the wire spectrum. We find abrupt
transmission line shapes when the Fermi energy lies within
the pseudogap. The line shapes are narrow and asymmetric,
and the transmission reaches zero for energies near the gap
closing. We have discussed a minimal tight-binding model
that reproduces the essential features of the resonances,
yielding analytical expressions for the line shape dependence
on Fermi energy, Rashba intensity, and Zeeman splitting.

Qualitatively, the evanescent band plays the role of a quasi-
bound state that the confined Rashba interaction couples to
the propagating states. The evanescent waves are not true
bound states, but when the Fermi energy approaches the eva-
nescent band bottom, electrons scattering off the Rashba re-
gion become strongly affected, leading to perfect reflection.
Numerical results in realistic quantum wires agree with the
purely 1D case. Finally, we have analyzed the behavior of
the resonances when the angular orientation of the magnetic
field is changed and the interfaces become smoother.

The system studied here could work as a current modula-
tor device.63 For slight variations of the Fermi energy, which
can be externally controlled, we have shown that the trans-
mission changes dramatically between two limit values �1
and 0� across the antiresonance. Our proposal has a number
of differences compared to the Datta-Das spin transistor.1

First, the latter device modulates the current independently
of the energy of the injected electrons since the phase differ-
ence ��=2m�l /�2 that governs the spin precession is inde-
pendent of the wave vector. Then, small changes of � or l
strongly affects the working points of the transistor, whereas
in our case these points are not very sensitive to small varia-
tions of the external parameters such as the external mag-
netic field, the Rashba strength, or the interface diffusivity.
Moreover, a 100% current modulation is hard to achieve in
the Datta-Das transistor, especially when intersubband cou-
pling is taken into account, whereas in our case the modula-
tion is rather abrupt and is preserved even when adjacent
subbands are coupled, an effect which is unavoidable in real
quantum wires. We have reported results for the lowest spin-
split subband but have checked that similar pronounced dips
are seen in higher subbands. Our results differ also with
those of Ref. 30 since in that case the antiresonances reached
zero only after a fine tuning of the parameters. Here, our only
requirement is that the Fermi energy should lie within the
spectrum pseudogap.

As far as the discussion in 1D wires is concerned, the field
directions orthogonal to the Rashba field �along y, according
to the parametrization of the Hamiltonian we have em-
ployed� are equivalent. However, in the quasi-1D case, one
of these directions �the one perpendicular to both the Rashba
field and the electron propagation� induces orbital effects.
Here, we have restricted ourselves to fields giving rise only
to Zeeman splittings since the study of orbital effects in in-
homogeneous systems requires knowledge of the evanescent
states when the magnetic field is applied perpendicular to the
wire plane. This is not a trivial task, and it seems to be a
promising avenue of future research. Reference 25 finds im-
portant changes in the spectrum structure of a quantum wire
with uniform Rashba interaction and perpendicular magnetic
fields. However, our sharp antiresonances show up even in
the presence of rather small Zeeman splittings. Therefore, we
expect that the dips should still be visible even when orbital
effects are taken into account, provided the magnetic field
length is much larger than the confinement length.

In our discussion, we have neglected electron-electron in-
teraction effects, which may lead to Luttinger liquid effects
in 1D ballistic wires when the interactions are screened like
in a wire with electric-field induced spin-orbit
interactions.64,65 When Zeeman splittings are present,66,67 the
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FIG. 11. Transmission as a function of the Fermi energy for a
quasi-1D wire with a Rashba region of l=8l0 and a magnetic field
along �=0. The different panels correspond to the given Zeeman
energies �in units of ��0�. In each panel, solid and dashed lines
correspond, respectively, to a value of � /��0l0 of 0.45 and 0.40,
respectively.
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FIG. 12. �Color online� Transmission versus Fermi energy for
�=0.45��0l0 and �Z=0.2��0. Each curve corresponds to a differ-
ent diffusivity d, as given in the legend in units of l0, for a Rashba
region of length l=8l0.
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transmission seems to be altered by electron-electron inter-
actions, although these works neglect the intersubband cou-
pling term of the Rashba interaction. In fact, for ballistic
wires without Rashba coupling but multiple populated sub-
bands, a simple mean-field approach demonstrates68 that
Coulomb interactions are crucial to an understanding of rec-
tification effects observed in nanojunction rectifiers.69 On the
other hand, single-particle effects are shown53 to lead to
Coulomb blockade antiresonances of the Fano form. Hence,
further work is needed to clarify the influence of Coulomb
interactions in the conductance of a quantum wire with Zee-
man splitting and a localized Rashba interaction.

Finally, we would like to comment on the role of disorder.
Our findings have a quantum interference origin and are not
less robust than any other coherent interference effect com-
monly found in mesoscopic systems. Since samples with suf-

ficiently long coherence lengths and mean free path are cur-
rently available,70,71 we expect that the effects we discuss
will be robust against weak disorder. The relevance of impu-
rity scattering in the generation of pure spin currents has
been recently shown.72,73 Nevertheless, in this work, we ana-
lyze charge currents, which are much more robust against
sample imperfections. This could be the subject of future
work, in which the impact of disorder in the transmission
modulation should be carefully investigated.
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