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ABSTRACT

Aims. We develop and validate tools for estimating residual noise covariance in Planck frequency maps, we also quantify signal error
effects and compare different techniques to produce low-resolution maps.
Methods. We derived analytical estimates of covariance of the residual noise contained in low-resolution maps produced using a
number of mapmaking approaches. We tested these analytical predictions using both Monte Carlo simulations and by applying them
to angular power spectrum estimation. We used simulations to quantify the level of signal errors incurred in the different resolution
downgrading schemes considered in this work.
Results. We find excellent agreement between the optimal residual noise covariance matrices and Monte Carlo noise maps. For
destriping mapmakers, the extent of agreement is dictated by the knee frequency of the correlated noise component and the chosen
baseline offset length. Signal striping is shown to be insignificant when properly dealt with. In map resolution downgrading, we find
that a carefully selected window function is required to reduce aliasing to the subpercent level at multipoles, � > 2Nside, where Nside

is the HEALPix resolution parameter. We show that, for a polarization measurement, reliable characterization of the residual noise is
required to draw reliable constraints on large-scale anisotropy.
Conclusions. Methods presented and tested in this paper allow for production of low-resolution maps with both controlled sky signal
error level and a reliable estimate of covariance of the residual noise. We have also presented a method for smoothing the residual
noise covariance matrices to describe the noise correlations in smoothed, bandwidth-limited maps.

Key words. cosmic microwave background – cosmology: observations – methods: data analysis – methods: numerical

1. Introduction

Over the past two decades observations of the cosmic microwave background (CMB) have led the way towards the high-precision
cosmology of today – a process best emphasized recently by the high-quality data set delivered by the Wilkinson microwave
anisotropy probe (wmap) satellite (Hinshaw et al. 2007). The next major step in a continuing exploitation of the CMB observable
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will be data analysis of data sets from another satellite mission, Planck. Planck will observe the entire sky in multiple frequency
channels, promising to improve on the recentwmap constraints on many fronts. In particular, as a satellite, Planck will provide us
with unique access to the largest angular scales, in which the total intensity has proven controversial and difficult for theoretical
interpretation and is still poorly measured and exploited in the polarization. Planck will be the only CMB satellite deployed in the
current decade. It is therefore particularly important that the constraints on a large angular scale derived from the anticipated Planck
data not only are robust, but they also efficiently exploit the information contained in them. This will be certainly necessary if Planck
is to set strong constraints on the CMB B-mode power spectrum (Efstathiou et al. 2009) – one of the most attractive potential science
targets of the mission.

In this paper we develop tools necessary for the statistically sound analysis of constraints on large angular scales. These include
robust approaches to producing low-resolution maps and techniques for estimating pixel-pixel correlations from their residual noise.
The work is a natural extension of the extensive mapmaking studies conducted within the Planck Working Group 3 (CTP) (Poutanen
et al. 2006; Ashdown et al. 2007a,b, 2009). The low-resolution maps are expected to compress nearly all the information relevant
to the large angular scale in fewer pixels making them more manageable. Given our Gaussian noise assumption, the full statistical
description of the map uncertainty is given by its pixel-pixel noise covariance matrix (NCM). This is defined as

N =
〈
(ŝ − s) (ŝ − s)T

〉
, where 〈(ŝ − s)〉 = 0, (1)

where s is the 3Npix input sky map of Stokes I, Q, and U parameters, and ŝ is our estimate of s. In the absence of signal errors,
the difference (ŝ − s) contains only instrument noise. We note that N is symmetric and usually dense matrix, which in general will
depend on the mapmaking method that produced the estimate. In the following, we consider a number of numerical approaches to
calculating such a matrix for each of the studied low-resolution maps and then test their consistency with the actual noise in the
derived maps.

