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A B S T R A C T
We study the evolution of finite perturbations in the Lorenz ‘96 model, a meteorological toy model of the atmosphere.
The initial perturbations are chosen to be aligned along different dynamic vectors: bred, Lyapunov, and singular vectors.
Using a particular vector determines not only the amplification rate of the perturbation but also the spatial structure of the
perturbation and its stability under the evolution of the flow. The evolution of perturbations is systematically studied by
means of the so-called mean-variance of logarithms diagram that provides in a very compact way the basic information
to analyse the spatial structure. We discuss the corresponding advantages of using those different vectors for preparing
initial perturbations to be used in ensemble prediction systems, focusing on key properties: dynamic adaptation to
the flow, robustness, equivalence between members of the ensemble, etc. Among all the vectors considered here, the
so-called characteristic Lyapunov vectors are possibly optimal, in the sense that they are both perfectly adapted to the
flow and extremely robust.

1. Introduction

Making predictions in systems with spatio-temporal chaos in-
volves not only an analysis of error amplifications, coming from
model uncertainties and assimilation defects, but also a study of
the spatial propagation of perturbations. Apart from the interest
of being a fundamental study of chaotic dynamics, suited pertur-
bations are daily used in weather forecasting in the generation of
initial ensembles (Kalnay, 2002). The so-called Ensemble Pre-
diction System (EPS), which is the main operative tool used in
today’s forecasting, estimates the error evolution by means of
deterministic forecast integration given by a model (Tracton and
Kalnay, 1993; Molteni et al., 1996). Differences between these
forecasts (members of the ensemble) are finite perturbations.
The choice of a proper initial ensemble is crucial for the final
result and some kind of control—in order to obtain a determined
statistics or spread on the initial ensemble evolution—is nec-
essary. The deterministic character of a chaotic system should
provide this possibility, but up to now this choice is based on
more or less phenomenological arguments, leading to controver-
sies about the use of bred versus singular vectors (SVs) (Errico
and Langland, 1999; Toth et al., 1999). The main obstacle is the
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complexity of weather models that impedes a precise treatment
in the generation of perturbations (Wei and Frederiksen, 2004).
The simple characterization of perturbations can be difficult
due to the existence of several temporal scales and characteris-
tic lengths (Primo et al., 2007). Even in the case of simplified
models, a complete picture of the potential use of finite or in-
finitesimal perturbations as initial ensembles is actually lacking.
Most of the existing studies limit their analysis to the behaviour
of the perturbation amplitude (the norm), paying very little or
no attention to the differences in the spatial structure of bred,
Lyapunov or SVs (Smith, 2001).

In a system with chaos in space and time the norm of an
infinitesimal random perturbation always grows exponentially,
but the collapse to the main Lyapunov vector (involving spatial
propagation of errors) evolves slowly with a power law in time
(López et al., 2004). Since space and time play complementary
roles it is easy to find scaling laws relating both variables. These
laws are important because they can completely determine the
main features of a perturbation in both their generation and their
evolution. In the past few years, it has been shown that a very
convenient way to study these processes is through a logarithmic
transformation of the perturbation (Pikovsky and Kurths, 1994;
Pikovsky and Politi, 1998; López et al., 2004; Primo et al., 2005,
2006; Szendro et al., 2007; Pazó et al., 2008, 2009). Indeed, many
properties are not only generic but universal in quantitative terms
for a broad family of spatio-temporal chaotic systems.
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For the sake of simplicity we restrict our analysis to errors due
to initial perturbations, hence we are assuming the hypothesis
of perfect model. Perturbations of this kind can be simulated
taking a ‘control’ trajectory of the system y(t) and integrating in
parallel another copy of the system y′(t) obtained by perturbing
the control trajectory at t = 0: y′(0) = y(0) + v(0). In our study,
the perturbation v is applied along either a bred, Lyapunov, or
SV. In this paper we characterize the spatio-temporal dynamics
of the perturbation as time evolves, v(t) = y′(t) − y(t).

An ensemble of perturbations for probabilistic forecasting
purposes can be constructed from a given set of initial perturba-
tions v by using different methods (Kalnay, 2002) but the choice
of the members of that ensemble (the perturbation vectors v or a
suitable combination of them) is of a major relevance for the fi-
nal result. Two major approaches are currently used in operative
weather forecasting based on EPSs to try to efficiently sample
the uncertainty related to the initial condition assessment by
introducing appropriate initial perturbations. On the one hand,
there are ensembles of bred vectors, which are finite perturba-
tions that are grown from the past trajectory of the models. On
the other hand, there are operative forecasting techniques that
mostly use SVs, which capture the directions of maximal growth
in a fixed time window in the future. Although much work has
been devoted to the development of techniques for the generation
of such ensembles, still little is known about the spatiotemporal
evolution of the initial perturbations themselves (i.e. the mem-
bers of the ensemble) and their spatio-temporal correlations.
Understanding the spatio-temporal behaviour of the members
of the ensemble (either bred, singular or others) is a fundamen-
tal, still open, question that needs to be solved to be able to
construct ensembles of perturbations that serve better for the
purpose.

In preparing an ensemble of initial perturbations there is a
number of properties that are desirable. The four most outstand-
ing properties usually required are the following: (i) Dynamic
adaptation: initial perturbations should be well embedded in the
attractor, this can be achieved by growing perturbations from
the (remote) past. (ii) Reliability and equivalence among the
members of the ensemble: One wants the perturbations to be
statistically equivalent but at the same time to have enough di-
versity to capture a significant portion of the phase space. (iii)
Analysis of error: the ensemble should be able to capture dif-
ferences between the analysis and the true atmospheric state.
Finally, (iv) fastest spread: The ensemble should be able to sam-
ple the fastest growth directions in phase space, so that the more
unstable directions are well represented. To obtain an ensem-
ble that performs well with one or two of these requirements
is relatively easy, but producing ensembles with members that
satisfy all these properties is a tremendously difficult problem,
which in our opinion is still unresolved. In order to improve
our design of ensembles it is fundamental to understand better
the spatio-temporal properties of the perturbation vectors to be
used.

The aim of this paper is to explore the possibilities of con-
trol on the evolution of the ensemble using bred, singular, and
Lyapunov vectors in a simple model of spatial chaos. Obvi-
ously, by controlling the ensemble evolution a more adapted
probabilistic forecast can be performed, which confers practical
interest to our study. On one hand, we have the basic elements
to address this study on a firm theoretical basis, by characteriz-
ing the elements (initial vectors) with physical properties such
as correlation lengths and crossover times, and their generation
and evolution by space–time scaling properties (Primo et al.,
2005). On the other hand, there exists a very simple represen-
tation of the dynamics of perturbations, the recently introduced
mean-variance of the logarithm (MVL) diagram (Primo et al.,
2005, 2007; Gutiérrez et al., 2008), which provides in a con-
densed form information about their state. This diagram is a
very general representation of a chaotic evolution in which tem-
poral and structural evolutions are graphically represented in a
sort of simple phase space.

