

1	Section: Food Microbiology and Safety
2	
3	Short version of title
4	EPS PRODUCTION BY WINE L. MESENTEROIDES
5	
6	
7	Evaluation of Exopolysaccharide Production by Leuconostoc
8	mesenteroides Strains Isolated from Wine
9	
10	
11	S. MONTERSINO ^A , A. PRIETO ^B , R. MUÑOZ ^A , AND B. DE LAS RIVAS ^A *
12	
13	
14	^a Departamento de Microbiología, Instituto de Fermentaciones Industriales, CSIC, Juan de
15	la Cierva 3, 28006 Madrid, Spain
16	^b Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC,
17	Ramiro de Maeztu 9, 28040, Madrid, Spain
18	
19	
20	*Corresponding author. Tel.: +34-91-5622900; fax: +34-91-5644853
21	E-mail address: <u>blanca.r@ifi.csic.es</u> (B. de las Rivas)

22	ABSTRACT: Exopolysaccharide (EPS)-producing lactic acid bacteria are responsible for
23	the alteration of wine and other fermented beverages. The potential to produce EPS was
24	investigated for Leuconostoc mesenteroides strains isolated from Spanish grape must and
25	wine. Most strains were able to produce EPS from sucrose containing media. Based on their
26	EPS-producing phenotype and on their EPS monosaccharide composition, the L.
27	mesenteroides strains analyzed could be arranged in two groups. One group comprises
28	mucoid strains producing a glucan polymer, and a second group includes strains producing
29	a fructan polymer. The presence of a glucosyltransferase encoding gene in the glucan
30	producing L. mesenteroides strains was assayed by PCR. Two primer sets, PF1-PF8 and
31	GTFF-GTFR, were used to amplify internal fragment of known glucosyltransferase genes.
32	None of the glucan-producing strains gave a positive amplicon by the primer sets used.
33	Therefore, new tools need to be developed to broaden the range of potentially spoiling
34	agents detected by PCR in fermented beverages.
35	
36	
37	

38 Keywords: lactic acid bacteria; exopolysaccharide; glucan; fructan; PCR detection method.

39

Introduction

40

41 During vinification, lactic acid bacteria (LAB) perform malolactic fermentation; 42 they transform malic acid into lactic acid with a decrease of wine acidity and taste 43 improvement. Nevertheless, they are also regularly responsible for the spoilage of wine and 44 other fermented beverages. Exopolysaccharide (EPS)-producer LAB are responsible for an alteration known as "ropiness" or "oilness", characterized by a viscous, thick texture and 45 46 oily feel, which although not appreciably altering the taste, renders the products unpleasant 47 to the palate. This alteration was first described by Pasteur, and has been described in wine, 48 ciders, beers, and other fermented beverages (Lonvaud-Funel and Joyeux 1988). Ropy 49 wines are sometimes encountered either during vinification or after bottling. Such wines 50 cannot be sold due to their abnormal viscosity and this presents a serious problem to wine 51 producers and merchants, resulting in considerable economical loss. 52 It has been described that some *Pediococcus* and *Lactobacillus* strains isolated from 53 spoiled wine and cider produce an identical exopolysaccharide synthesized by the same 54 glucosyltransferase. This EPS is a D-glucan consisting of a trisaccharide repeating unit with 55 a $(1\rightarrow 3)$ linked backbone in which every other residue is substituted at O-2 by one single 56 unit of D-glucose (Llaubères and others 1990; Dueñas-Chasco and others 1997, 1998). In P. 57 parvulus 2.6 (formerly named P. damnosus 2.6), P. damnosus IOEB8801, and 58 Lactobacillus diolivorans G77, and Oenocococcus oeni strains isolated from cider and 59 wine, EPS-production seems to be linked to the presence of a glucosyltransferase gene 60 (Walling and others 2001; Werning and others 2007). However, EPS-producing 61 Lactobacillus collinoides IOEB0203 and Lactobacillus hilgardii IOEB0204 strains do not