The full noise covariance matrices have been commonly computed and used in the analysis of the small-scale balloon-borne,
(e.g. Hanany et al. 2000; de Bernardis et al. 2000) and ground-based experiments, (e.g., Kuo et al. 2004). The cosmic background
explorer differential microwave radiometer (cobe-DMR) team also used them to derive low-� constraints, (e.g., Górski et al. 1996;
Wright et al. 1996). In all those cases, however, no resolution downgrading has been required, unlike with Planck, as the calculations
for those experiments could be done at full resolution. To this date, only the wmap team has encountered a similar problem. The
instrument noise model employed by them is, in fact, similar to the one used for Planck. It is parametrized, however, in the time
domain rather than in the frequency domain (Jarosik et al. 2003, 2007). Calculation of thewmap NCM is formulated in exactly the
same manner as for our optimal mapmaking method and the wmap likelihood code1 ships with an NCM very similar to what we
present here.

Our analysis is made unique by the differences in the experiment design: wmap pseudo-correlation receivers are differencing
assemblies (DA) with two mirrors, whereas Planck will use a single mirror design (HFI, the high-frequency instrument) or has a
reference load in place of the second mirror (LFI, the low-frequency instrument) (Planck Collaboration 2005). Between these, the
pixel-pixel correlations are different. In principle the balanced load systems of cobe and wmap should bring less correlated noise
than the unbalanced Planck LFI. On the other hand, differencing experiments generate pixel-pixel noise correlations even from
white noise, whereas in Planck they originate in the correlated noise alone. In addition, we also study here the so-called destriping
algorithms, which have been proposed as a Planck-specific mapmaking approach (Delabrouille 1998; Maino et al. 2002; Keihänen
et al. 2004, 2005).

Residual noise covariance for Planck-like scanning and instrument noise has been studied before, either via some simplified
toy-models (Stompor & White 2004) or in more realistic circumstances (Efstathiou 2005, 2007). Those studies approached the
problem in a semi-analytic way and thus needed to employ some simplifications, which we avoid in our work. They were also based
solely on the destriping approximation, assuming that noise can be accurately modeled by relatively long (one hour) baseline offsets
and white noise, and did not consider any other approaches. In this work we extend those analyses into cases where modeling the
noise correlations requires shorter baselines and compare those with optimal solutions.

2. Algebraic background

2.1. Maps and their covariances

To formulate mapmaking as a maximum likelihood problem we start with a model of the timeline:

d = As + Bx + n, (2)

where the underlying microwave sky signal, s, is to be estimated. Here A is the pointing matrix, which encodes how the sky is
scanned and n is a Gaussian, zero mean noise vector. x denotes some extra instrumental effects, usually taken hereafter to be
constant baseline offsets, which we will use to model the correlated part of the instrumental noise and B – a “pointing” matrix for x
describing how it is added to the time domain data. Convolution with an instrumental beam, assumed here to be axially symmetric,
is already included in s.

The signal part of the uncalibrated data vector, d, is the detector response to the sky emission observed in the direction of pixel p.
For a total power detectors, e.g., the ones on Planck, it is a linear combination of polarized and unpolarized contributions:

dt = K
{
(1 + ε)spI+(1 − ε)

(
spQ cos(2χt) + spU sin(2χt)

)}
+ nt, (3)

1 http://lambda.gsfc.nasa.gov/
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where it is implied that sample t is measured in pixel p and χt is a detector polarization angle with respect to the polarization basis
and we have dropped the baseline term for simplicity. Equation (3) includes an overall calibration factorK , and a cross polar leakage
factor ε, however, in what follows, we only consider the case of perfect calibration, settingK = 1 with no loss of generality, and no
leakage, ε = 0.

To simplify future considerations we introduce a generalized pointing matrix, A′, and a generalized map, s′. They are defined as

A′ ≡ [A, B] , and s′ ≡
[

s
x

]
allowing us to write d = A′s′ + n. (4)

The detector noise has a time-domain covariance matrix N = 〈nnT〉 and the probability for the observed timeline, d, becomes the
Gaussian probability of a noise realization n = d − A′s′:

P(d) = P(n) =
[
(2π)dim n detN

]−1/2
exp

(
−1

2
nTN−1 n

)
P (x) , (5)

where the last factor is a prior constraint on the noise offsets, x, which hereafter we will take to be a Gaussian with a zero mean and
some correlation matrix, P, i.e.,

P (x) ∝ exp

(
−1

2
xTP−1x

)
. (6)

By maximizing this likelihood with respect to the sky signal and baselines contained in s′, we find an expression for a maximum
likelihood estimate which reads,