The paper is organized as follows. Section 2 is devoted to
introduce the model and its associated linear operator to prop-
agate infinitesimal perturbations. In Section 3, the definition
and fundamental properties of the dynamic vectors used are
briefly presented. Sections 4–6 deal with the main aspects in
the description of the perturbation growth, the norm, the spa-
tial localization and the spatial structure. Section 7 is a brief
introduction to the MVL diagram as a tool to represent the evo-
lution of finite perturbations. Section 8 deals with the evolution
of free finite perturbations initialized by bred, Lyapunov, and
SVs. Taking these results in mind, Section 9 includes a short
digression about the use of different (dynamic) vectors to pre-
pare initial ensembles. Finally, some conclusions about the use
of dynamic vectors to control some aspects in the evolution of an
ensemble of initial perturbations are outlined in the conclusions
(Section 10).

2. Lorenz ‘96 model

In order to gain intuition about the evolution of ensembles of
different types of perturbations we restrict ourselves in this paper
to a model that is simple enough to allow us fast simulations
with good statistics, while at the same time the model displays
complex behaviour and spatio-temporal chaos. Our numerical
simulations were carried out in the equation proposed by Lorenz
(1996) as a toy model of weather dynamics. We consider a
one-dimensional array of variables y(t) = {yx(t)}x=1,...,L with
periodic boundary conditions

d

dt
yx = −yx − yx−1(yx−2 − yx+1) + F . (1)

The variables yx may be looked at as the values of some un-
specified scalar meteorological observable, like a vorticity or
temperature, at equally spaced sites extending around a lati-
tude circle (Lorenz and Emanuel, 1998). The L96 model (1)
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Fig. 1. Lyapunov spectrum of the Lorenz ‘96 model for F = 8 and a
system size L = 128. Lyapunov exponents are disposed following the
standard ordering (λn ≥ λn+1). (λ1 ∼= 1.78 and λ43 = 0.)

contains quadratic, linear and constant terms mimicking ad-
vection, dissipation and external forcing, respectively. We take
F = 8 and typically use L = 128 throughout the paper. This leads
to a highly chaotic dynamics as demonstrated by the Lyapunov
exponents shown in Fig. 1 . The Lyapunov spectrum has been
computed by means of the well-known algorithm of Benettin
et al. (1980) using the tangent space evolution equation

d

dt
δyx = −δyx − δyx−1(yx−2 − yx+1)

− yx−1(δyx−2 − δyx+1). (2)

A linear operator A allows one to obtain the perturbation at time
t from the perturbation at an earlier time t0

δy(t) = A(t, t0)δy(t0). (3)

In contrast with infinitesimal perturbations, the evolution of
a finite perturbation v (t) is computed explicitly from the differ-
ence between the two distinct trajectories initiated from slightly
different initial conditions: v(x, t) = y

′
x(t) − yx(t).

3. Fundamentals: bred, Lyapunov
and singular vectors

Perturbation dynamics in extended chaotic systems can be anal-
ysed by using different types of vectors. These vectors are gener-

ically called ‘Lyapunov vectors’, however, they are actually dif-
ferent quantities by construction and they indeed contain differ-
ent type of information about the chaotic trajectory depending
on its magnitude (infinitesimal or finite), the temporal interval
for the calculation (finite or quasi-infinite; past, future or both).
Next we briefly introduce the vectors we will be considering in
this paper, and recall their most outstanding properties, which are
summarized in Table 1. The use of these vectors is widespread
in the specialized literature because they provide a fundamental
tool to characterize space–time chaos in different contexts rang-
ing from theoretical studies to actual weather forecasting with
operative models.

3.1. Backward Lyapunov vectors (B-LVs)

Following Legras and Vautard (1996), we distinguish backward,
forward and characteristic Lyapunov vectors (LVs). Backward
Lyapunov vectors (B-LVs) are the vectors obtained integrating
eq. (2) by means of the Gram–Schmidt orthogonalization pro-
cedure. They appear, for instance, as a byproduct of the popular
algorithm of Benettin et al. (1980) to obtain the Lyapunov expo-
nents (LEs). There exists a B-LV bn for each Lyapunov exponent
λn. At t = 0 the B-LV corresponding to the largest LE, b1(t =
0), is called the first (or main) LV and gives the orientation at
present time, t = 0, of a perturbation after integrating eq. (3)
from a random infinitesimal initial perturbation in the remote
past (formally from t0 = −∞). B-LVs corresponding to other
LEs must be orthogonalized to avoid the collapse along the di-
rection of the first vector. This makes B-LVs for n > 1 to be
dependent of the specific scalar product used. It was rigorously
proven by Ershov and Potapov (1998) that B-LVs obtained in the
Benettin method are indeed eigenvectors of AA∗. Throughout
this paper we adopt the standard scalar product in the Euclidean
space and thus A∗ = AT.

Backward LVs have information from the past but not from
the future. Accordingly, LEs are recovered only when integrating
these vectors backwards: lim t→−∞ t−1 ln ||A(t , 0) bn(0)|| = λn.
In contrast, forward integration results in a growth with the
generic exponential rate λ1 for all of them. It is important to

Table 1. Different vectors and properties

Vector type Notation Magnitude Computation interval Eigenvector of Control parameter(s)

Log-BV lM0 Finite (−∞, 0) — M0

B-LV bn Infinitesimal (−∞, 0) A(0, −∞) A
∗
(0, −∞) n (↔ n-th LE)

F-LV fn Infinitesimal (0, ∞) A
∗
(∞, 0) A(∞, 0) n (↔ n-th LE)

C-LV gn Infinitesimal (−∞, 0) ∪ (0, ∞) — n (↔ n-th LE)
SV sτ Infinitesimal (0, τ ) A

∗
(τ , 0) A(τ , 0) τ (here n = 1 only)

Notes: The computation time indicates which temporal range is needed to obtain each vector at time t = 0; in
practice infinite-time limits are replaced by sufficiently long times. Notation: Log-BV, logarithmic bred vector;
B-LV, backward Lyapunov vector; F-LV, forward Lyapunov vector; C-LV, characteristic Lyapunov vector; SV,
forward singular vector. For SVs, only the eigenvector with the largest eigenvalue (n = 1) is considered.
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stress that, due to the constraint of orthogonality, the B-LVs are
not covariant with the dynamics: bn(t > 0) �= A (t , 0) bn(0), for
n > 1. Nonetheless, they are well adapted to the flow (B-LVs
corresponding to positive LEs point inside the attractor) because
they are perturbations that have evolved from the remote past,
capturing the convergence of volumes in phase space towards
the strange attractor via the stretching-and-folding mechanism.

3.2. Forward Lyapunov vectors (F-LVs)

Forward LVs (F-LVs) are the time-reversed counterpart of B-
LVs. F-LVs are generated as B-LVs but integrating backwards
from the far future. Therefore, F-LVs are not well adapted to the
dynamics (they are not tangent to the attractor), but in contrast
with B-LVs, the corresponding λn are recovered when integrat-
ing these vectors forwards lim t→∞ t−1 ln ||A(t , 0) fn(0)|| = λn.
Backward integration, however, results in a exponential growth
with the same rate −λL for all of them. So, again F-LVs are not
covariant with the dynamics.

