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ABSTRACT

A new method to constrain the local non-linear coupling parameter fNL based on a
fast wavelet decomposition is presented. Using a multiresolution wavelet adapted to
the HEALPix pixelization, we have developed a method that is ∼ 102 times faster than
previous estimators based on isotropic wavelets and ∼ 103 faster than the KSW bis-
pectrum estimator, at the resolution of the Wilkinson Microwave Anisotropy Probe
(WMAP) data. The method has been applied to the WMAP 7-yr V+W combined
map, imposing constraints on fNL of −69 < fNL < 65 at the 95 per cent CL. This
result has been obtained after correcting for the contribution of the residual point
sources which has been estimated to be ∆fNL = 7 ± 6. In addition, a Gaussianity
analysis of the data has been carried out using the third order moments of the wavelet
coefficients, finding consistency with Gaussianity. Although the constrainsts imposed
on fNL are less stringent than those found with optimal estimators, we believe that
a very fast method, as the one proposed in this work, can be very useful, especially
bearing in mind the large amount of data that will be provided by future experiments,
such as the Planck satellite. Moreover, the localisation of wavelets allows one to carry
out analyses on different regions of the sky. As an application, we have separately anal-
ysed the two hemispheres defined by the dipolar modulation proposed by Hoftuft et al.
(2009). We do not find any significant asymmetry regarding the estimated value of
fNL in those hemispheres.

Key words: methods: data analysis - cosmic microwave background

1 INTRODUCTION

The cosmic microwave background (CMB) is one of the pil-
lars that provide support to the Big Bang theory. The fluc-
tuations of the CMB naturally arise in an inflationary sce-
nario. The understanding of this very early stage of the his-
tory of the Universe is a challenging issue for the scientific
community due to the implications on large scale structure
formation and fundamental particle physics at high ener-
gies. A large number of inflationary models have been pro-
posed in the literature (for an overview see for instance Lyth
2008) but the task of testing such scenarios is not trivial, and
there is the need of new experiments and powerful statistical
tools to discriminate among them. In this sense, the statis-
tical properties of the CMB temperature anisotropies are a
source of information about the processes that have gener-
ated the primordial fluctuations. In particular, the standard,
slow roll, single field inflationary model predicts a nearly
Gaussian distribution of the CMB temperature anisotropies,

⋆ e-mail: casaponsa@ifca.unican.es

while alternative models may introduce a certain level of
non-Gaussianity in the CMB. A convenient parametriza-
tion valid for a large set of non-standard inflationary mod-
els which includes the quadratic corrections of the pri-
mordial curvature perturbation is (Salopek & Bond 1990;
Gangui et al. 1994; Verde et al. 2000; Komatsu & Spergel
2001):

φ(r) = φL(r) + fNL

[

φ
2
L− < φ

2
L >

]

, (1)

where φL are Gaussian linear perturbations and fNL char-
acterises the amplitude of the non-linear contribution in
real space. This local form appears in non-standard multi-
field inflationary models (Babich et al. 2004; Komatsu et al.
2009). For a complete review on non-Gaussianity due to in-
flationary models see Bartolo et al. (2004). In addition to in-
flationary models, there are other alternative scenarios that
can be constrained, such as the ekpyrotic model where a
negative value of fNL is expected (Lehners 2010). Moreover,
there are other processes that can introduce deviations from
Gaussianity in the third order moments (as foreground con-
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tamination, non-linear gravitational effects, topological de-
fects, etc).

Since the quadratic parametrization was proposed,
an important effort has been made to set observational
constraints on local fNL with a wide variety of meth-
ods including the bispectrum (Yadav & Wandelt 2008;
Smith et al. 2009; Komatsu et al. 2010), wavelet-based
methods (Cayón et al. 2003; Mukherjee & Wang 2004;
Curto et al. 2009a,b; Pietrobon et al. 2009; Rudjord et al.
2009), Minkowski functionals (Hikage et al. 2008) or the
N-pdf (Vielva & Sanz 2009, 2010). Most of these works find
that the data are compatible with fNL = 0, but the con-
straints are not yet sufficiently tight to discriminate among
a large set of inflationary models. The best current limit
is given by Komatsu et al. (2010) and is −10 < fNL < 74
at the 95 per cent confidence level. These constraints have
been obtained with a bispectrum estimator, which is com-
putationally very demanding. However, Curto et al. (2010)
have recently shown that an estimator based on the SMHW
can provide constraints on fNL as stringent as the optimal
estimator, the bispectrum, while reducing considerably
the CPU time. With the arrival of new data from high
resolution experiments such as the ESA Planck satellite1

(Tauber et al. 2010), it becomes even more important
the availability of even faster and simpler methods. With
this aim we present the application for CMB of a wavelet
adapted to the HEALPix pixelization similar to the tool
proposed by Shahram et al. (2007).