ŝ′=
(
R−1 + A′TN−1 A′

)−1
A′TN−1d, whereR−1 ≡

[
0 0
0 P−1

]
. (7)

The first part of the vector ŝ′ is an estimate of the actual sky signal, ŝ, while all the rest is an estimate of the baseline offsets, x̂. The
map A′TN−1 d is called the noise-weighted map. In case of flat prior for x, expressions identical to Eq. (7) can be also derived from
minimum variance or generalized least square considerations and we will refer to ŝ as either a minimum variance or optimal map in
the future. We note that we have ignored here any pixelization effects that cause differences between d and A′s′ even for a noise-
free experiment. This is usually true in the limit of the pixel size significantly smaller than the beam resolution of the instrument. If
this condition is not fulfilled, the pixelization effects may be important and special methods may be needed to minimize them. We
discuss specific proposals in Sect. 2.3. In the absence of such effects, the difference between a map estimate, ŝ′, and the input map,
s′, is called residual pixel domain noise.

Let us now consider first the prefactor matrix in Eq. (7),

M′ ≡
(
R−1 + A′TN−1 A′

)−1
, (8)

a weight matrix combining both the baseline prior and the noise variance weights. It acts on the generalized noise-weighted map,
producing estimates of the pixels and baselines.

Given that our generalized map is made of two parts: the actual sky signal and the baseline offsets, the matrix M′ has four
blocks: two diagonal blocks, denoted M and Mx, and two off-diagonal blocks, each of which is a transposed version of the other
and one of which is referred here to as Mo. Using inversion by partition we can write an explicit expression for each of these blocks.
For example, for the sky-sky diagonal blocks we get,

M=
[
ATN−1 A−

(
ATN−1B

)(
P−1+BTN−1 B

)−1(
ATN−1 B

)T
]−1

(9)

=
(
ATN−1 A

)−1
+

(
ATN−1 A

)−1 (
ATN−1 B

)
×Mx

(
ATN−1 B

)T (
ATN−1 A

)−1
, (10)

while for the offset-offset part,

Mx =

[
P−1 + BTN−1 B −

(
BTN−1 A

)

×
(
ATN−1 A

)−1 (
BTN−1 A

)T
]−1

. (11)

With help of these equations we can now write explicit separate expressions for the estimated sky signal and offsets. The former is
given by,

ŝ =
(
MAT + MoBT

)
N−1 d (12)

while the latter,

x̂ =
(
MT

o AT + MxBT
)
N−1d. (13)
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Fig. 1. Noise model (dashed lines) and the
spectra of simulated noise (solid lines). The two
sets of curves correspond to the two considered
knee frequencies with fmin = 1.15 × 10−5 and
α = 1.7.

We can also combine these two equations to derive an alternative expression for the sky signal estimate, which makes a direct use
of the offsets assumed to be estimated earlier,

ŝ =
(
ATN−1 A

)−1 (
ATN−1d − ATN−1Bx̂

)
. (14)

If the assumed data model, Eq. (2), and the time domain noise and baseline covariances are all correct, then the covariance of the
residual pixel domain noise is

N′ =
〈
(ŝ′ − s′)(ŝ′ − s′)T

〉
= M′. (15)

In particular, Eq. (1), the pixel-pixel residual noise covariance matrix, N, is equal to M and given by Eq. (10).
We note that a sufficiently high-quality estimate of the inverse time domain correlations, N−1, is required in order to calculate

both the minimum-variance map and its noise covariance. If it is misestimated the map estimate will still be unbiased, though not
any more minimum variance or maximum likelihood, and its covariance will not be given any more by Eq. (15).

For example for computational reasons we will find later that using some other matrix, denoted here as M−1, rather than the
actual inverse noise covariance, N−1, in the calculation of the map estimates in Eq. (7) can be helpful. The corresponding noise
correlation matrix for such a map is then given by (Stompor et al. 2002, ungeneralized case)

N′ =
〈
(ŝ′ − s′)(ŝ′ − s′)T

〉
=

(
R−1 + A′TM−1 A′

)−1

×
(
R−1RNR−1 + A′TM−1NM−1 A′

) (
R−1 + A′TM−1 A′

)−1
, (16)

whereM and R define our mapmaking operator, whereas N and RN are the true noise properties. This expression is significantly
more complex and computationally involved than Eq. (15). Fortunately, as we discuss in the following, in many cases of interest,
the latter expression turns out to be a sufficiently good approximation of the former with N−1 replaced byM−1 at least for some of
the potential applications.

