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We study the formation of local moments in quantum dots arising in quasi-one-dimensional electron wires
due to localized spin-orbit �Rashba� interaction. Using an Anderson-type model to describe the occurrence of
the magnetic moments in these Rashba dots, we calculate the local magnetization within the mean-field
approximation. We find that the magnetization becomes a nontrivial function of the Rashba coupling strength.
We discuss both the equilibrium and nonequilibrium cases. Interestingly, we obtain a magnetic phase which is
stable at large bias due to the Rashba interaction.
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I. INTRODUCTION

Spin-related phenomena have recently attracted much at-
tention, as they are the key ingredient in the new field known
as spintronics.1 Two-dimensional �2D� semiconductors are
appropriate materials to be used in spintronics applications
since they offer the possibility of an electric control of spins
via a tunable spin-orbit �SO� interaction. An important con-
tribution to SO effects in 2D electronic states of narrow gap
semiconductors �e.g., InAs� is the Rashba interaction.2 This
interaction is a generalization of the vacuum SO interaction
from the Pauli equation, Hso= �e�2 /4m2c2�� · ��V�r��k�,
which is small for nonrelativistic momenta �k�mc, with
V�r� being the scalar potential. In semiconductors, the energy
gap Eg and the band splitting � are comparable in magnitude
�Eg���1 eV�, and as a consequence, the SO coupling is
enhanced by a factor m2c2 /Eg.

The Rashba interaction is a type of SO interaction that
arises when a 2D electron gas forms at the interface of a
heterostructure. To lowest order in momentum, the Rashba
Hamiltonian reads

HR =
1

2�
���,py�+�x − ��,px�+�y� , �1�

where � is the Rashba coupling proportional to the electric
field producing the confinement. We take the confinement
direction along z. In Eq. �1�, p= �px , py� is the 2D momentum
and �i �i=x ,y ,z� are the Pauli matrices.

We note that available experimental data3 on few-electron
quantum dots have been discussed in terms of Rashba spin-
orbit coupling and exchange interaction.4 Using the spin
density-functional theory it was showed5 that the competition
of this coupling and the exchange interaction gives rise to the
suppression of the Hund rule, and a dot with a closed con-
figuration presents a paramagnetic behavior. We have to
mention that these results have been obtained in the absence
of the Coulomb interaction.

When the Rashba interaction is localized around a finite
region of a quasi-one-dimensional ballistic wire �see Fig.
1�a��, Ref. 6 predicts the formation of quasi-bound-states
which are coupled to the nonresonant background channel.
Both the potential well and the intersubband coupling are

produced by the Rashba interaction alone. Furthermore, the
quasi-bound-states lead to enhanced backscattering, causing
strong dips in the conductance curves of the wire as a func-
tion of the Fermi energy.7 Since both the level position and
broadening can be tuned with the Rashba strength �, these
states are termed Rashba dots.6

Recently, López et al.8 formulated a microscopic theory
for transport across Rashba dots including Coulomb interac-
tions in the dot. An important aspect of this model is that
different regimes can be achieved by tuning the parameters
of the Rashba Hamiltonian, and this can be done by modu-
lating external electric fields applied to nearby gates. The
difference between the Anderson Hamiltonian9 and the
Hamiltonian proposed in Ref. 8 is twofold. First, in the
Anderson Hamiltonian the spin is conserved at low tempera-
tures, leading to the Kondo effect, but in Ref. 8 the Rashba
dot Hamiltonian contains a spin-flip interaction because the
localized states couple to the continuum states with opposite
spins. Second, due to the Rashba-induced precession term,
the direct transmission channel presents a phase term similar
to the Aharonov-Bohm case but the phase is now spin
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FIG. 1. �Color online� �a� The system under study consists of a
quantum wire with a region of localized spin-orbit interaction of the
Rashba type �� is the Rashba coupling strength�. Interactions are
restricted to the Rashba dot. �b� Mapping of the upper system onto
a quasilocalized level and a nonresonant background channel with
spin-dependent couplings to external leads.
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dependent.10 Remarkably, despite these differences the sys-
tem shows a persisting Kondo effect at low temperatures but
with a novel gate dependence.8