3.3. Characteristic Lyapunov vectors (C-LVs)

Characteristic Lyapunov vectors (C-LVs) were discussed thirty
years ago by Ruelle (1979), however, their numerically calcula-
tion in extended systems had remained a difficult problem from
a computational point of view. C-LVs are independent of the def-
inition of the scalar product, and in addition, they are covariant
with the (forward and backward) dynamics

gn(t) = A(t, 0)gn(0), (4)

for either t > 0 or t < 0. As a consequence, the associated
expansion rate is recovered in both, the future and past limits

lim
|t |→∞

t−1 ln ||A(t, 0)gn(0)|| = λn. (5)

This guarantees that C-LVs are well adapted to the flow (like
B-LVs) while expanding with the corresponding LE (like F-
LVs). In fact B-LVs and F-LVs in their backward and forward
evolution tend, respectively, to their corresponding C-LV before
being affected by computing errors.

Among all vectors used in this work C-LVs are the only
ones that are computed using information from both past and
future. For n = 1 the C-LV is simply g1 ∝ b1. However, the
computation of the C-LVs for n > 1 is much more involved.
They are obtained by intersecting in a proper manner the spaces
spanned by backward and forward Lyapunov vectors (Eckmann
and Ruelle, 1985; Legras and Vautard, 1996). To compute C-
LVs we have used the algorithm recently introduced by Wolfe
and Samelson (2007) and we refer the interested reader to that
paper to obtain further details about the calculation.

3.4. Singular vectors

The forward SV is the disturbance that yields the largest linear
growth over a specified future time interval τ . Similarly, there
exists a backward SV defined as the disturbance that has grown
the most after some time interval. However, backward SVs are of
lesser importance, at least in the context of weather forecasting,
and will not be considered here. Thus we will simply refer to
forward SVs as singular vectors. Other vectors generated in finite
time intervals, like the so-called finite-time normal modes (Wei
and Frederiksen, 2004), exhibit essentially the same asymptotic
statistical structure (cf. fig. 2 in Pazó et al., 2009). As occurs for
the Lyapunov vectors one can construct a full spectrum of SVs
as the set of eigenvectors of A∗(τ , 0) A(τ , 0), which are again
dependent of the norm chosen. However, we will only study
here the SV with the largest eigenvalue (i.e. the most expanding
one) and focus on the influence of the optimization time τ . Note
that when the optimization time diverges the SV aligns with
the F-LV, limτ→∞ sτ ∝ f1, obeying universal scaling laws (Pazó
et al., 2009).

3.5. Logarithmic bred vectors (Log-BVs)

Bred vectors are finite perturbations generated (or ‘bred’) by
imposing that the perturbed system y′(t) stays within some fixed
finite distance from the control trajectory y(t) (Kalnay, 2002). In
practice this is simply achieved by rescaling the error to a given
size ε0 every few time steps. Given a prefixed time interval T
the difference between control and perturbed trajectories l(tm) =
y ′(tm) − y(tm) is computed at times tm = mT . At each iteration
of the rescaling procedure, the ‘perturbed system’ is redefined
as y′(tm) = y(tm) + ε0l(tm)/||l(tm)||, and allowed evolve freely
until the next rescaling is scheduled at time tm+1. The (finite)
error l (t) constructed in this way is the so-called bred vector
at time t. The time interval T has to be chosen small enough
to maintain perturbation integrity, apart from that, T is arbitrary
and only sets the unit of time used. Here we use T = 1 t.u. (time
units) without loss of generality.

An important aspect of breeding, although not fully recog-
nized in the literature, is the choice of the norm. As was showed
by Primo et al. (2005), and to be argued in detail below, the
geometric or zero-norm ||l(t)||0 ≡ ∏

L
x=1|l(x, t)|1/L (see below)

turns out to be the most convenient in the case of spatio-temporal
chaotic systems. The use of the zero-norm leads to the so-called
‘logarithmic’ bred vectors (Log-BVs), as a type of bred vectors
for which it is possible to control the spatial structure (Primo
et al., 2005, 2006, 2008). We have found convenient to parame-
terize the Log-BVs by the logarithm of its magnitude, thus we
define M0 = ln ε0. Note that for very small magnitudes the bred
vector becomes a quasi-infinitesimal perturbation and, there-
fore, it becomes approximately collinear with the first Lyapunov
vector. In other words: limM0→−∞ lM0 ∝ b1. Therefore, since
bred vectors are finite perturbations, the size of the Log-BV
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determines whether we are in the linear (or non-linear) evolu-
tion regime.

4. Error growth

Our numerical experiments in this paper are carried out as fol-
lows. We take an initial condition y(0) that corresponds to a state
of the system after a sufficiently long transient. Then, we con-
sider a slightly perturbed state y′(0) = y(0) + v(0), where v(0) is a
finite small perturbation proportional to one of the dynamic vec-
tors presented in the preceding section: v ∝ {bn, fn, gn, sτ , lM0}.
Then, we let both control and perturbed systems to evolve freely
and monitor the dynamics of the perturbation v(t) = y(t) − y′(t)
in time. Let us stress here that all perturbations studied in this
paper are truly finite errors of the control trajectory, y(t), initial-
ized along the directions of different types of infinitesimal (B-LV,
F-LV, C-LV and SV) or finite size (L-BV) vectors. Therefore,
their time evolution is governed by the full non-linear equation
and saturation is expected when the error size approaches the
attractor size.

In this section, we look at the free evolution of different finite
perturbations by focusing on their most apparent property—
namely, the average growth in time. This already poses some
questions concerning the norm to be used in this analysis.

Among all q-norms of a vector v

||v(t)||q ≡
[

1

L

L∑
x=1

|v(x, t)|q
]1/q

(6)

the 0-norm (or geometric norm)

||v(t)||0 ≡ lim
q→0

||v(t)||q =
L∏

x=1

|v(x, t)|1/L (7)

is known to be the least fluctuating one for computing the
Lyapunov spectrum (Pikovsky and Politi, 1998). This property
actually derives from the multiplicative character of infinitesi-
mal error growth and its intrinsic log-normal statistics (Primo
et al., 2005).

As error growth in chaotic systems is generically exponential,
it is convenient to work with the logarithm of the 0-norm. So,
we define

M(t) = 〈ln ||v||0〉 =
〈

1

L

L∑
x=1

ln |v(x, t)|
〉

=
〈

1

L

L∑
x=1

h(x, t)

〉
, (8)

where h(x, t) ≡ ln |v(x, t)| is an auxiliary field whose signif-
icance will be clear below, and the angular brackets indicate
averages over independent initial conditions.