The mapmaking methods considered for Planck fall into two general classes both of which are described by the equations
derived above. The first class, called optimal methods, assumes the sufficient knowledge of the time domain noise correlations, does
not introduce any extra degrees of freedom, x, (or alternately assumes a prior for them with P vanishing). In this case one can derive
from Eqs. (14) and (10),

ŝ =
(
ATN−1 A

)−1
ATN−1 d, (17)

N =
(
ATN−1 A

)−1
, (18)

where the latter is a covariance of the residual noise of the former.
The second class of methods introduces a number of baseline offsets with a Gaussian correlated (so-called generalized destripers)

or uncorrelated (standard destripers) prior on them and describe the noise as an uncorrelated Gaussian process. The destriper maps
are evaluated via Eq. (12) or Eq. (14), with N assumed to be diagonal. Clearly on the time-domain level the destriper model is just
an approximation, therefore at least a priori we should use the full expression in Eq. (16) to estimate its covariance. The CTP papers
(Poutanen et al. 2006; Ashdown et al. 2007a,b, 2009) have shown that for Planck the two methods produce maps which are very
close to one another. Moreover, they have shown that using a generalized destriper, the derived maps eventually become nearly
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identical to those obtained with the optimal methods, if an appropriate length of the baseline and a number of the baseline offsets is
adopted together with a consistently evaluated prior. This motivates using the simplified Eq. (10) as an approximation for the noise
covariance of the destriped maps, i.e., N = M. We will investigate the quality and applicability of this approximation later in this
paper.

2.2. Time domain noise

We assume that the time domain noise is a Gaussian process and for the simulations we take the noise power spectral density to
have the form

P( f ) =
σ2

fsample
· f αknee + f α

f αmin + f α
, (19)

where the shape is defined by the slope, minimum and knee frequencies (α, fmin and fknee respectively) and the scaling by the
white-noise sample variance and sampling frequency (σ and fsample). Two examples of the theoretical and simulated noise spectra
can be seen in Fig. 1.

In the calculations of the maps using the optimal algorithms or generalized destripers we will assume that noise power spectrum
is known precisely. As the noise simulated in the cases analyzed here is piece-wise stationary, with no correlations allowed between
the data in the different pieces (see Sect. 5) the respective noise correlation matrix, N , is block Toeplitz with each of the blocks,
describing the noise correlations of one of the stationary pieces, defined by the noise power spectrum. Given that we will approximate
the inverse ofN as also a block Toeplitz matrix with each blocks given by an inverse noise power spectrum. Though this is just an
approximation it has been demonstrated in the past that it performs exquisitely well in particularly in the cases with long continuous
pieces of the stationary noise (Stompor et al. 2002), as it is a case in all simulations considered here.

2.3. Low-resolution maps

The high-resolution (down to ∼5 arcmin) of the Planck data makes it impossible with current resources to evaluate and store the
full pixel-pixel covariance of all map pixels. The solution is to produce a low-resolution dataset for the study of large scale structure
of the microwave sky. Low-resolution mapmaking for a high-resolution mission is non-trivial for two reasons: first, the considered
mapmaking methods assume that there exists no sky structure at the sub pixel scale. Secondly, cosmological information contained
in the polarization signal has several orders of magnitude worse signal-to-noise ratio than intensity signal, causing completely
different downgrading effects in the Stokes I, Q and U maps.

In this section we define three alternative methods of producing low-resolution maps from high-resolution observations. The
first two, direct and (inverse) noise weighting methods, have already been used in the WMAP analysis (Jarosik et al. 2007). As the
third option we consider smoothed (low-pass-filtered) maps and their noise covariance.

2.3.1. Direct method

The most straightforward method to produce a low-resolution map is to project the detector observations directly to the pixels of the
final target resolution. Hereafter we will refer to it as the direct method.