In this paper, we address the magnetic properties of
Rashba dots. We follow Anderson’s model for magnetic im-
purities in a metallic host and determine whether it is ener-
getically favorable for the dot to form a localized magnetic
moment. We show below that the Coulomb interaction can
develop magnetic moments in a Rashba dot for a critical
value of the ratio �U /��crit, which depends on the parameters
of the Rashba interaction. Our results might also be impor-
tant for quantum dots doped with magnetic impurities.11,12

Magnetic ordering in dots can be induced by the Coulomb
interaction, and the magnetization can be electrically con-
trolled even for a fixed number of electrons.13,14

This paper is organized as follows. We present in Sec. II
the model and calculate the Green’s function using the
equation-of-motion method. The magnetic moment is deter-
mined in Sec. III both for the equilibrium and the nonequi-
librium cases. The main results are compared with exact nu-
merical calculations in Sec. IV. The results are discussed in
Sec. V, which also contains our conclusions.

II. THEORETICAL MODEL

We start with the model Hamiltonian

H = He + Hd + HW + HV, �2�

where

He = �
�,k,�

	�,k,�c�,k,�
† c�,k,�,

Hd = �
�

	dd�
†d� + Un�n−�,

HW = �
k,�

�Weis�
cL,k,�
† cR,k,� + H.c.� ,

HV = �
�,k,�

�Vc�,k,�
† d−� + H.c.� . �3�

In this Hamiltonian we consider the spin quantization axis
along the Rashba field �the y direction for transport along x�,
n�=d�

†d� is the occupation number for electrons in the
Rashba dot with spin �= ↑ ,↓, and c�,k,�

† is the creation op-
erator of continuum electrons with wave vector k and spin �
in the lead �=L ,R. The nonresonant channel is described
with the term HW where the propagation phase acquired by a
transmitted electron is spin dependent �s�= �1 if �= ↑ ,↓�.
Finally, localized and extended electronic states are coupled
via the interaction HV. A pictorial representation of H is
shown in Fig. 1�b�.

The parameters of this Hamiltonian are U=U�� , l�, V
=V�� , l�, and W=W�� , l�, where l is the length of the
Rashba-induced square-well potential �we assume, for sim-
plicity, that ��x� is constant if 0�x� l and zero otherwise�,6
and 
=kRl with kR=m� /�2. Importantly, these parameters
can be externally controlled with gates by changing � and l.

The form of H is similar to the Hamiltonian describing
the transport in a device formed by an Aharonov-Bohm in-
terferometer with a quantum dot in one of its arms,15 but they
differ in that the phases in the interaction term W depend on
the spin direction and that each hopping process through the
dot is associated with a spin-flip event. In the conventional
Anderson model, spin is conserved, and this leads to Kondo
correlations.

In order to study the occurrence of magnetic moments in
this model we will calculate the Green’s function Gd��
�
���d� 	d�

†

, which obeys the equation


Gd��
� = 1 + ���d�,H�	d�
†

 . �4�

In the mean-field approximation, the spin-dependent energy
of the d electrons is 	d,�=	d+U�n−�
. Using the general
equation-of-motion method, we find

�Gd��
��−1 = 
 − 	d� +
1

�
�
�k

2V2


 − 	k

+
4W cos 


� ��
k

V


 − 	k
�2

, �5�

where � is given by the expression

� = 1 − ��
k

W


 − 	k
�2

. �6�

If we perform the summations over k in the relations above,
the Green’s function becomes

Gd��
� = �
 − 	d� + i� + �
x cos 
�−1, �7�

where �=� / �1+x�, x=�2W2�2, and �=�V2�, with � being
the continuum density of states at the Fermi level EF �we
take � as a constant function of energy�. We note that the
tunneling broadening � becomes renormalized into � / �1
+x� due to the background channel when W�0. Further-
more, the spin contribution due to the Rashba interaction is
proportional to cos 
 for both the spin orientations.

III. MAGNETIC MOMENT

A. Equilibrium case

The magnetization along the Rashba field direction is
given by the difference between the occupancy expectation
value for spin up and spin down,

m = �nd↑
 − �nd↓
 . �8�

At zero temperature, the occupation reads

�nd�
 = �
−�

EF

�d�
�d
 , �9�

where �d��
� is the local density of states at the Rashba dot,
defined in terms of the Green’s function as �d��
�
=−Im Gd��
� /�.