Figure 2 shows M(t) for perturbations initialized by a rep-
resentative set of different vectors, all of them started in the
quasi-infinitesimal regime M(0) = −16. In all cases the pertur-
bation saturates when it reaches the typical size of the attractor
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B LV (n=8)
C LV (n=8)
F LV (n=8)
Log BV (M  = 1)
SV (τ=1)

Fig. 2. Evolution of M(t) for initial perturbations along a
representative set of vector types. In all cases the initial perturbation
was set to have M(t = 0) = −16. M(t) was averaged over 5000
realizations. Note that all vectors saturate when M(t) reaches a certain
size because they are finite perturbations (see Section 4).

M ≈ 1. In the linear regime (M � 0) different behaviours are
observed depending on the initial perturbation type and in full
agreement with the theory. The SV is optimized to grow the most
in a time interval and the perturbation initialized along it clearly
overcomes all the other vector types. For the Log-BV and the
8th backward LV M(t) almost overlap sharing the same growth
rate λ1. The 8th characteristic LV however yields a growth rate
that nicely fits with the eighth LE λ8, as expected. Although, for
sake of clarity, only the 8th vector is shown, the same occurs for
any characteristic vector (2nd, 3rd and so on) corresponding to
an expanding direction (λn > 0).

The behaviour using the nth forward LV merits some discus-
sion. fn is contained within the subspace spanned by character-
istic vectors {gn, . . . , gL}. Therefore, the linear evolution in the
long time limit will be dominated by the most expanding C-LV
gn. In Fig. 2, the vectors have a finite time (∼10 t.u.) before
non-linear effects become important. However the contribution
of the subdominant characteristic LV g9 becomes negligible only
after a transient larger than (λ8 − λ9)−1 ≈ 19.4 t.u. Due to these
limitations we can only observe that after an initial fast growth,
the slope becomes smaller than λ1(λ8 is the theoretical limit in
the absence of non-linearities and numerical round-off errors).
Again, a similar caveat has to be considered when using the 2nd,
3rd, . . . forward LVs.

5. Surface width and localization

Any useful theoretical description of perturbation growth in spa-
tially extended chaotic systems must explain how an initially
random perturbation acquires structure in space over the course
of time through the interaction of the very many spatial de-
grees of freedom. This is ultimately related with the manner

Tellus 62A (2010), 1



PERTURBATIONS INITIALIZED BY BRED, LYAPUNOV AND SVs 15

0

200

400

 v
(x

)
Lyap. vector,  b

1
= g

1

1 32 64 96 128

0

5

 x

 h
(x

) 
=

 ln
 | 

v(
x)

 |

0

10
6

Singular vector,  sτ=1

1 32 64 96 128

0

10

 x

Fig. 3. First Lyapunov vector (left-hand panel), and singular vector for
τ = 1 (right-hand panel). Lower panels show their associated surfaces.

in which spatial correlations are progressively build up starting
from an initially random, spatially uncorrelated perturbation. In
this sense the error growth M alone is clearly insufficient to fully
describe the problem.

To uncover the spatio-temporal structure of perturbations we
propose here to make use of a successful approach to the prob-
lem that has been developed in the last few years and borrows
concepts and tools from the close field of the statistical mechan-
ics of surface growth in non-equilibrium extended systems. One
decade ago a noticeable paper by Pikovsky and Politi (1998)
(see also Pikovsky and Kurths, 1994) conjectured the existence
of unexpected relation between perturbations in spatio-temporal
chaos and scale-invariant surfaces in spatially extended stochas-
tic systems. It is well known that the first LV (b1 = g1), exhibits
dynamic localization (a typical snapshot for the L96 model is
shown in Fig. 3) . Pikovsky and Politi (1998) noticed that a
logarithmic (Hopf-Cole) transformation allows one to unfold
the fine detail of the vector so its rich spatial structure can
be better revealed. Nowadays, there is enough numerical evi-
dence suggesting that, for a large family of spatially extended
and homogeneous systems, this log-transformed LV exhibits
correlations in space and time that are described by the canon-
ical Kardar–Parisi–Zhang (KPZ) model for stochastic surface
growth (Kardar et al., 1986):

∂th = ξ + (∂xh)2 + ∂xxh, (9)

where ξ (x, t) is a (random) fluctuating term mimicking the short-
ranged chaotic fluctuations. Roughly speaking, this surface pic-
ture arises from the fact that the growth of chaotic perturbations
is generically multiplicative, which can be transformed into ad-
ditive fluctuations by taking the logarithm.

The main advantage of studying the associated surface in-
stead of the vector itself is that simple and powerful scaling laws
emerge. It turns out that KPZ surfaces are scale-invariant fields
and, therefore, nice scaling properties of the spatio-temporal
correlations can be observed. Scale-invariant surfaces are statis-

tically invariant under rescaling of the space coordinate, x →
bx, and time, t → bα/β t , so that h(x, t) ∼ b−αh(bx, bα/β t), where
the symbol ∼ means that the probability distribution is identi-
cal. This translates into a simple power-law form of the cor-
relation function, 〈|h(x, t) − h(x ′, t)|2〉 = t2βf (|x − x ′|/tβ/α),
where the exponents are robust (universal) to changes in the
microscopic details of the system (Barabási and Stanley, 1995).
The scaling function has the asymptotes f (ρ) ∼ ρ2α for ρ � 1,
and f (ρ) ∼ const. for ρ � 1. Therefore, the growing correlation
length � (t) ∼ tβ/α plays a central role and determines the extent
of spatial correlations that scale as

〈|h(x, t) − h(x ′, t)|2〉 ∼ |x − x ′|2α, (10)

for two points at distance |x − x ′| � �(t). The ‘roughness’
exponent α and the growth exponent β characterize completely
the scaling properties of the surface.

Inspired in this idea, we define the log-transformed vector
h(x, t) = ln|v(x, t)|, already introduced in the definition of M in
eq. (8), as the ‘surface’ associated with the corresponding vector
v(t). The present authors and co-workers have found that this
transformation is also useful to study different types of pertur-
bations. In several publications we have extended the theoreti-
cal framework of surface growth to finite random perturbations
(López et al., 2004), bred vectors (Primo et al., 2005, 2006),
Lyapunov vectors beyond the first one (Szendro et al., 2007;
Pazó et al., 2008), and SVs (Pazó et al., 2009). The use of the
surface h(x, t) = ln |v(x, t)| allows one to obtain many interest-
ing scaling properties of the spatio-temporal correlations, which
otherwise would be hidden in a strongly localized function v(x,
t). We refer to the interested reader to the recent literature on
this problem.

In this paper we will exploit the scaling properties of the log-
arithm transform h(x, t) = ln |v(x, t)| to describe the spatial
correlations. The insight provided by the associated surface is
exemplified in Fig. 3. In the upper panels the 1st LV and the SV
for τ = 1 look similar. However, the associated surfaces shown in
the bottom panels appear readily different even to the naked eye.
For the LV, the surface has a random-walk-like shape, although
the SV surface has a distorted triangular shape. This indicates
that the SV is exponentially localized and its magnitude decays
as ∼exp(−a |x − x0|) from the localization center, while the
LV instead presents a stretched-exponential spatial distribution
∼ exp(−a

√|x − x0|) around the current localization center x0.
The fine detail hidden in the spatial structure of any given vec-
tor considered in this paper can be immediately uncovered by
studying the associated ‘surface’ that appears after the logarith-
mic transform.