62	contain any sequence similar to that encoding for the glucosyltransferase responsible for the
63	EPS production in the above mentioned strains (Walling and others 2005).
64	As early as 1954 it was reported that the formation of high molecular weight dextran
65	by Leuconostoc mesenteroides may occur in ciders and in fruit wines particularly when
66	sucrose has been added, being the active enzyme a dextransucrase (Stacey 1954). Dextran
67	production is a frequent characteristic in L. mesenteroides strains. Dextrans from L.
68	<i>mesenteroides</i> are usually D-glucans with backbone structures in which $(1\rightarrow 6)$ linkages
69	predominate (Monsan and others 2001). However, in 1967 was described a L.
70	mesenteroides strain unusual in that it formed a fructan from sucrose (Lewis 1967).
71	The aim of this study was to know the ability to EPS-production by wine <i>L</i> .
72	mesenteroides strains.
73	
74	Materials and Methods
74 75	Materials and Methods Strains and growth conditions
74 75 76	Materials and Methods Strains and growth conditions Sixteen strains belonging to the <i>L. mesenteroides</i> species were isolated from grape
74 75 76 77	Materials and Methods Strains and growth conditions Sixteen strains belonging to the L. mesenteroides species were isolated from grape must and wine samples from three different Spanish regions at the Instituto de
74 75 76 77 78	Materials and Methods Strains and growth conditions Sixteen strains belonging to the <i>L. mesenteroides</i> species were isolated from grape must and wine samples from three different Spanish regions at the Instituto de Fermentaciones Industriales CSIC (Moreno-Arribas and others 2003). By sequencing their
74 75 76 77 78 79	Materials and Methods Strains and growth conditions Sixteen strains belonging to the <i>L. mesenteroides</i> species were isolated from grape must and wine samples from three different Spanish regions at the Instituto de Fermentaciones Industriales CSIC (Moreno-Arribas and others 2003). By sequencing their 16S rDNA, they were classified as <i>L. mesenteroides</i> subsp. <i>cremoris</i> .
 74 75 76 77 78 79 80 	Materials and Methods Strains and growth conditions Sixteen strains belonging to the L. mesenteroides species were isolated from grape must and wine samples from three different Spanish regions at the Instituto de Fermentaciones Industriales CSIC (Moreno-Arribas and others 2003). By sequencing their 16S rDNA, they were classified as L. mesenteroides subsp. cremoris. L. mesenteroides strains were grown microaerobically at 30 °C in a semi-defined
 74 75 76 77 78 79 80 81 	Materials and Methods Strains and growth conditions Sixteen strains belonging to the L. mesenteroides species were isolated from grape must and wine samples from three different Spanish regions at the Instituto de Fermentaciones Industriales CSIC (Moreno-Arribas and others 2003). By sequencing their 16S rDNA, they were classified as L. mesenteroides subsp. cremoris. L. mesenteroides strains were grown microaerobically at 30 °C in a semi-defined medium (SDM) since complex media contain complex nutrients like beef extract, peptone,
 74 75 76 77 78 79 80 81 82 	Materials and Methods Strains and growth conditions Sixteen strains belonging to the L. mesenteroides species were isolated from grape must and wine samples from three different Spanish regions at the Instituto de Fermentaciones Industriales CSIC (Moreno-Arribas and others 2003). By sequencing their 16S rDNA, they were classified as L. mesenteroides subsp. cremoris. L. mesenteroides strains were grown microaerobically at 30 °C in a semi-defined medium (SDM) since complex media contain complex nutrients like beef extract, peptone, and yeast extract which interfere with EPS quantification (Kimmel and Roberts 1998).
 74 75 76 77 78 79 80 81 82 83 	Materials and Methods Strains and growth conditions Sixteen strains belonging to the L. mesenteroides species were isolated from grape must and wine samples from three different Spanish regions at the Instituto de Fermentaciones Industriales CSIC (Moreno-Arribas and others 2003). By sequencing their 16S rDNA, they were classified as L. mesenteroides subsp. cremoris. L. mesenteroides strains were grown microaerobically at 30 °C in a semi-defined medium (SDM) since complex media contain complex nutrients like beef extract, peptone, and yeast extract which interfere with EPS quantification (Kimmel and Roberts 1998). SDM medium contains dextrose, Tween 80, ammonium citrate, sodium acetate, magnesium
 74 75 76 77 78 79 80 81 82 83 84 	Materials and Methods Strains and growth conditions Sixteen strains belonging to the <i>L. mesenteroides</i> species were isolated from grape must and wine samples from three different Spanish regions at the Instituto de Fermentaciones Industriales CSIC (Moreno-Arribas and others 2003). By sequencing their 16S rDNA, they were classified as <i>L. mesenteroides</i> subsp. <i>cremoris</i> . <i>L. mesenteroides</i> strains were grown microaerobically at 30 °C in a semi-defined medium (SDM) since complex media contain complex nutrients like beef extract, peptone, and yeast extract which interfere with EPS quantification (Kimmel and Roberts 1998). SDM medium contains dextrose, Tween 80, ammonium citrate, sodium acetate, magnesium
 74 75 76 77 78 79 80 81 82 83 84 85 	Materials and Methods Strains and growth conditions Sixteen strains belonging to the L. mesenteroides species were isolated from grape must and wine samples from three different Spanish regions at the Instituto de Fermentaciones Industriales CSIC (Moreno-Arribas and others 2003). By sequencing their 16S rDNA, they were classified as L. mesenteroides subsp. cremoris. L. mesenteroides strains were grown microaerobically at 30 °C in a semi-defined medium (SDM) since complex media contain complex nutrients like beef extract, peptone, and yeast extract which interfere with EPS quantification (Kimmel and Roberts 1998). SDM medium contains dextrose, Tween 80, ammonium citrate, sodium acetate, magnesium sulphate, manganese sulphate, potassium sulphate, yeast nitrogen base, and bacto-casitone. EPS production was assayed in SDM containing 100 g/l of sucrose instead of the 20 g/L