The paper is organised as follows. In Section 2 we in-
troduce the HEALPix wavelet decomposition. In Section 3
the method to constrain the fNL parameter as well as the
proposed Gaussianity test are described. In Section 4 we
present the results of the application of this technique to the
WMAP 7-yr data. Finally, our conclusions are summarised
in Section 5.

2 THE HEALPIX WAVELET

A large set of different wavelets have been used in
the astrophysics literature. In particular, different spher-
ical wavelets have been applied to CMB Gaussianity
analysis during the last decade, including the spher-
ical Haar wavelet (SHW, Barreiro et al. 2000), the
SMHW (Mart́ınez-González et al. 2002; Vielva et al. 2004;
Mukherjee & Wang 2004; Cruz et al. 2005; Curto et al.
2009b), elliptical SMWH McEwen et al. (2005), direc-
tional spherical wavelets (McEwen et al. 2005, 2006, 2008)
and needlets (Pietrobon et al. 2009; Rudjord et al. 2009;
Cabella et al. 2010). For a review on wavelet applications
to cosmology see McEwen et al. 2007.

In this work, we will present an application using the
so-called HEALPix wavelet (HW). In the previous work of
(Shahram et al. 2007) a linear operator is applied to the
HW to obtain wavelet coefficients corresponding to vertical,
horizontal and diagonal orientations. This operation leads
to a wavelet coefficients without redundancy, obtaining a
number of wavelet coefficients (details plus approximation)

1 http://www.rssd.esa.int/index.php?project=planck

equal to the number of original pixels. However, we have
kept the HW with its intrinsic redundancy for three main
reasons: first, to improve the computational time, second
to obtain a wavelet decomposition as isotropic as the HW
allows 2, and third, because, as it is shown later, redun-
dancy helps to improve the sensitivity in the detection of
fNL. Similarly to the SHW, the HW is a discrete, orthog-
onal wavelet, adapted to a hierarchical pixelization (such
as HEALPix3, Górski et al. 2005), whereas the SMHW is
a continuous, non-orthogonal wavelet and does not have a
hierarchical decomposition structure. The HW presents an
optimal space localization, while the scale localization is not
as good as that of the SMHW. It is important to point out
that, in the case of the SMHW and of needlets, a transfor-
mation of the data into spherical harmonic space is required.
However, this is not the case for the HW and, therefore, the
computational cost is significantly reduced.
The resolution of a HEALPix map is characterised by the
Nside parameter, such that the number of pixels in which
the sphere is divided corresponds to N = 12N2

side. Nside

can only take powers of two as values. The HW decomposes
the temperature map at resolution J , where Nside = 2J , in
wavelet coefficient maps at all the allowed HEALPix resolu-
tions down to the lower considered resolution j0. The wavelet
functions are defined as follows:

Ψ0,j,k(x) = ϕj+1,k0
(x)−

ϕj,k(x)

4
(2)

Ψ1.j,k(x) = ϕj+1,k1
(x)−

ϕj,k(x)

4

Ψ2,j,k(x) = ϕj+1,k2
(x)−

ϕj,k(x)

4

Ψ3,j,k(x) = ϕj+1,k3
(x)−

ϕj,k(x)

4

where ϕ(x)j,k is the scaling function

ϕ(x)j,k =

{

1 if x ∈ Pj,k

0 otherwise ,
(3)

and Pj,k is the pixel at position k at resolution j, which
at the next higher resolution is divided into four daughter
pixels Pj+1,k0

, Pj+1,k1
, Pj+1,k2

, Pj+1,k3
.

The wavelet decomposition of a temperature map can
be written in terms of the basis functions and a set of
coefficients:

∆T

T
(xi) =

Nj0
−1

∑

k=0

λj0,kϕj0,k(xi)+

+

J
∑

j=j0

3
∑

m=0

Nj−1
∑

k=0

γm,j,kΨm,j,k(xi) , (4)

where Nj is the number of pixels at resolution j. λj,k and
γm,j,k are the approximation and detail coefficients respec-
tively. From a practical point of view, to perform the decom-
position, we start with the original resolution, i.e. j = J .