Within the surface picture just described it is therefore crucial
to consider the surface fluctuations. Therefore, in addition to the
‘mean height’ measured by M, Eq. (8), we have to calculate the
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(squared) ‘surface width’

V (t) =
〈

1

L

L∑
x=1

[h(x, t) − M(t)]2

〉
, (11)

which measures the time evolution of the fluctuations of the error
growth around its mean value M. The surface width V(t) for any
initially random infinitesimal perturbation grows in time until it
reaches a stationary value at long times. The time to reach the
stationary state is known to increase as a power law with the
system size.

V(t) also gives an estimate of the localization strength–
namely, how many magnitudes apart the peaks and the valleys
of v(x, t) are separated. Additionally, V serves to classify and
characterize in a useful way all the vectors considered in this
paper. It will be shown in the next section that the stationary
(long-time) value of V for the first LV, V1, can be used as a
convenient reference point (V 1 = 5.8 in our L96 system of size
L = 128) to compare with in order to give a quantitative measure
of the degree of localization for each type of vector.

We also note that scale invariance (see eq. 10) immediately
leads to the important formula

V (t) ∼ �(t)2α, (12)

�(t) being the growing correlation length and α the so-called
roughness exponent. Therefore, V(t) can be used as an index
that measures the extent of the spatial correlations, namely, the
typical length scale over which the perturbation is uncorrelated,
〈h(x, t)h(x ′, t)〉 − M2(t) → 0 for |x − x ′| � �(t). For 1D sur-
faces in the KPZ universality class the exact result α = 1/2 is
well-known (Kardar et al., 1986; Pikovsky and Politi, 1998), so
that V (t) ∼ �(t) is obtained.

6. Spatial structure and crossover length

Spatial correlations in extended systems, in particular for the
associated surfaces introduced above, can be fully characterized
by the power spectral density (PSD) or structure factor: S(k) =
〈ĥ(k, t)ĥ(−k, t)〉, where ĥ(k, t) = L−1/2

∑
h(x, t) exp(ıkx) is

the Fourier transform of the surface height h(x, t). The PSD
is usually computed in the long time limit where one expects to
have S(k) ∼ k−(2α+1) with the roughness exponent α for a fully
scale-invariant surface.

Figure 4 shows the PSDs for the several types of vectors
discussed in this paper. We find that all types of vectors exhibit
a clear separation of scales in the stationary state. Each vec-
tor surface is observed to exhibit a crossover wavenumber k×,
which corresponds to a characteristic length scale l× = 2πk−1

× ,
such that S(k) ∼ k−2 for scales k > k×. All PSD coincide at
scales below a certain scale l×. This means that bred, Lyapunov,
and SVs are statistically indistinguishable when looked at these
short-length scales, where the spatial correlations of any vector
surface generically decay like S(k) ∼ k−2, as corresponds to
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F LV (n=3)
Log BV (M  = 1)
SV (τ=4)

Fig. 4. Spatial power spectral densities of a representative set of
vectors. For the SV only odd wavenumbers are used km = 2πm/L(m
odd); even wavenumbers are negligible due to the symmetry of the
triangular structure. Each vector, with the exception of the first B-LV,
exhibits a particular crossover wavenumber k× where the PSD bends
and departs from the 1st B-LV. A scaling law for k < k× characterizes
each vector type (see Table 2 for details).

KPZ behaviour (α = 1/2). Also note that for very large k the
PSD shows the expected deviation from the k−2 scaling, due to
a lattice spacing effect on the discrete Fourier transform of the
diffusion term as k → π/a, where a = 1 is the lattice spacing
(Barabási and Stanley, 1995).

On the other hand, the spatial structure of the perturbation
at large-scales, k < k×, is indeed very interesting. It is impor-
tant to note that a flat PSD indicates absence of correlation,
while power-law decay of the PSD indicates long-range spatial
correlation over the corresponding interval of k. One can im-
mediately appreciate in Fig. 4 how the PSD for each particular
vector exhibits different scaling behaviour (i.e. different degree
of correlations) for wavenumbers k < k×. Table 2 summarizes
the spatial properties of all the vector types. The scaling be-
haviour of correlations must be understood in the asymptotic
limit of large system sizes. For instance, for the system sizes we
used, the PSD of the Log-BV is still not completely flat (∼k0) at
small k, but it does become asymptotically flat in the hydrody-
namic limit for large enough systems, as it was shown by Primo
et al. (2005, 2006).

The existence of the universal scaling relations in Table 2, re-
inforces the role of V as the variable that condenses very valuable
information about the spatial structure and localization degree
of any given vector. To be precise, according to Parseval’s theo-
rem V equals the area under the PSD curve, V = ∑L/2

m=1 S(km).
This immediately allows us to conclude that the SV is the most
strongly localized vector (large V) among all the perturbation
types, since its PSD has an area that exceeds all the others.
Therefore, as discussed above, the surface width V gives a
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Table 2. Spatial structure (crossover length and PSD) for the surfaces associated to different vector types (cf. Fig. 4)

Vector type Cross. length l× = 2π
k× S(k < k×) S(k > k×) Reference

Log-BV ∼M2
0 Constant Primo et al. (2005, 2006)

B-LV ≈(L/n)θ (θ ≈ 1) k−1 Szendro et al. (2007), Pazó et al. (2008)
F-LV ≈(L/n)θ (θ ≈ 1) k−1 k−2 Pazó et al. (2009)
C-LV ≈(L/n)θ (θ ≈ 1) k−1.15 Szendro et al. (2007), Pazó et al. (2008)
SV ∼τγ/2 (γ � 0.78) k−4 Pazó et al. (2009)

Notes: The scaling laws hold for large systems (see the references for details and supporting theoretical arguments).

compact and simple method to measure both the spatial cor-
relation magnitude and the degree of localization, which can be
used to compare different types of vectors.

7. MVL diagram

We now make use of the so-called MVL diagram (Primo et al.,
2005, 2007; Gutiérrez et al., 2008) to analyse the evolution of
perturbations. The MVL is constructed by plotting the evolution
in time of the variance V(t) versus perturbation size M(t). The
information so obtained allows a complete analysis and will be
used in this paper as a tool to detect the distinct dynamics. The
MVL diagram, for instance, has been recently used (Fenández
et al., 2009) to successfully compare models in an ensemble
prediction system and to provide information about how the
corresponding ensemble had been initialized.