86	glucose present in the original SDM medium. The pH was adjusted to 5.7 and the medium
87	was autoclaved. In the preparation of SDM, the sugar source was sterilized by filtration.
88	The medium was solidified with 20 g/L agar when appropriate.
89	
90	Screening for EPS production
91	The determination of EPS producing phenotypes was carried out as described by
92	Vescovo and others (1989). All wine L. mesenteroides strains were grown on sucrose-
93	containing SDM plates for 3 days at 30 °C under aerobic conditions. Plates were scored for
94	mucoid or ropy phenotype. Ropy phenotype was considered when a string of 5 mm or more
95	was detected in a wire-inoculating loop touched colony.
96	For EPS synthesis and purification, sucrose-containing SDM (200 mL) was
97	inoculated with strains pregrown in SDM medium. After 3 days of incubation, cultures
98	were centrifuged, and two volumes of cold (4 °C) ethanol were added to one volume of
99	culture supernatants, and the mixtures were stored overnight at 4 °C. After precipitation
100	with two volumes of cold ethanol and centrifugation, pellets were resuspended in distilled
101	water. In order to eliminate monosaccharide residues, EPS was membrane dialysed (cut off
102	3500 Da) overnight at 4 °C against distilled water, freeze dried, and stored.
103	Total amount of EPS was determined, by means of the total carbohydrate content of
104	the precipitates, by the phenol-sulphuric acid method using sucrose as standard (Dubois and
105	others 1956). Briefly, 200 μL EPS sample aliquots were prepared, and 200 μL of 5%
106	phenol aqueous solution and 1 mL of sulphuric acid 95% (v/v) were added. After
107	vigorously mixing, samples were incubated in a boiling bath for 30 min, and absorbance at
108	490 nm was measured. The concentration of EPS was determined in triplicate.
109	

110 Determ	ination of EPS size <mark>an</mark>	<mark>d purity</mark> by size	e exclusion chroi	natography
------------	-------------------------------------	-------------------------------	-------------------	------------

111 Dry EPS was dissolved in 0.3 M NaOH and centrifuged to eliminate insoluble 112 material. The supernatant was loaded into a column (60 cm x 2.6 cm) of Sepharose CL-6B 113 equilibrated with 0.3 M NaOH, which was also used as eluent (0.3 mL/min). Fractions were 114 collected, and monitored for carbohydrate content by the phenol-sulphuric acid method 115 (Dubois and others 1956). A calibration curve was obtained by using standards (Dextran 116 Blue, T70, T10, and vitamin B_{12}). From this curve, the apparent molecular size (M_r) of the 117 EPS was estimated. 118 **Determination of monosaccharide composition** 119 120 Samples were hydrolyzed with trifluoroacetic acid (TFA) for 1 h at 120 °C at two 121 different concentrations: 0.15 M to release fructofuranose residues avoiding their 122 degradation, and 3 M to release any other sugars. The reducing sugars obtained after 123 hydrolysis were measured by the dinitrosalicilic (DNS) method using glucose as standard 124 (Bernfeld 1955). The glucose obtained from the EPS hydrolysis with 3M TFA was 125 enzymatically determined by using the Glucose Monoliquid kit (Biotecnica, Spain) 126 following the manufacturer instructions. The minimum glucose detected by this enzymatic 127 method is 2mg/dL. 128 The monosaccharides obtained from hydrolysis were converted into their 129 corresponding additol acetates (Laine and others 1972) and then identified and quantified by 130 gas-liquid chromatography (GLC) in an Autosystem (Perkin-Elmer) using an SP-2380 131 fused silica column (30 m x 0.25 mm I.D. x 0.2μ m film thickness) with a temperature 132 program (210 °C to 240 °C, initial time 3 min, ramp rate 15 °C/min, final time 7 min) and a 133 flame ionization detector.