2 It is worth mentioning that HW detail coefficients help to
highlight the isotropy properties of the field as compared to the
directional oriented details of the SHW. This is important because
the local non-Gaussianities are expected to be isotropic.
3 http://healpix.jpl.nasa.gov/
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At this resolution, the approximation coefficients λJ,k cor-
respond to the pixels of the original tempature map. The
approximation coefficients at the next resolution are simply
obtained by degrading the map to the inmediatly lower res-
olution (i.e., by averaging the corresponding four daughter
pixels):

λj,k =
1

4

3
∑

i=0

λj+1,ki
, (5)

On the other hand, the detail coefficients at resolution j+1
are simply obtained by subtracting the approximation at res-
olution j from the approximation at resolution j + 1. Thus,
the detail coefficients are defined as:

γ0,j,k = λj+1,k0
− 4λj,k (6)

γ1,j,k = λj+1,k1
− 4λj,k

γ2,j,k = λj+1,k2
− 4λj,k

γ3,j,k = λj+1,k3
− 4λj,k

A schematic diagram of how to obtain the approximation
and detail coefficients is given in Fig. 1.

3 METHODOLOGY

The main purpose of this work is to constrain the parame-
ter fNL defined in Eq. (1) using the WMAP-7yr data4. For
this analysis, we only consider the (foreground reduced) V
and W channels, since they are less afected by foreground
contamination. A single CMB map is obtained through a
noise-weighted linear combination of the V and W receivers.
The KQ75 mask (which covers around a 29 per cent of the
sky) is applied subsequently.

In order to calibrate our estimator, we need both Gaus-
sian and non-Gaussian simulations. To generate the Gaus-
sian simulations, we compute the power spectrum that best
fits the WMAP-7yr data accordingly to the parameters es-
timated by Komatsu et al. (2010). For this purpose we use
the On-line tool CAMB (Lewis et al. 2000). We then apply
the corresponding beam and pixel functions to simulate the
data at each of the considered receivers (2 for V and 4 for
W). A Gaussian noise realisation is subsequently added to
the CMB maps with a variance per pixel given by σ0

Nobs
,

where σ0 is the detector sensitivity of each of the receivers
and Nobs is the number of observations at each pixel. Finally
the six maps are combined in the same way as the data.

Regarding the non-Gaussian simulations, we have used
the 1000 simulations generated by Elsner & Wandelt (2009)
that are publicly available5. The previous authors provide
the harmonic coefficients for the Gaussian and non-Gaussian
parts of the simulation. A non-Gaussian simulation with a
given value of fNL is then constructed as:

alm = a
(G)
lm + fNLa

(NG)
lm , (7)

where we have normalized a
(G)
lm and a

(NG)
lm

6 to the power

4 The data are available at the LAMBDA web page:
http://lambda.gsfc.nasa.gov/
5 http://planck.mpa-garching.mpg.de/cmb/fnl-simulations/
6 The amplitude of the aNG

lm
has been corrected by a factor of 3

5
as indicated by the authors

spectrum that best fits the WMAP-7yr data, and that was
used for the Gaussian simulations (the original simulations
were obtained using the WMAP 5-yr power spectrum).
Again, we construct the maps for the V and W receivers, ap-
plying the corresponding beam and pixel transfer functions
and adding the appropriate level of noise. Finally a single
V+W combined map is constructed for each non-Gaussian
simulation.