7.1. Stationary perturbations

Bred vectors (and Log-BVs) are usually generated as stationary
perturbations that are periodically rescaled to a constant size.
While a perturbation remains infinitesimal-like it stays approxi-
mately in the tangent manifold and the rescaling procedure does
not affect the evolution of V(t), which eventually converges to
V1. Recall that V 1 is the stationary value of the variance V
for the main (truly infinitesimal) LV. However, if we allow the
perturbation to go beyond a certain magnitude, the action of
non-linear terms (López et al., 2004; Primo et al., 2005, 2006)
kicks the perturbation out from tangent space, leading to the loss
of correlation at long scales.

In order to visualize in the MVL diagram how these effects
take place it is instructive to first plot the stationary V (M0)
values of perturbations that are kept at a constant size M0, which
is the Log-BV for lM0 by definition. In Fig. 5 one can see
several curves, but let us by now focus on the black bold line.
This line corresponds to the curve V versus M for stationary
Log-BV perturbations that are periodically rescaled to have a
0-norm exp(M0), according to the procedure discussed in Sec-
tion 3.5. For small values of M0 (say M0 < −8) the perturbation
dynamics is linear (approximatively stays within tangent space)
and, thus, V is a M0-independent constant V (M0) = V 1 ≈ 5.8;
namely, the value corresponding to the first LV. In the interval of
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Fig. 5. Evolution in (M , V ) coordinates of perturbations initialized by
Log-BVs bred with different values of M0. From top to bottom
Log-BVs were generated setting M0 = −5, −4, . . . , 0. The initial
perturbations were normalized to M = −16, and the circles (resp. the
triangles) indicate the coordinates after t = 1 t.u. (resp. 5 t.u.). The
trajectories have been averaged over 5000 realizations. The black bold
line indicates the values of V for perturbations forced to stay at a given
distance M0 (log-bred vectors).

perturbation sizes M0 ∈ (−∞, −8) the Log-BV is statistically
indistinguishable from the first LV. When M0 is set up above
some threshold (M0 ≈ −8 in our simulations) non-linear effects
destroy the correlations among distant parts of the vector. The
spatial structure of the Log-BV in this regime follows the typical
structure of the main LV, but only for scales below the crossover
length l× (as can be readily seen in Fig. 4).

The black bold line ends at M0 ≈ 1, V (M0 ≈ 1) ≈ 1.23,
where the perturbation becomes spatially uncorrelated and the
corresponding surface exhibits Gaussian statistics. This point
corresponds to the attractive fixed point for the free evolution
of finite perturbations (Gutiérrez et al., 2008). The bold line in
Fig. 5 will appear in subsequent figures because it serves as a
good reference line indicating the regions corresponding to the
linear/non-linear regime and localization strengths above/below
the first LV. The line divides the phase space of perturbations into
two parts. Well above the bold line perturbations are not adapted
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Fig. 6. Evolution of perturbations initialized by B-LVs, n = 1, . . . , 8.
For comparison we also plot (black bold line) the values of V for
perturbations forced to stay at a given distance M0 (log-bred vectors).

to the flow dynamics (i.e. point away from the attractor). We
will refer to these perturbations as overlocalized.

The structure of the Log-BV has to be compared with the
time evolution of ‘bred perturbations’ that are left to evolve
freely after the breeding procedure. These curves are also shown
in Fig. 5 but will be discussed in Section 8.

7.2. Interpretation of the MVL diagram

The MVL diagram can be seen as a kind of phase space of
perturbations. Lines in the diagram can be complemented with
symbols indicating the position of the perturbation in the MVL
diagram after fixed temporal intervals. (see Figs. 5–9). When
plotting the evolution of a finite perturbation in this manner we
obtain a complete description of its dynamics.

(i) The perturbation size is exp M(t), hence the abscissa of
the diagram directly corresponds to the size in a logarithmic
scale (see Section 4).

(ii) The variance V(t) accounts for the spatial structure. It is
a measure of the correlation of the corresponding surface h(x,
t) and can be also used as a localization strength index (see Sec-
tion 5). Any finite perturbation becomes spatially uncorrelated
and Gaussian distributed at long times (t � t s). Therefore, one
has the analytical asymptotics V (t � t s) = π 2/8 ≈ 1.23, which
is independent of the initial perturbation and where the satura-
tion time t s scales with the system size. This clearly shows the
robustness of V as a statistical indicator (see Section 7).

(iii) Once the corresponding perturbation (along a Log-BV,
B-LV, F,LV, C-LV or SV) is left to evolve freely, the slope of the
V(t) versus M(t) curve provides information about its dynamic
adaptation. A positive slope indicates a progressive increase of
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Fig. 7. Evolution of perturbations initialized by F-LVs, n = 1, . . . , 8.
For comparison we also plot (black bold line) the values of V for
perturbations forced to stay at a given distance M0 (log-bred vectors).
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Fig. 8. Evolution of perturbations initialized by SVs for different
values of the optimization time τ . Due to the strong (exponential)
localization of these vectors we have put the y-axis in logscale. For
comparison we also plot (black bold line) the values of V for
perturbations forced to stay at a given distance M0 (log-bred vectors).

spatial correlation, which usually appears when perturbations are
in the attractor and converging to the main Lyapunov vector. On
the contrary, negative slopes mean that the perturbation is badly
adapted and correlations must be rebuilt to reach the attractor
(see e.g. Primo et al., 2007). A zero slope, V (t) ∼ const., means a
stable structure—namely, a perfect dynamic embedding into the
attractor. In this case the growth of M(t) is always proportional
to time.
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Fig. 9. Evolution of perturbations initialized by C-LVs, n = 1, . . . , 8.
For comparison we also plot (black bold line) the values of V for
perturbations forced to stay at a given distance M0 (log-bred vectors).

8. Free evolution of finite perturbations

The free evolution of a given finite perturbation obviously de-
pends on how the specific perturbation we are looking at has
been generated. Generally, vectors generated within the chaotic
attractor continue their evolution in the attractor when left to
evolve freely, until they become too large and non-linear effects
come into play. In contrast, vectors that are dynamically not
well adapted evolve towards the attractor after a transient period
of dynamic adaptation. As discussed in the previous section, the
MVL diagram is a very appropriate tool to detect these distinctly
different behaviours with a minimal computational cost.

Using the same procedure described in Section 4 to obtain
Fig. 2, the following numerical study is now carried out: (i)
The initial perturbation is proportional to one of the particular
vector types, v(t = 0) ∝ {bn, fn, gn, sτ , lM0}, which have been
constructed following the definitions given in Section 3. In do-
ing so, we are certain that the initial perturbation v(t = 0) has
developed the corresponding spatial correlations. (ii) All initial
perturbation types are then rescaled at present time t = 0 to a
common size M(t = 0) = −16, so that we are certain of being
well inside the linear regime. (iii) Finally, the perturbed trajec-
tory is left to evolve freely. The evolution of the perturbation
(i.e. the difference between perturbed and control systems) is
tracked on an MVL diagram. Note that the value of the variance
V (t = 0) is intrinsic for each vector type; i.e. it does not depend
on the rescaling applied, because multiplication by a factor only
changes the amplitude (size) of the vector but has no effect on
the spatial correlations.