134
10 1

135 **PCR amplification of glucosyltranferase gene**

136	L. mesenteroides DNA was isolated from overnight cultures using a protocol
137	previously described (Vaquero and others 2004). For the detection of the gene responsible
138	for the glucan synthesis we used two primers sets previously described, and based on
139	glucosyltransferase genes found in LAB isolated from ropy wines and ciders. Primer set
140	PF1 (5'-GATTGTAATAAAAAAAAAAAAGACCC) and PF8 (5'-
141	CATATGATAACACGCAGGGC) amplifies a 981-bp DNA fragment (Walling and others
142	2005); and, primer set GTFF (5'- CGGTAATGAAGCGTTTCCTG) and GTFR (5'-
143	TCTAGATTAATCATTCCAATCAACTG) it is predicted to give an amplicon of 417 bp in
144	some glucan-producing wine lactic acid bacteria (Werning and others 2006). PCR reactions
145	were performed in 0.2 mL microcentrifuge tubes in a total volume of 25 μ L containing 1 μ L
146	of template DNA (aprox. 10 ng) and using conditions previously described (Walling and
147	others 2005; Werning and others 2006). DNA fragments were resolved on 1.2% agarose
148	gels.
149	
150	Results and Discussion
151	
152	Screening for EPS production by wine L. mesenteroides strains
153	Screening for EPS synthesis by LAB is usually carried out on agar plates, where the
154	strains could show different EPS-producing phenotypes. It has been described that some
155	LAB can express both ropy and mucoid phenotypes depending on culture conditions (Ruas-
156	Madiedo and de los Reyes-Gavilán 2005). Since sucrose has been described to be an
157	excellent substrate for abundant EPS synthesis (van Geel-Schutten and others 1998), we

158	grew the cultures on agar plates containing high concentrations of this sugar. A high
159	proportion of the wine isolates of <i>L. mesenteroides</i> showed a mucoid phenotype (Table 1),
160	although their appearance differed among the strains analyzed. Four strains (RM45, RM47,
161	RM48, and RM49) presented a more apparent mucoid phenotype than the other isolates
162	analyzed. None of the isolates investigated presented a ropy phenotype.
163	In order to test EPS production by the L. mesenteroides strains, we grew them in
164	liquid sucrose-containing SDM medium. After 3 days of incubation, the EPS was
165	precipitated, dialysed, and freeze-dried. Table 1 shows that EPS was produced in relatively
166	large amounts in all <i>L. mesenteroides</i> strains analyzed, with exception of RM57 strain that
167	did not produce EPS. The EPS production reached more than 0.5 g/L, being the highly
168	mucoid strains the major EPS-producers (Table 1).
169	Representative strains showing the high-mucoid (RM48) and less-mucoid
170	phenotypes (RM54) were selected for further analyses. The EPSs from these strains were
171	analyzed by gel filtration chromatography and the eluate was monitorized for
172	carbohydrates, confirming that the material analyzed contained, in each case, a single
173	polysaccharide with an apparent M_r higher than 1000 kDa (data not shown).
174	
175	Chemical analysis of the EPS
176	L. mesenteroides strains mainly produce a glucan-type EPS (Stacey 1954; Beech
177	and Carr 1977). However, some strains could form a fructan from sucrose (Lewis 1967).
178	Monosaccharides with furanose ring structures, as fructose, are very acid-labile and are
179	removed by mild acid hydrolysis to avoid their degradation (Pazur, 1986; Peng and Tian,
180	2001). Then, to determine their composition, the EPSs were subjected to two different
181	hydrolytic conditions. 0.15 M TFA was used to release the fructofuranose residues, but