3.1 Cubic statistics

In this section we define the third order moments of the
wavelet coefficients that are used to constrain fNL. Sim-
ilar statistics have been used in other previous works
(Curto et al. 2009b; Rudjord et al. 2009).
We perform the wavelet decomposition of the considered
map starting at resolution Nside = 512 (J = 9) and down to
Nside = 2 (j0 = 1) (when using a higher value of j0 we are
losing efficiency whereas for j0 = 0 the results are not sig-
nificantly improved while the computational time increases
by a 30%). We obtain 8 detail maps and 1 approximation
map. In addition, we also include in the analysis the origi-
nal map and the 8 intermediate approximation maps (which
are obtained during the wavelet decomposition to construct
the detail coefficients). Although, in principle, these addi-
tional approximation maps contain redundant information,
they seem to provide additional information regarding the
third order statistics, since a larger number of third order
combinations can be constructed. In fact, we have tested
that with the inclusion of the approximation maps and the
original map, the results are improved by a 30%. Therefore,
we have a total of 18 maps for each analysed signal. The
statistics are constructed as the third order moments of all
the possible combinations of these 18 maps, where the coef-
ficients are weighted to take into account the presence of a
mask. In order to calculate these weights, one performs the
wavelet decomposition of the considered mask (that has ze-
ros in the masked pixels and ones in the rest). The wavelet
coefficients of the mask at each detail and approximation
scale are used to construct the weight wj(i) of the coeffi-
cient at position i at resolution j. This makes sense if one
bears in mind how the wavelet decomposition is performed.
For instance, to construct the approximation map at resolu-
tion J − 1 at a given position i, the four daughter pixels at
resolution J have to be averaged. If the four pixels are un-
masked, this corresponds to a weight of 1 in the original map
and also in the approximation map at position i. However,
if one of the orignal pixels is masked, this pixel would have
a weight of zero, and the average would be done only over
three pixels. Thus the weight of the corresponding approx-
imation coefficient would be 3/4. Therefore, this weighting
scheme takes into account the fact that different coefficients
contain different amount of information, depending on the
considered mask. Also, contrary to the case of other wavelet
estimators, this means that the mask does not need to be ex-
tended but, in fact, it is reduced when increasing the scale.
This is due to the fact that a larger pixel is kept for the
analysis, with the appropriate weight, if at least one of the
daughter pixels was unmasked.

c© 0000 RAS, MNRAS 000, 000–000
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Figure 1. Diagram of the construction of the approximation and detail coefficients. Approximation coefficients are computed as the
average of the four daughter pixels. Detail coefficients are computed as the subtraction of that average from the original pixels and are
represented by d.

The third order statistics are then defined as:

Sjkl =
1

Nl−1
∑

i=0

Wjkl(i)

Nl−1
∑

i=0

Wjkl(i)ǫi,jǫi,kǫi,l
σjσkσl

, (8)

where ǫi,j = yi,j − µj and yi,j are the wavelet coefficients
maps at position i at resolution j. Note that j goes from j0
to J , k goes from j to J and l goes from k to J . µj and
σj are the weighted mean and the dispersion for the map at
resolution j. Wjkl(i) is the weight associated to the wavelet
coefficients at position i and scales j, k, l and is given by:

Wjkl(i) =
3
√

wj(i)wk(i)wl(i) . (9)

Note that some of these statistics are redundant (lin-
early dependent between them), so we restrict our analysis
to the set of non-rendudant statistics, which gives a total of
nstat =232 quantities.

The process for computing these statistics requires ∼
N × nstat number of operations, where N is the number
of pixels and nstat the number of statistics computed. This
number is significantly lower than that of the full bispectrum

that needs N
5

2 operations. Using the KSW algorithm pre-
sented in Komatsu et al. (2005) the number of operations is

reduced to ∼ rN
3

2 , where r is the number of sampling points
(of the order of 100). On the other hand, the SMHW scales

as ∼ nsN
3

2 , where ns is the number of scales involved (of
the order of 10). Thus, at WMAP resolution (Nside = 512
and N ∼ 3×106) we have that the method presented in this
work is 102 times faster than the SMHW, 103 times faster
than KSW bispectrum estimator and 107 faster than the
general bispectrum estimator.

3.2 Gaussianity test and fNL constraints

We first perform a Gaussianity test in order to probe
whether the data is compatible with Gaussianity using the
χ2 estimator:

χ
2 =

nstat
∑

i,j=1

(vi − 〈vi〉)C
−1
ij (vj − 〈vj〉) , (10)

where vi is the vector of the third order statistics computed
from the considered map (to simplify notation, hereinafter
we define v1 ≡ S111, v2 ≡ S112, ...). 〈vi〉 and Cij are the
mean and covariance matrix of the statistics obtained with
10000 Gaussian simulations. To perform the Gaussianity
test, the value of the χ2 is computed for the WMAP data,
and compared to the distribution of the estimator obtained
from an additional set of 1000 Gaussian simulations.

The second analysis that has been performed is the es-
timation of fNL from the data. As the wavelet decompo-
sition is linear, we can obtain the wavelet coefficients from
the Gaussian and non-Gaussian parts separately. Thus, the
wavelet coefficients for a given value of fNL are given by

yi = y
(G)
i + fNLy

(NG)
i . (11)

Taking into account that y(NG) are around 4 orders of mag-
nitude smaller than y(G), when we compute < y3 > the NG
high-order terms can be neglected and it can be shown that
fNL is proportional to the wavelet estimators, as it is also
the case for other statistics (such as the bispectrum):

vi = aifNL , (12)

where ai can be computed from simulations with a simple
linear regression.