Consider first the simple case U=0. Then,
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�d��
� =
�

���2 + ��
�2�
, �10�

where � is given by

��
� = 
 − 	d + �
x cos 
 . �11�

Since U=0, the energy � is spin independent. Inserting Eq.
�10� in Eq. �9�, we obtain

�nd�
 =
1

2
−

1

�
tan−1	d − EF − �
x cos 


�
. �12�

Because �nd↑
= �nd↓
 even in the presence of spin-orbit inter-
action, we trivially have m=0. As expected, equilibrium
magnetic states arise due to the presence of Coulomb inter-
actions only.

Consider now the interacting case U�0. We calculate the
density of states using the spin dependence introduced by 	d�

and we get

�d��
� =
�

�

1

�−��
�2 + �2 , �13�

where

�−��
� = 
 − 	d + �
x cos 
 − U�n−�
 . �14�

The occupation reads

�nd�
 =
1

2
−

1

�
tan−1	d − EF + U�nd,−�
 − �
x cos 


�
.

�15�

We analyze the formation of a magnetic state from the
condition

d�nd�

d�nd,−�


= − U�d,��EF� . �16�

As a consequence, the condition for the magnetic state that
d�nd

�
 /d�nd
−�
�−1 becomes

U�d
��EF� � 1. �17�

This relation is similar to the Stoner condition for the occur-
rence of the magnetic state in the itinerant-electron systems,
and the correlation effects appear only as an energy shift. A
more accurate discussion, taking the energy dependence of �
�via the density of states �� changes the magnetic region,
which is known for a constant density of states. However, for
our qualitative discussion we follow the wide-band approxi-
mation with a constant �.

From Eqs. �8� and �15� we find a pair of self-consistent
equations for the magnetization m and the total electron den-
sity nd= �nd↑
+ �nd↓
,

m =
1

�
�
�

s� cot−1

U

2
�nd − s�m� − ��EF�

�
, �18�

nd =
1

�
�
�

cot−1

U

2
�nd − s�m� − ��EF�

�
. �19�

From these two equations we calculate the size of the inter-
action above which a local moment develops. On the critical
boundary describing the transition into the magnetic state,
we approximately have m�0 and �nd↑
��nd↓
�nd. Thus,
we find

�U

�
�

crit
=

��1 + c2�
1 + x

, �20�

where c=cot��nd /2�. This condition provides a number of
interesting predictions. First, for increasing x the function
�U /��crit decreases. Thus, the formation of magnetic mo-
ments is enhanced by the coupling to the continuum states,
which is governed by the intensity of the Rashba interaction.
Despite the fact that spin-orbit interactions are time-reversal
symmetric and do not induce spontaneous magnetizations,
indirectly the Rashba coupling makes it more favorable to
generate magnetic solutions as compared to the case without
Rashba interaction. If x=0 �or, equivalently, W=0� we re-
cover the condition for the occurrence of the Anderson
moments.9 Second, �U /��crit is a weakly function of the
phase 
 since in Eq. �20� the dependence on 
 is only im-
plicit through the total density nd. Nevertheless, in the gen-
eral case the condition given by Eq. �20� is far from being
trivial since we recall that U, �, and nd are complicated
functions of the Rashba strength and the dot size.8

B. Nonequilibrium case

We now turn to the nonequilibrium case, where a finite dc
bias V is applied between the two electrodes. The formation
of magnetic moments within the Anderson Hamiltonian out
of equilibrium has been recently analyzed by Komnik and
Gogolin, see Ref. 16. They found that the magnetic phase is
stable at arbitrarily large voltages in the case of asymmetric
couplings. Here, we assume symmetric couplings ��L=�R�
and show below that even in this case, the combination of
Rashba interaction and finite bias leads to magnetic-moment
formation.