Figures 5–9 show the evolution of the free perturbations for
the different types of vectors considered in this paper. The be-
haviour observed varies drastically depending on the specific
vector used for the initial perturbation, which indicates, at a first

sight, that a certain control on a potential ensemble is feasible.
As important characteristics to be controlled we focus on the
growth rate, the localization strength, and the stability of the
spatial structure.

The computation interval (see Table 1) used to initialize each
perturbation vector plays a crucial role in the future dynamics
of the free perturbation. It turns out that it defines the informa-
tion content that the vector has about either the past or future
dynamics. In what follows we use it as the most distinctive
characteristics.

8.1. Vectors generated from the past [−∞, 0]: dynamic
scaling

Perturbations initialized along vectors generated only from the
past, Log-BVs (Fig. 5) and B-LVs (Fig. 6), exhibit similar be-
haviour. We saw in Fig. 2 that they share the growth rate � λ1.
In addition, if M0 (for the Log-BV), and n (for the B-LV) are se-
lected so that their typical localization lengths are the same (i.e.
V (t = 0) coincides), their trajectories on the MVL diagram al-
most overlap. Hence, we arrive to the not-so-intuitive conclusion
that perturbations initialized by Log-BVs and B-LVs, although
generated in different ways, capture roughly the same degrees
of freedom. They are well adapted perturbations that tend to
converge to the main LV when they are let to evolve freely.
Since they are well adapted perturbations at present time t = 0
one observes no transient period out of the attractor for t > 0.
Then the MVL diagram shows a typical curve whose convexity
(functional form V ∼ M2/3, Primo et al., 2008) is a consequence
of the dynamic scaling (V ∼ t2β , with β = 1/3) characteristic
of the universal growth of KPZ surfaces (Kardar et al., 1986;
Barabási and Stanley, 1995). Hence the spatial structure is not
stable but changes slowly, as a power law of time.

8.2. Vectors adapted to the far future [0, ∞]: transient
dominated evolution

When the finite perturbation is initialized with vectors generated
using the future trajectory of the system, i.e. F-LVs, there exists
the possibility of varying the growth rates below λ1. However,
with information only about the future, these vectors are not
well adapted dynamically and this is made apparent in the MVL
diagram (see Fig. 7).

For finite perturbations initialized with F-LVs (see Fig. 7), the
evolution of V(t) exhibits an initial negative slope, which indi-
cates a loss of spatial correlation and bad adaptation, followed
by a severe transient that even becomes overlocalized [V(t) over-
coming the black bold line] for the perturbation corresponding
to the first F-LV. The nth F-LV is expected to asymptotically
converge to the nth C-LV, but convergence is extremely slow.
Perturbed initial states using the nth F-LV evolve as finite pertur-
bations and this convergence is hampered by non-linear effects,
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which appear very early impeding this observation. The spatial
structure of this type of perturbation strongly changes, already
in the regime of (quasi-)infinitesimal evolution. As shown in
Fig. 2, this produces a transient in the evolution of M(t), and the
long-term growth rate λn cannot be observed. The whole evolu-
tion of the finite perturbation is dominated by the transient.

8.3. Vectors generated in finite-time intervals:
maintained overlocalization

The evolution of finite perturbations initialized with SVs is
shown in the MVL diagram of Fig. 8. We can observe the fastest
growth among all vectors with an apparent stable structure. This
stability is only a transient since the spatial structure does not
have much time to change due to the very fast growth. As a con-
sequence the overlocalized initial structure is maintained along
the evolution until the action of non-linear effects that appear
when the perturbation has grown too large. Note that a similar
behaviour should be expected for any other dynamic vector gen-
erated over finite-time intervals. As we explained in (Pazó et al.,
2009), there exist universal laws connecting the overlocalized
structure and the interval of the optimization time τ .

8.4. Vectors adapted to the whole past/future trajectory:
structural stability

Characteristic Lyapunov vectors are computed using both the
past and the future evolution of the control trajectory and, there-
fore, are the only vectors that have the possibility of a complete
control of the growth rates. The corresponding Lyapunov expo-
nents show up immediately M(t) ∼ λnt (Fig. 2). Interestingly,
due to the intrinsic covariant character of C-LVs [see Eq. (4)], fi-
nite perturbations initialized with C-LV are also covariant within
the linear regime. This is clearly seen in Fig. 9, where one can
see that the variance V stays constant within the linear regime.

The robustness in the quasi-infinitesimal regime of a finite
perturbation initialized with a characteristic vector is indeed re-
markable. C-LVs are covariant with the linearized dynamics, and
computational errors and non-linearities produce only a marginal
instability. In Fig. 10 , we show that the structure of a perturba-
tion initialized along a C-LV (n = 3) does not collapse to the
main LV after being rescaled eight times!

9. Preparing initial ensembles

Differences between members of an ensemble have to be treated
in the context of finite perturbations. In real forecasting the initial
ensemble is calibrated to yield a reliable set of members able
to represent a probabilistic functional space with some desired
property. Four different properties are much sought after when
preparing ensembles (Sections 9.1–9.4).
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Fig. 10. Evolution of a perturbation initialized by the 3-rd C-LV and
M(t = 0) = −16. Every 5 t.u. the perturbation has been normalized to
M = −16. The spatial structure, measured by V , departs very slowly
from its initial value, indicating the structural robustness of the C-LV.
For comparison we also plot (black bold line) the values of V for
perturbations forced to stay at a given distance M0 (log-bred vectors).

9.1. Dynamic adaptation

An ensemble initialized with random perturbations is obviously
the easiest choice, but also the least convenient. Vectors used in
this paper have the advantage of including information about the
dynamics of the system. However, only vectors that contain in-
formation from the past are well adapted to the attractor. One can
view the chaotic attractor as a structure built from the remote
past by the stretching-and-folding mechanism. A perturbation
that has evolved within the flow will capture the attractor struc-
ture. Vectors using only information about the future (F-LVs and
SVs) cannot be expected to reflect the geometry of the attractor.
When adaptation to the trajectory is limited to a finite time, as in
the case of SVs, the perturbation is not well immersed into the
flow dynamics and becomes (somewhat artificially) overlocal-
ized.

9.2. Reliability and equivalence among members
of an ensemble

Members of an ensemble should be equivalent to each other
in order to forecast with uniform probability (Kalnay, 2002).
The best way to produce equivalent members in the ensemble
is to use exactly the same generating procedure for all of them.
However, at the same time the ensemble should have enough
diversity to avoid the collapse of all members of the ensemble
to the same vector.

Among the different vectors studied in the preceding sections,
only Log-BVs provide initial perturbations such that each vector
is uncorrelated at long scales. This translates into a flat spectrum
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at long scales: S(k) ∼ const. for k < 2πl−1
× . This implies that one

could construct an ensemble of Log-BVs, each member bred
for a sufficiently long time with a different value of M0 from
random initial perturbations. The control parameter M0 controls
the typical extent of spatial correlations, l×, (see Table 2), and
this determines the maximal number of statistically uncorrelated
vectors, which should be approximately L/l×. Moreover, Log-
BVs are true finite fluctuations generated by the actual model
without the need of obtaining the tangent space equations, which
in the case of operative weather models reduces considerably the
degree of complication. Hence, in order to obtain dynamically
adaptation and reliable ensembles Log-BVs offer a very simple
an convenient option.