182	these soft conditions do not hydrolyze the more resistant linkages of pyranoses (Politi and
183	others, 2006; Domenech and others 1999). 3 M TFA was necessary to release non-
184	furanosidic components, but leaves to destruction of fructose and other furanoses (Politi
185	and others, 2006; Domenech and others 1999; Prieto and others 2007).
186	From the results displayed on Table 1 it can be deduced that the L. mesenteroides
187	strains here investigated could be divided into two groups. One group comprises strains
188	RM45, RM47, RM48, RM49, and RM70, showing a more apparent mucoid phenotype, and
189	EPSs with low fructose content (less than 11%) and rich in glucose. The second group
190	comprises strains RM43, RM44, RM50, RM51, RM52, RM53, RM54, RM55, RM60, and
191	RM61, which did not show a very obvious mucoid phenotype, and produced fructose-rich
192	EPSs.
193	GLC analysis of the EPS produced in sucrose-containing SDM medium by
194	representative strains of each L. mesenteroides group (RM54 and RM48) confirmed the
195	previous results. Hydrolysis of the EPS from strain RM54 with 3 M TFA gave only 3% of
196	glucose due to destruction of the fructan, while hydrolysis with 0.15 M TFA gave similar
197	amounts of mannose (30%) and glucose (36%) arising from fructose after borohydride
198	reduction, as expected for a polymer composed of fructose (Politi and others 2006).
199	Despite the gentle hydrolytic conditions (0.15M TFA), some destruction of the fructan can
200	take place, being responsible for the low recovery of monosaccharides. On the other hand,
201	hydrolysis with 3 M TFA of the EPS from strain RM48 released 80% of glucose, as
202	expected for a glucan, while only small amounts of mannitol and glucitol were detected
203	after mild hydrolysis with 0.15M TFA, confirming that it contains only a small amount of
204	fructose.

205	The experimental approaches used in this study corroborate that L. mesenteroides
206	can produce two types of EPS: a glucan, correlated with high mucoid strains, and a fructan
207	correlated with less mucoid strains. These results are in contrast with previous reports
208	describing EPS production by L. mesenteroides strains. It is generally assumed that L.
209	mesenteroides are mainly dextran producing bacteria (Monsan and others 2001), being
210	scarcely reported the production of fructans by strains from this species (Lewis 1967).
211	However, in this study, among the 16 strains analyzed only five were glucan-producing.
212	Since the L. mesenteroides strains analyzed previously were not isolated from a wine-
213	related source, it could be suggested that substrate composition will direct the prevalence of
214	some specific EPS-producer strains.
215	
216	Presence of a glucosyltransferase gene in the glucan-producing L. mesenteroides
210	
217	strains
217 218	strains Werning and others (2006) demonstrated the absence of the glycosyltranferase gene
210217218219	strains Werning and others (2006) demonstrated the absence of the glycosyltranferase gene in two dextran-producing <i>L. mesenteroides</i> strains from culture collection. By using GTFF
210217218219220	strains Werning and others (2006) demonstrated the absence of the glycosyltranferase gene in two dextran-producing <i>L. mesenteroides</i> strains from culture collection. By using GTFF and GTFR oligonucleotides, these strains gave a negative PCR response. In order to
 210 217 218 219 220 221 	strains Werning and others (2006) demonstrated the absence of the glycosyltranferase gene in two dextran-producing <i>L. mesenteroides</i> strains from culture collection. By using GTFF and GTFR oligonucleotides, these strains gave a negative PCR response. In order to investigate the presence of known glycosyltransferase genes in the glucan-producing strains
 210 217 218 219 220 221 222 	strains Werning and others (2006) demonstrated the absence of the glycosyltranferase gene in two dextran-producing <i>L. mesenteroides</i> strains from culture collection. By using GTFF and GTFR oligonucleotides, these strains gave a negative PCR response. In order to investigate the presence of known glycosyltransferase genes in the glucan-producing strains analyzed in this study, PCR experiments were performed. Two primer sets, PF1-PF8 and
 210 217 218 219 220 221 222 223 	strains Werning and others (2006) demonstrated the absence of the glycosyltranferase gene in two dextran-producing <i>L. mesenteroides</i> strains from culture collection. By using GTFF and GTFR oligonucleotides, these strains gave a negative PCR response. In order to investigate the presence of known glycosyltransferase genes in the glucan-producing strains analyzed in this study, PCR experiments were performed. Two primer sets, PF1-PF8 and GTFF-GTFR, were used to amplify internal fragment of know glucosyltransferase genes.
 210 217 218 219 220 221 222 223 224 	strains Werning and others (2006) demonstrated the absence of the glycosyltranferase gene in two dextran-producing <i>L. mesenteroides</i> strains from culture collection. By using GTFF and GTFR oligonucleotides, these strains gave a negative PCR response. In order to investigate the presence of known glycosyltransferase genes in the glucan-producing strains analyzed in this study, PCR experiments were performed. Two primer sets, PF1-PF8 and GTFF-GTFR, were used to amplify internal fragment of know glucosyltransferase genes. These primers set have been successfully used to detect glucan producing LAB strains
 210 217 218 219 220 221 222 223 224 225 	strains Werning and others (2006) demonstrated the absence of the glycosyltranferase gene in two dextran-producing <i>L. mesenteroides</i> strains from culture collection. By using GTFF and GTFR oligonucleotides, these strains gave a negative PCR response. In order to investigate the presence of known glycosyltransferase genes in the glucan-producing strains analyzed in this study, PCR experiments were performed. Two primer sets, PF1-PF8 and GTFF-GTFR, were used to amplify internal fragment of know glucosyltransferase genes. These primers set have been successfully used to detect glucan producing LAB strains (Walling and others 2005; Werning and others 2006).
 210 217 218 219 220 221 222 223 224 225 226 	strains Werning and others (2006) demonstrated the absence of the glycosyltranferase gene in two dextran-producing <i>L. mesenteroides</i> strains from culture collection. By using GTFF and GTFR oligonucleotides, these strains gave a negative PCR response. In order to investigate the presence of known glycosyltransferase genes in the glucan-producing strains analyzed in this study, PCR experiments were performed. Two primer sets, PF1-PF8 and GTFF-GTFR, were used to amplify internal fragment of know glucosyltransferase genes. These primers set have been successfully used to detect glucan producing LAB strains (Walling and others 2005; Werning and others 2006). None of the strains assayed were able to produce a positive amplicon by the primer
 210 217 218 219 220 221 222 223 224 225 226 227 	strains Werning and others (2006) demonstrated the absence of the glycosyltranferase gene in two dextran-producing <i>L. mesenteroides</i> strains from culture collection. By using GTFF and GTFR oligonucleotides, these strains gave a negative PCR response. In order to investigate the presence of known glycosyltransferase genes in the glucan-producing strains analyzed in this study, PCR experiments were performed. Two primer sets, PF1-PF8 and GTFF-GTFR, were used to amplify internal fragment of know glucosyltransferase genes. These primers set have been successfully used to detect glucan producing LAB strains (Walling and others 2005; Werning and others 2006). None of the strains assayed were able to produce a positive amplicon by the primer sets used (data not shown). This result is in agreement with those previously reported in