At nonequilibrium, the spin-dependent occupations are
given by the Keldysh �lesser� Green’s function G�

��t , t��
= i�d�

†�t�d��t��
,

�n�
 = �
−�

� d


2�
Im G�

��
� , �21�

where G�
��
� is the Fourier-transformed lesser Green’s func-

tion. We find

G�
��
� = 2i�


x sin�s�̄
��fL − fR�/�1 + x� + �fL + fR�/2
��
�2 + �2 ,

�22�

where f�=1 / �1+e��
−���� is the Fermi distribution function
at the lead �=L ,R with inverse temperature �=1 /kBT. Inter-
estingly enough, the occupation depends on a term propor-
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tional to sin��̄
� which has a different sign for opposite
spins. This term appears only at nonequilibrium �fL� fR�.
Therefore, we expect a spin polarization �m�0� for a non-
interacting Rashba dot �U=0� induced by the interplay effect
of external bias and Rashba interaction.17

We take �L=EF+eV /2 and �R=EF−eV /2 for the electro-
chemical potentials in the left and right contacts. As a result,
we obtain a closed expression for the magnetization,

m = −

Tr

�
sin 
�tan−1eV − 2��EF�

2�
+ tan−1eV + 2��EF�

2�
� ,

�23�

where Tr=4x / �1+x�2 is the background channel transmis-
sion. We infer that the magnetization is negative for positive
V, arising from the orientation of the effective Rashba field,
which points along −y.18,19 The magnetization can be re-
versed if 
 changes sign �equivalently, the Rashba intensity
��. Obviously, the periodic dependence in Eq. �23� arises
from the model but it is reasonable to assume a small �.
Therefore, 
 should not be very large. The periodic depen-
dence on 
 is obtained in analogy with the Aharonov-Bohm
effect and can be found in related spin-orbit systems �see,
e.g., Ref. 17�.

For 
=� /2 the minimum magnetization reads

mmin = − 2

Tr

�
arctan

eV

2�
, �24�

which approaches −1 in the limits of Tr→1 and eV�2�. On
the other hand, for gate voltages much larger than the applied
bias, the magnetization approaches zero as

m = −

Tr

�

�eV

�d
2 + �2 . �25�

Finally, we note that the magnetization becomes finite and
independent of the gate voltage in the limit of infinite V, in
which case we find the simple expression m=−
Tr.

In the interacting case, one must replace ��
� with �−��
�
in Eq. �22�. Then, the expression becomes involved and the
full phase diagram can be obtained only numerically. How-
ever, the model is tractable in special cases. In particular, we
focus on level energies around the particle-hole symmetric
point ��d=−U /2�. We define the dimensionless parameters
p=−�d /U, y=U /�, z=eV /2�, and R=2�� /U�
x cos 
. Our
goal is to characterize the critical line that separates the non-
magnetic and the magnetic phases. This is given by a curve
pc versus yc in the p-y plane for different values of z. Then,
for small values of pc−1 /2 we find �see the Appendix�,

yc �
�

2
�1 + z2��1 + �1 − 3z2���

2
�pc −

1

2
� +

Ro

1 + z2�2� ,

�26�

where R0=
x cos 
. This result shows that the phase dia-
gram presents a dip for z�z�, where z�=1 /
3 �as in Ref.
16�, but the form of the phase diagram is modified by the
Rashba parameter R. In fact, the dip position shifts away
from the symmetric point due to the Rashba-induced level

renormalization. The most important consequence is that
whereas m vanishes for �d=−U /2 at large bias in the case
without spin-orbit interactions,16 the magnetization remains
finite in the Rashba case. We have numerically checked this
prediction �see below�.

IV. NUMERICAL RESULTS

A. Equilibrium case

We now numerically solve Eqs. �8� and �15�. For simplic-
ity, we neglect the dependence of the system parameters on �
and treat U, �, and �d as independent constants. In Fig. 2 we
show m as a function of �d for EF=0 and a fixed value of �.
In the absence of spin-orbit interaction �x=0 and 
=0� the
magnetization is zero for positive �d /U. When �d /U de-
creases, there is a transition point into the magnetic state,
whose magnetization becomes maximal at the particle-hole
symmetric point ��d=−U /2�. At this point, m�0.64, in
agreement with Ref. 9. We now change the value of x and 
.
These two parameters can be modified independently, tuning
� and l. Then, for nonzero x and 
=0 we find that the tran-
sition point shifts toward larger values of �d /U. This results
from the self-energy shift �
x cos 
 found in Eq. �7�. More-
over, we observe an increase in the amplitude of m as x
increases. This is a consequence of the Rashba-coupling-
enhanced magnetic-moment formation discussed above �Eq.
�20��. Furthermore, keeping x constant and changing 
 we
find that the magnetization curve changes only slightly, con-
firming our earlier prediction.