In order to estimate the fNL parameter, we perform a

c© 0000 RAS, MNRAS 000, 000–000
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χ2 minimisation. In particular, χ2(fNL) is defined as follows

χ
2 =

nstat
∑

i,j=1

(vi − 〈vi〉fNL
)C−1

ij (fNL)(vj − 〈vj〉fNL
) , (13)

where 〈vi〉fNL
is the mean of the statistics for a given

value of fNL obtained from the 1000 non-Gaussian simula-
tions and Cij(fNL) is the corresponding covariance matrix.
For fNL << 1000 is reasonable to use the approximation
Cij(fNL) ≃ Cij , where Cij is the covariance matrix for the
Gaussian case.

Error bars on the parameter estimation at different con-
fidence levels are found using the Gaussian simulations. We
also compute the minimum variance in a semi-analytical
manner. It is well known that the diagonal of the inverse
of the Fisher matrix provides an estimation of the variance
of the parameters. In order to estimate the Fisher matrix, we
approximate the distribution of the statistics by a Gaussian.
Using this approximation and taking into account Eqs. (12)
and (13), the variance from the Fisher Matrix can be written
as:

σ
2 =

1
nstat
∑

i,j

aiC
−1
ij aj

. (14)

In practice, the distribution of the statistics do not follow a
perfect Gaussian distribution. Therefore, this variance can
be seen as a lower limit to the true underlying variance.

4 RESULTS

In this section, we present the analysis of the WMAP-7yr
V+W combined map. On the one hand, we analyse the
compatibility of the data with Gaussianity using the cu-
bic statistics defined in Eq. (8) and the estimator presented
in Eq. (10). On the other hand, we compute the best-fit
fNL parameter from the data by minimizing Eq. (13). Error
bars are set using simulations. In addition, we also present
a study of the contribution of the point sources to the es-
timated fNL value and of the variation of fNL estimated
from two independent hemispheres (defined by Hoftuft et al.
2009).

4.1 Gaussianity test

As explained in Section 3.1, we have considered a total of
232 cubic statistics, constructed from 18 maps at 9 differ-
ent scales. Fig. 2 shows the value of vi for the WMAP 7-yr
V+W data, after applying the KQ75 mask. The plot does
not show any obvious deviation from Gaussianity. To fur-
ther study the consistency of the data with Gaussianity, we
also perform the χ2 test defined in Eq. (10). From 1000
Gaussian simulations, we estimate the distribution of this
quantity, finding a mean value of

〈

χ2
〉

= 233, very close to
the number of degrees of freedom (232). The value of the
dispersion is 69, larger than expected for a χ2 distribution
with the considered degrees of freedom. However, this may
be explained by the fact that the distribution of the dif-
ferent statistics are not purely Gaussian. For the WMAP
data, we find χ2

data = 434 with a cumulative probability of
P (χ2

6 χ2
data) = 0.96. Although the result indicates that
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Figure 2. The cubic statistics vi from WMAP-7y V+W data are
shown. Shadow areas correspond to the 68, 95 and 99 per cent
confidence levels of the distribution obtained from 1000 Gaussian
simulations. The statistics have been plotted from lower to higher
variance.
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Figure 3. Mean values of the cubic statistics vi from 1000 non-
Gaussian simulations with fNL = 0,±100,±300.

the WMAP data is some how in the tail of the distribution,
the χ2 value is not large enough to claim a deviation from
Gaussianity.

4.2 Constraints on the fNL parameter

We have also performed an estimation of the non-linear
parameter fNL. As already mentioned, for this analy-
sis we have used the 1000 non-Gaussian simulations pro-
vided by Elsner & Wandelt (2009). In Fig. 3, the mean of
the cubic statistics derived from simulations with fNL =
0,±100,±300 is presented. It can be seen that, as stated in
Eq. (12), the statistics are proportional to the value of fNL.