ScholarOne, 375 Greenbrier $\stackrel{10}{\text{Drive}}$, Charlottesville, VA, 22901

229	EPS from LAB could be synthesized either extracellularly from exogenous
230	substrates or intracellularly from sugar nucleotide precursors (Monsan and others 2001),
231	however, the currently available PCR methods only detect the presence of intracellular
232	membrane-bound glycosyltransferases. This could be the reason why two different ropy
233	Lactobacillus species isolated from ropy beverages, were not amplified using primers PF1
234	and PF8 targeting the glycosyltransferase gene (Walling and others 2005). Both the glucan-
235	producing Lactobacillus species reported by Walling and others (2005) and the wine L.
236	mesenteroides strains analyzed in this study could produce EPS by action of an
237	extracellular glucansucrase not detected by the currently available PCR methods. A similar
238	situation has been described on three of the ten EPS-producing strains isolated from dairy
239	and cereal products whose corresponding genes could not be detected (Van der Meulen and
240	others 2007).
241	In spite of the facts that the L. mesenteroides strains analyzed in this study were not
242	isolated from ropy wines, and that in the conditions assayed they did not show a ropy
243	phenotype, they could constitute a problem during winemaking since they are potentially-
244	EPS producers. In alcoholic beverages a clear product is required, and when a high
245	molecular weight EPS is formed it gives an appreciable haze (Lonvaud-Funel and Joyeux,
246	1988). In addition, in ciders, Leuconostoc strains have been reported as the cause of
247	ropiness (Beech and Carr 1977). It is already assumed that EPS synthesis is a direct
248	response to some environmental conditions. In EPS-producing LAB strains, factors such as
249	nitrogen and glucose and fructose concentration, temperature, pH, etc. seem to influence
250	EPS production (Dueñas and others 2003; Wailling and others 2005). To date, the factors
251	that favour or inhibit the production of EPS by these wine L. mesenteroides strains are not
252	understood enough to predict the appearance of haze or ropiness in wines.