B. Nonequilibrium case

The nonequilibrium magnetization for the noninteracting
case �U=0� is shown in Fig. 3 for increasing values of the
external bias V. The curves are symmetric around �d=0,
which corresponds to the alignment between �d and the
Fermi energy. The magnetization is nonzero for all finite val-
ues of V, as discussed after Eq. �22�. In the limit of large
voltages, the curve becomes featureless according to Eq.
�24�.

The interacting case is shown in Fig. 4. All energies are
given in units of U=1. For comparison, we also reproduce
the curve corresponding to U=0 and eV=0.1. At the same
voltage in the interacting case, we observe that the magneti-
zation curve follows the noninteracting curve for large �d.
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FIG. 2. �Color online� Equilibrium magnetization of the Rashba
dot for �=0.2 and the values of x and 
 shown in the figure.
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This is reasonable since we are entering the empty orbital
regime for which interactions are unimportant. In the oppo-
site regime, i.e., for negative �d, strong correlations start to
dominate and the interacting magnetization, although still fi-
nite, departs significantly from the noninteracting case. We
obtain strong modifications in the magnetization curve for
increasing voltages, favoring the development of magnetic
moments due to the combined influence of interactions and
spin-orbit coupling. For energies around the particle-hole
symmetric point ��d�−U /2�, we find that the magnetization
is reduced as V increases but unlike the case without spin-
orbit interactions, m does not vanish in the limit of large bias.
This is in excellent agreement with the prediction of Eq.
�26�.

V. CONCLUSIONS

We have studied the possibility of the occurrence of the
magnetic models in a Rashba dot. The mean-field approxi-
mation has been used to calculate the magnetic moment and
the critical value U /� for the occurrence of the local mo-
ments as a function of the parameters of the Rashba Hamil-
tonian. This condition, expressed by Eq. �20�, is similar to
the condition obtained for the Anderson model9 but contains
also the parameter x which is determined by the Rashba in-

teraction. Therefore, our calculation suggests a driving of
magnetic moments by external electric fields via the Rashba
interaction. We have demonstrated that the value of the local
magnetization m at equilibrium depends on x, but it is worth
noting that the curve m�	d /U� is not very sensitive to the
change in the parameter 
. This result has been also shown
in numerical simulations of the mean-field equations.

As in the standard Anderson calculation,9 our mean-field
approach breaks the local symmetry, but in an exact solution
accounting also for the effect of the spin fluctuations, we
should recover the spin rotational invariance. Nevertheless,
even if the magnetic states found above are an artefact of the
model, the mean-field solution is interesting as such since it
gives an indication of the region of the coupling constants of
the Hamiltonian where the fluctuations give a relevant effect.
Recently, magnetic-moment formation was proposed as a
mechanism to explain the temperature dependence of the
conductance for different gate voltages in quantum point
contacts,20,21 where the scaling behavior of the conductance
close to pinch off as a function of temperature was used as an
argument for the Kondo effect occurrence. Hence, our results
can be useful for these systems when spin-orbit interactions
become relevant. We believe that our calculation can also be
important for magnetic semiconductors.11,22

In the nonequilibrium regime, we have discussed the in-
terplay between an external bias and the on-site interaction
energy when the spin-orbit interaction is present. The phase
diagram we obtain is different from the nonequilibrium case
studied in Ref. 16, where the spin-orbit coupling was not
considered. In Ref. 16, it is shown that the phase diagram
presents a dip for z�

1

3

. We have demonstrated that the spin-
orbit interaction yields in Eq. �26� a correction given by the
last term proportional to R0. In the case of symmetric model
�2	d+U=0� and large bias, the magnetization vanishes in the
absence of spin-orbit interaction.16 In contrast, here we pre-
dict that the magnetization remains finite due to the Rashba
interaction. Our numerical solution confirms this result,
which can be particularly relevant for the experiments. It
suggests that in materials with Rashba spin-orbit interaction
the main contribution to the magnetization can be enhanced
by applying a dc bias.