After obtaining the cubic statistics for the WMAP-7yr
data and minimising the χ2 given by Eq. (13), we estimate
that the best-fit value of fNL is 6. Using Gaussian simu-
lations, we find that the contraints for the parameter are
−28 < fNL < 40 at the 68 per cent confidence level and
−62 < fNL < 72 at the 95 per cent confidence level. It is
also interesting to point out the agreement between the dis-

c© 0000 RAS, MNRAS 000, 000–000
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persion computed semi-analytically through the Fisher ma-
trix (Eq. 14) and that obtained from Gaussian simulations,
which are both estimated to be around 34.

Although the constraints provided by the HW are less
stringent than those found with optimal estimators (such as
the bispectrum or the SMHW), they are similar or even bet-
ter than those obtained by other mehtods such as needlets
(Pietrobon et al. 2009; Rudjord et al. 2009), the Minkowski
functionals (Hikage et al. 2008) or the N-pdf (Vielva & Sanz
2009). Moreover, as already pointed out, our estimator is sig-
nificantly faster than all the previously mentioned methods,
providing a very valuable tool, especially for future high res-
olution experiments such as Planck. It is also interesting to
point out that we find a more symmetric constraint around
zero than those obtained, for instance, by Komatsu et al.
(2010) or Curto et al. (2010).

In order to study further the robustness of our estima-
tor, we have performed some additional tests. In particular,
we have estimated the mean value and dispersion of the
best-fit value of fNL from simulations with different values
of fNL. The left panel of Fig. 4 shows the histograms of
the estimated values of fNL obtained from simulations with
fNL=-40,0,20,60. To carry out these tests, we have used 500
of the 1000 non-Gaussian simulations to estimate the mean
value of the third order statistics 〈vi〉fNL

and the remaining
500 simulations to obtain estimates of fNL and construct
the histograms. The mean values and dispersions of fNL are
given in the corresponding panels. In particular, we see that
the method is unbiased, since the mean value of the esti-
mated fNL is very close to the true underlying value for all
the considered cases. In addition, we also plot in the right
panel of Fig. 4 how the dispersion of the estimator varies
as a function of fNL. The standard procedure to estimate
this dispersion is to use Gaussian simulations but, as seen
in the plot, this gives a minimum in the estimated value of
σ(fNL). However, for small values of fNL, such as the ones
found in this paper, the variation is small and therefore one
can safely use the value of the dispersion estimated for the
Gaussian case.

Finally, we have repeated the same analysis using a set
of 300 non-Gaussian simulations generated by Liguori et al.
(2007), finding very similar constraints on fNL.

4.3 Point source contribution

The background of unresolved point sources may introduce
a bias in the estimation of fNL. In order to correct this
bias, we have studied the contribution to fNL given by a
point source background that is added to the Gaussian sim-
ulations. For that purpose, we have produced point source
simulations following the procedure of Curto et al. (2009a).
In particular, point sources maps are simulated according to
the density distribution given by de Zotti et al. (2005) in a
range of intensities between Imin = 1mJy and Imax = 1Jy.
These maps are then convolved with the corresponding beam
and pixel functions and added to the simulations contain-
ing Gaussian CMB plus noise. The estimated value of fNL

when point sources are present is then compared to the one
obtained from simulations containing only CMB and noise,
finding a difference of ∆fNL = 7± 6. Fig. 5 shows the effect
that point sources have on the vi statistics. As one would ex-
pect, they mainly affect the statistics involving small scales,
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Figure 5. Mean values of the vi statistics obtained from 1000
Gaussian simulations with and without point sources. Diamonds
represent CMB plus noise simulations, while crosses correspond
to simulations including also the point sources. To improve the
visualization, the statistics have been normalised to unit disper-
sion.

that correspond to the ones with a lower value of k in the
figure. Taking into account this result our final constraint
on fNL for the WMAP-7yr data is −69 < fNL < 65 at the
95 per cent confidence level.