Vectors, other than Log-BVs, are not equivalent, and the en-
semble’s members must hence be built as linear combinations of
vectors. The study of methods to produce reliable and controlled
members from combination of Lyapunov vectors goes beyond
our aim in this paper. However, we would like to underline the
great utility that the characterization of finite perturbations from
their spatial structure provides. Coefficients of the linear com-
bination could be determined with the condition of producing a
given structure.

9.3. The analysis error

Another possible strategy is to prepare an ensemble capable of
capturing differences between the analysis and the true atmo-
spheric state (the so-called ‘analysis error’). This property had
initially been sought after in the context of bred vectors. In fact,
bred vectors were postulated as initial conditions of ensembles
due to their similarity to the ‘error of the day’(analysis error
for a day) (Kalnay, 2002). To achieve this goal one calibrates
the statistics generated by the flow dynamics with that of the
analysis error. Dynamically adapted vectors from the past (Log-
BVs, B-LVs and C-LVs) are then good candidates to generate
the desired ensemble.

9.4. The fastest spread

Another strategy of ensemble construction is to consider the
members of the ensemble spreading with the fastest growth rate
to capture the amplified errors in a given time. This is the prop-
erty initially used in the European Center (ECMWF) to prepare
ensembles (Molteni et al., 1996). By definition SVs are the opti-
mal choice in this case. Note however that this is not compatible
with other desired properties discussed in Sections 9.1–9.3. Per-
turbations with growth rates greater than λ1 immediately imply
that those are independent of the flow dynamics. SVs are then
overlocalized perturbations. In systems with strong chaos SVs
would be unrealistic perturbations that should be prepared be-
fore being used as initial perturbations. In weather models this
is accomplished, for instance, with the so called rotated SVs
(Molteni et al., 1996).

9.5. The optimal ensemble: why should we be using
covariant dynamic modes (C-LVs)?

Regarding preparation of ensembles for initial perturbations
characteristic Lyapunov vectors, among all vectors studied in
this work, clearly appear to be the most convenient in almost all
respects: (i) they are independent of the scalar product used and,
therefore, they are not norm dependent; (ii) they are well adapted
to the flow dynamics (capturing spatial locations where the per-
turbation is growing) and also containing information about
the future (highlighting the locations that are going to grow);
(iii) they allow a control of the growth rate (below λ1) and (iv)
finite perturbations initialized by C-LVs are structurally stable
(maintaining the spatial correlations) and become affected by
non-linear effects only marginally. Practically they can be used
as intrinsic dynamic modes of the system at hand. Then, why
not use them in ensemble prediction systems? A major concern
to bear in mind is that C-LVs are probably the most expen-
sive to obtain from a computational point of view. However, the
possibilities they offer of control and their remarkable structural
stability are overwhelming and may be strong enough arguments
to be seriously considered in real forecasting. Further research in
this direction with realistic weather models would be extremely
interesting.

10. Conclusions

A thorough and comparative study of the potential use of bred,
singular, and Lyapunov vectors in a probabilistic forecasting
method based on ensembles has been carried out. We have used
the simple Lorenz ‘96 model to obtain numerical comparison
among perturbations initialized by different types of vectors.

General considerations to achieve a certain control in the
ensemble evolution have been discussed along the paper. Besides
the classical analysis of the exponential growth rate we have
also included a novel analysis of the spatial structure. Spatial
structure of perturbations, i.e. the form of the spatial correlations,
has been neglected in previous studies in the field, mostly due
to the lack of proper tools for the analysis. We have shown
that the study of the logarithmic transform of the perturbation
allows us to disentangle the puzzle of the spatial organization of
perturbations.

The MVL diagram together with the spectral density analysis
offer powerful tools to uncover the dynamics not only of the error
growth but also the evolution of the spatial correlations, which
are the main distinctive features of perturbations in extended
systems. We have shown that both are related trough universal
scaling laws that arise from the dynamic scaling observed in the
logarithmic transformation (the vector surfaces). Scaling laws
are generic properties in chaotic extended systems and provide
useful tools to determine the limits on the control of the evolution
of the ensemble. We have not entered in detail in the origin of
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these scaling laws in this paper but referred to the interested
reader to the recent and abundant publications dealing with this
issue.

We have seen in our study that some vector types point off the
attractor whereas others are more or less tangent to it. Vectors can
be affected by strong transients or not; they can even be station-
ary (C-LVs). Each vector type has distinctive properties stem-
ming from the time interval used in its generation (past versus
future, finite versus infinite) and from the method itself (breed-
ing, orthogonalization, optimization). These properties provide
each vector with particular features for the generation of initial
ensembles or for their evolution:

(i) Correlation and diversity of ensembles. Log-BVs (for
large enough M0) provide perturbations that are completely un-
correlated at long scales, which means such a high degree of
diversity that they can be used directly as members of the en-
semble. In contrast, B-LVs, F-LVs and C-LVs exhibit spatial
correlations [albeit small, S(k) ∼ 1/k] even at the largest scales.
A similar degree of diversity could be possibly achieved in this
cases but only after a proper linear combination of vectors (not
discussed here). In the case of perturbations initialized with SVs,
we found they lead to strongly correlated (localized) perturba-
tions at large-scales, which immediately implies a low degree
of diversity and the need of additional methods to construct a
proper and diverse ensemble.

(ii) Growth rate. Control of the exponential growth rate is
only possible with the use of Lyapunov vectors involving back-
ward integration from the future. On the contrary, B-LVs and
bred vectors, having only information from the past, behave in
good approximation as free evolving fluctuations with an expo-
nential growth rate close to the first Lyapunov exponent. Slow
growth, with an exponential rate less than the first Lyapunov
exponent, is obtained from F-LVs and C-LVs, but only C-LVs
keep a stable structure that guarantees a constant growth rate.
Fast amplification, with exponential growth rates greater than
the first Lyapunov exponent is obtained from SVs. However,
their spatial structure is overlocalized, which implies the use of
perturbations pointing off the flow.

(iii) Spatial structure. The spatial structure is stable only in
the case of C-LVs. When the other vectors are used as initial
perturbations we found that they tend either to the main LV (Log-
BVs, B-LVs) or to their corresponding C-LV (F-SVs). Also SVs
tend to the main LV, but with a very slow convergence.

To conclude, initial perturbations initialized with C-LVs offer
the best performance allowing a precise control of the growth
rate and a robust structural stability. They are computationally
expensive, but the many advantages they exhibit may well com-
pensate the numerical costs. Further research with operative
weather models in this direction would be certainly worth the
effort given the potential impact in forecasting methods that the
use of C-LVs could bring about.
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