253	
254	Conclusions
255	In this work we found that most of the L. mesenteroides strains isolated from grape
256	juice or wine are EPS-producers. These strains could be grouped based on the composition
257	of the EPS produced. Glucan-producing L. mesenteroides strains could not be detected by
258	the currently available PCR detection methods targeting glycosyltransferase genes.
259	Therefore, new tools need to be developed to broaden the range of potentially spoiling
260	agents detected by PCR in fermented beverages.
261	
262	Acknowledgements
263	This work was supported by grants AGL2005-00470 (CICYT), FUN-C-FOOD Consolider
264	25506 (MEC), RM03-002 (INIA), and S-0505/AGR/000153 (CAM). The technical
265	assistance of M.V. Santamaría and A. Gómez is greatly appreciated. S. Montersino is a
266	recipient of an Erasmus fellowship.
267	
268	References
269	Beech FW, Carr JG. 1977. Cider and Perry, pp 139313. In Alcoholic beverages (Ed. A. H.
270	Rose), pp 139-313, Academic Press, London.
271	Bernfeld P. 1955. Amylase, alpha and beta. Methods in Enzymology, 1, 149.
272	Domenech J, Prieto A, Barasoaín I, Gómez-Miranda B, Bernabé M, Leal JA. 1999.
273	Galactomannans from the cell wall of species of Paecilomyces sect. Paecilomyces
274	and their teleomorphs as immunotaxonomic markers. Microbiology 145: 2789-
275	2796.

276	Dubois M, Gillies KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for
277	determination of sugar and related substances. Anal Chem 28:350-356.
278	Dueñas-Chasco MT, Rodríguez-Carvajal MA, Tejero P, Franco-Rodríguez G, Espartero JL,
279	Irastorza-Iribas A, Gil-Serrano AM. 1997. Structural analysis of the
280	exopolysaccharide produced by Pediococcus damnosus 2.6. Carbohyd Res 303:453-
281	458.
282	Dueñas-Chasco MT, Rodríguez-Carvajal MA, Tejero P, Espartero JL, Irastorza-Iribas A,
283	Gil-Serrano AM. 1998. Structural analysis of the exopolysaccharides produced by
284	Lactobacillus spp. G77. Carbohyd Res 307:125-133.
285	Dueñas M, Munduate A, Pera A, Irastorza A. 2003. Exopolysaccharide production by
286	Pediococcus damnosus 2.6 in a semidefined medium under different growth
287	conditions. Int J Food Microbiol 87:113-120.
288	Kimmel SA, Roberts RF. 1998. Development of a growth medium suitable for
289	exopolysaccharide production by Lactobacillus delbrueckii spp. bulgaricus RR. Int
290	J Food Microbiol 40:87-92.
291	Laine RA, Esselman, WJ, Sweeley CC. 1972. Gas-liquid chromatography of carbohydrates.
292	Meth Enzymol 28:159-167.
293	Lewis BA, Cyr MJ St, Smith F. 1967. The constitution of the fructan produced by
294	Leuconostoc mesenteroides strain C. Carbohyd Res 5:194-201.
295	Llaubères RM, Richard B, Lonvaud A, Dubourdieu D, Fournet B. 1990. Structure of an
296	exocellular β -D-glucan from <i>Pediococcus</i> sp., a wine lactic bacteria. Carbohyd Res
297	203:103-107.
298	Lonvaud-Funel A, Joyeux A. 1988. Une alteration bactérienne des vins: la "maladie des
299	vins filants". Sci Aliments 8:33-49.