As possible extensions of our model, an interesting pos-
sibility is to take into account an energy-dependent density
of states �specific for the semiconductors� such as the gapless
density of states ��
��	
	r. This will give rise to an energy-
dependent ��
�, and the resulting behavior will likely differ
from standard quantum dots.23 Future investigations could
also deal with the effect of correlations which was neglected
in the present calculations. Using the Hewson24 decoupling
one might follow the method from Ref. 25 to calculate the
effect of magnetic correlations in the U→� limit for systems
with spin-orbit interaction. Finally, progress of experimental
studies will be crucial for the directions in the development
of this model.
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FIG. 3. �Color online� Nonequilibrium magnetization of the
Rashba dot for �=0.2, x=0.1, and 
=� /2 as a function of the level
position for different values of the bias voltage V in the noninter-
acting case �U=0�.
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APPENDIX

We present here a derivation of Eq. �26�. The mean occu-
pations n↑ and n↓ have been calculated from the following
relations:

2�n↑ = − 
Tr sin 
�tan−1eV + 2�↓�EF�
2�

+ tan−1eV − 2�↓�EF�
2�

�
+ � + tan−1eV + 2�↓�EF�

2�
− tan−1eV − 2�↓�EF�

2�
,

�A1�

2�n↓ = 
Tr sin 
�tan−1eV + 2�↑�EF�
2�

+ tan−1eV − �↑�EF�
2�

�
+ � + tan−1eV + 2�↑�EF�

2�
− tan−1eV − 2�↑�EF�

2�
.

�A2�

Using these results we obtain the magnetization m,

m = −
1

2�

Tr sin 
�tan−1eV + 2�↓�EF�

2�
+ tan−1eV − 2�↓�EF�

2�

+ tan−1eV + 2�↑�EF�
2�

+ tan−1eV − 2�↑�EF�
2�

�
+

1

2�
�tan−1eV + 2�↓�EF�

2�
− tan−1eV − 2�↓�EF�

2�

− tan−1eV + 2V�↑�EF�
2�

+ tan−1eV − 2�↑�EF�
2�

� . �A3�

From this expression we can see that for U=0 we have
�↑�EF�=�↓�EF�=��EF� and the magnetization m has the value
given in Eq. �23� with Tr=4x / �1+x�2.

In the same way we calculate the total occupation n=n↑
+n↓ as

n = −
1

2�

Tr sin 
�tan−1eV + 2�↓�EF�

2�
+ tan−1eV − 2�↓�EF�

2�

− tan−1eV + 2�↑�EF�
2�

− tan−1eV − 2�↑�EF�
2�

�
+

1

2�
�tan−1eV + 2�↓�EF�

2�
− tan−1eV − 2�↓�EF�

2�

+ tan−1eV + 2�↑�F�
2�

− tan−1eV − 2�↑�EF�
2�

+ 2�� , �A4�

which for U=0 becomes

n = 1 +
1

�
tan−1 8��

4�2 − 4�2 + �eV�2 �A5�

for ��eV�2−4�2� /4�2�−1. In the limit V→0 this equation
gives, at EF=0 and 
=� /2,

n = 1 −
1

�
tan−1 2��d

�2 − �d
2 . �A6�

From these relations we expect that the magnetic �n��n−��
and nonmagnetic solutions �n−�=n�� exist for small V. In the
following we will analyze the phase diagram taking into con-
sideration the extra parameter V and the Rashba interaction.
We introduce9,16 the parameter nc, which runs from 0 to 1,
and the dimensionless parameters p=−�d /U, y=U /�, z
=eV /2�, and R=2�� /U�
x cos 
. Thus,

nc = 1 +
1

�
tan−1�z + yc�pc + R/2 − n + nc��

−
1

�
tan−1�z − yc�pc + R/2 − n + nc�� . �A7�

Deriving this expression with regard to nc we arrive at

�

yc
=

1

1 + �z + yc�pc + R/2 − n + nc��2

+
1

1 + �z − yc�pc + R/2 − n + nc��2 . �A8�

For pc=1 /2 we can fix nc=1 /2 and n=1,

�

yc
=

1

1 + �z + R0�2 +
1

1 + �z − R0�2 , �A9�

where R0=
x cos 
. We now write down the equation which
contains the small parameter pc−1 /2,

�

yc
=

1

1 + �yc�pc − 1/2� + z + R0�2

+
1

1 + �yc�pc − 1/2� − z + R0�2 . �A10�

Using Eq. �A9� we can solve Eq. �A10� iteratively, yielding
Eq. �26�.
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