4.4 Local study of fNL

Finally, we have analysed the data considering two in-
dependent hemispheres. In particular, we have consid-
ered the hemispheres associated to the dipolar modu-
lation proposed by Hoftuft et al. (2009) where the pre-
ferred direction is pointing towards the Galactic coordi-
nates (l,b)=(224◦,−22◦). We have estimated the best-fit
value and constraints on fNL for the WMAP 7-yr data
in both hemispheres, following the same procedure as for
the full-sky. After correcting the point source contribu-
tion, the constraint found for the northern hemisphere is
−73 < fNL < 119 while for the southern hemisphere we
have −137 < fNL < 62, both at the 95 per cent confidence
level. Therefore, as it was the case for the full-sky, both hemi-
spheres are consistent with Gaussianity (i.e, fNL = 0). We
have also tested that the results from the hemispheres are
consistent between them. In particular, we have obtained the
mean difference and dispersion between the fNL estimates
at each hemisphere for Gaussian simulations, finding values
of 〈∆fNL〉=-4 and σ(∆fNL)=71. For the WMAP data, we
have ∆fNL = 67, which is perfectly consistent with the val-
ues expected from Gaussian simulations. Therefore, we do
not find any assymmetry for the considered hemispheres.
These results are in agreement with the analysis based on
needlets made by Pietrobon et al. (2010) and Rudjord et al.
(2010) for the WMAP-5yr data, where several divisions of
the CMB map are studied without finding a significant
asymmetry. In a recent work, Vielva & Sanz (2010) have
found an asymmetry in the same hemispheres studied in
this paper on the estimation of the fNL using the N-pdf.
The disagreement may be caused by the differences on the
methods. While Pietrobon et al. (2010) and Rudjord et al.
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Figure 4. The left part of the figure shows the histograms of the estimated fNL from simulations with values of fNL = −40, 0, 20, 60.
The mean value and dispersion of fNL for each considered case is indicated in the corresponding panel. The right panel shows the
behaviour of σ(fNL) when estimated from simulations with different values of fNL.

(2010) have worked with the same resolution as we did (6.9
arcmin), Vielva & Sanz (2010) focused on scales around 2◦.
Also, the non-Gaussian model used by the former works is
the same as the one used in this paper, whereas the model
of the latter stands on the Sachs-Wolfe regime.

5 CONCLUSIONS

We have presented a new methodology to analyse the Gaus-
sianity of the CMB and to constrain the fNL parameter
using the so-called HEALPix wavelet. To our knowledge,
the developed fNL estimator is the fastest method that has
been proposed up to date. In particular, for WMAP resolu-
tion (Nside = 512), it is ∼ 102 times faster than the SMHW,
∼ 103 times faster than the KSW bispectrum and 107 times
faster than the general bispectrum estimator. Moreover, al-
though the constraints imposed by our method are not as
stringent as those of the optimal estimators (based on the
bispectrum or on the SMHW), they are very similar or even
better than those proposed by alternative methods, such as
needlets, Minkowski functionals or the N-pdf.

The method, which is based on the calculation of the
third-order moments of the wavelet coefficient maps, has
been applied to the WMAP-7yr V+W combined map. On
the one hand, we have performed a χ2 test to study the
Gaussianity of the CMB, finding consistency with the Gaus-
sian hypothesis. On the other hand, we have constrained the
value of the local fNL parameter to be −69 < fNL < 65 at
the 95 per cent confidence level, after correcting for the point
source contribution. In addition, the HEALPix wavelet gives
the possibility of performing local studies of Gaussianity in
the CMB map. In particular, we have analysed two inde-
pendent hemispheres associated to the dipolar modulation
proposed by Hoftuft et al. (2009). In this study, we do not
find any significant asymmetry on the fNL estimates for the
two hemispheres of the WMAP data. The constraints for the
northern and southern hemispheres are −73 < fNL < 119
and −137 < fNL < 62, respectively, at the 95 per cent con-
fidence level.

ACKNOWLEDGMENTS

We thank R. Fernández-Cobos for useful discussion on the
HEALPix wavelet properties. We also thank M. Liguori and
F. Elsner for help with the non-Gaussian simulations. The
authors thank L. Cabellos for computational support. We
acknowledge partial financial support from the Spanish Min-
isterio de Ciencia e Innovación project AYA2007-68059-C03-
02. B. Casaponsa thanks the Spanish Ministerio de Cien-
cia e Innovación for a pre-doctoral fellowship. P. Vielva ac-
knowledges financial support from the Ramón y Cajal pro-
gramme. The authors acknowledge the computer resources,
technical expertise and assistance provided by the Span-
ish Supercomputing Network (RES) node at Universidad de
Cantabria. We acknowledge the use of Legacy Archive for
Microwave Background Data Analysis (LAMBDA). Support
for it is provided by the NASA Office of Space Science. The
HEALPix package was used throughout the data analysis
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folatti L., González-Nuevo J., 2005, A&A, 431, 893

Elsner F., Wandelt B. D., 2009, ApJS, 184, 264
Gangui A., Lucchin F., Matarrese S., Mollerach S., 1994,
ApJ, 430, 447
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