300	Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot RM, Remaud-Siméon M. 2001.					
301	Homopolysaccharides from lactic acid bacteria. Int Dairy J 11:675-685.					
302	Moreno-Arribas MV, Polo MC, Jorganes F, Muñoz R. 2003. Screening of biogenic amine					
303	production by lactic acid bacteria isolated from grape must and wine. Int J Food					
304	Microbiol 84:117-123.					
305	Pazur JH. 1986. Neutral polysaccharides. In: Carbohydrate analysis. A practical approach.					
306	MF Chaplin and JF Kennedy (Eds.) pp. 55-96. IRL Press. Oxford-Washington DC.					
307	Peng X, Tian G. 2001. Structural characterization of the glycan part of glycoconjugate					
308	LbGp2 from Lycium barbarum L. Carbohydr Res 331:95-99.					
309	Politi M, Alvaro-Blanco J, Groves P, Prieto A, Leal JA, Cañada J, Jiménez-Barbero J.					
310	2006. Screening of garlic water extract for binding activity with cholera toxin B					
311	pentamer by NMR spectroscopy – An old remedy giving a new surprise. Eur J Org					
312	Chem 9:2067–2073.					
313	Prieto A, Leal JA, Giménez-Abián MI, Canales MA, Jiménez-Barbero J, Berrnabé M.					
314	2007. Isolation and structural determination of a unique polysaccharide containing					
315	mannofuranose from the cell wall of the fungus Acrospermum compressum.					
316	Glycoconj J 24:421–428.					
317	Ruas-Madiedo P, de los Reyes-Gavilán CG. 2005. Methods for the screening, isolation and					
318	characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci					
319	88:843-856.					
320	Stacey M. 1954. Enzymic synthesis of polysaccharides. Adv Enzymol 15:301-308.					
321	Van der Meulen R, Grosu-Tudor S, Mozzi F, Vaningelgem F, Zamfir M, Font de Valdez G,					
322	De Vuyst L. 2007. Screening of lactic acid bacteria isolates from dairy and cereal					

Journal of Food Science

323	products for exopolysaccharide production and genes involved. Int J Food
324	Microbiol 118:250-258.
325	Van Geel-Schutten GH, Flesh F, ten Brink B, Smith M R, Dijkhuizen L. 1998. Screening
326	and characterization of Lactobacillus strains producing large amounts of
327	exopolysaccharides. Appl Microbiol Biotechnol 50:697-703.
328	Vaquero I, Marcobal A, Muñoz R. 2004. Tannase activity by lactic acid bacteria isolated
329	from grape must and wine. Int J Food Microbiol 96:199-204.
330	Velasco S, Årsköld E, Paese M, Grage H, Irastorza A, Rådströn P, van Niel EWJ. 2006.
331	Environmental factors influencing growth of and exopolysaccharide formation by
332	Pediococcus parvulus 2.6. Int J Food Microbiol 111:252-258.
333	Vescovo M, Scolari G L, Bottazzi V. 1989. Plasmid-encoded ropiness production in
334	Lactobacillus casei spp. casei. Biotechnol Lett 10:709-712.
335	Walling E, Gindreau E, Lonvaud-Funel A. 2005. A putative glucan synthase gene dps
336	detected in exopolysaccharide-producing Pediococcus damnosus and Oenococcus
337	oeni strains isolated from wine and cider. Int J Food Microbiol 98:53-62.
338	Walling E, Dols-Lafargue M, Lonvaud-Funel A. 2005. Glucose fermentation kinetics and
339	exopolysaccharide production by ropy <i>Pediococcus damnosus</i> IOEB8801. Food
340	Microbiol 22:71-78.
341	Werning ML, Ibarburu I, Dueñas MT, Irastorza A, Navas J, López P. 2006. Pediococcus
342	parvulus gtf gene encoding the GTF glycosyltransferase and its application for
343	specific PCR detection of β -D-Glucan-producing bacteria in foods and beverages. J
344	Food Prot 69:161-169.

(Table 1. Montersino, Prieto, Muñoz, & de las Rivas)

Table 1. Characteristics of the of the EPS produced by the wine L. mesenteroides
strains analyzed in this study

				EPS composition ^b		
	Phe	notype		0.15M	3M	
Strain	Ropy	Mucoid ^a	EPS ^c	$Fru(\%)^d$	$\overline{\text{Glc}(\%)^{\text{e}}}$	
RM43	-	+	609	100	0	
RM44	-	+	617	100	0	
RM45	-	+++	811	5	65	
RM47	-	+++	816	10	92	
RM48	-	+++	823	6	71	
RM49	-	+++	840	6	72	
RM50	-	+	591	100	0	
RM51	-	+	720	100	0	
RM52	-	++	873	100	0	
RM53	-	+	692	100	0	
RM54	-	+	812	100	0	
RM55	-	+	676	100	0	
RM57	-	-	n.d. ^f	n.d.	n.d.	
RM60	-	+	767	100	0	
RM61	-	++	825	100	0	
RM70	-	+++	904	11	74	

^aGlistering colonies showing a diameter of 3 mm (+), 3-4 mm (++), and >4 mm (+++). ^bDetermined by trifluoroacetic acid hydrolysis at two different concentrations.

^cDetermined by the phenol/sulphuric acid method, in mg/L

^dDetermined by the dinitrosalicilic (DNS) method.

^eDetermined by an enzymatic method.

^fn.d., not detected.