Solving the low-resolution map directly involves less uncertainty. This means that the solved and subtracted correlated noise
realization is more accurate. The absence of intermediate, high-resolution products makes noise in the direct maps easier to model.
The noise covariance matrices for the direct maps can be computed using formalism presented in Sect. 2.1, for example, Eqs. (15)
and (16).

On the other hand, if the sky signal varies within the pixels, non-uniform sampling of a pixel can cause a systematic error in the
solved map (Ashdown et al. 2007a). This is an important aspect, as none of the considered algorithms deal with sub pixel structures
by design.

In Sect. 6.3 we quantify the signal error for the different low-resolution maps and mapmakers.
Hereafter, we will use the direct method as a reference with respect to which we compare the other approaches.

2.3.2. Inverse noise weighting (INW)

In the case of nested pixelization schemes, such as Hierarchical Equal Area isoLatitude Pixelization (HEALPix, Górski et al. 2005)
used in this paper, to downgrade a temperature only map, one may compute a weighted average of the sub pixel temperatures. A
natural choice are the optimal, inverse noise weights that lead to minimum noise of the super pixel in the absence of correlated
noise. We will refer to these maps as inverse noise weighted (INW) maps.

A similar weighting scheme exists for the polarized data as well. Algebraically, the entire procedure can be summarized on the
map level as,

ŝ′ =W′′ X W ŝ, (20)

where W and W′′ are weight matrices for the high and low resolution maps, respectively. They depend on A and A′′ – the pointing
matrices at high and low resolution. X simply sums the pixels in resolution Npix to resolution N′pix,

Xqp =

{
1, p subpixel of q,
0, otherwise (21)
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weights are given by,

W′′ =
(
A′′TN−1

u A′′
)−1

and W =
(
ATN−1

u A
)−1
, (22)

and Nu is the time domain covariance matrix of the uncorrelated part of the noise, n.
The covariances for the maps obtained via such a procedure can be derived from Eq. (20) and the expressions described in

Sect. 2.1.
Noise weighting reduces signal errors by first solving the map at a resolution where sub pixel structure is weak. In comparison

to the direct method, the more accurate signal is gained at the cost of higher noise. Like the direct method, INW disregards any
sub pixel structure but at high-resolution. In this case the instrument beam naturally smoothes out small scale structure causing the
approximation to hold.

2.3.3. Harmonic smoothing

Both methods described above may result in the signal smoothing (or its band-width) being position-dependent as it is achieved via
averaging of the observed high-resolution pixel amplitudes contained within each low-resolution pixel.

Applying a smoothing operator to the high-resolution map prior to resolution downgrading could alleviate such a problem. The
smoothing operation needs to properly take care of the high frequency power contained in the maps, not to alias it as power at the
scales of interest.

As the smoothing operation is usually performed in the harmonic domain, it requires that the high-resolution map is first ex-
panded in spherical harmonics. If the sky is only partially covered, the expansion is not unique. Since Planck is a full sky experiment,
we do not address the partial sky problem here but leave it for future work.

To suppress small angular scale power the expansion is convolved with an axially symmetric window function (e.g. a symmetric
Gaussian window function Challinor et al. 2000),

ãT
�m = W�a

T
�m,W� = e−

1
2 �(�+1)σ2

(23)

ãE
�m = 2W�a

E
�m,2 W� = e−

1
2 [�(�+1)−4]σ2

, (24)

chosen to leave only negligible power at angular scales that are not supported by the low target resolution. Finally the regularized
expansion is synthesized into a low-resolution map by sampling the expansion values at pixel centers. We conduct most of our
studies using a beam having a full width at half maximum (FWHM) of twice the average pixel side. For the Nside = 32 resolution2

this is approximately 220′ (3.◦7). Whenever transforms between harmonic and pixel space are conducted, it is important to consider
the range of multipoles included in the transformation. We advocate using such an aggressive smoothing that the harmonic expansion
has negligible power beyond � = 3Nside and results are stable for any �max beyond this. For completeness we have set �max = 4Nside
but stress that any residual power beyond � = 3Nside will lead to aliasing.

The smoothing window does not need to be a Gaussian but it is preferable to avoid sharp cut-offs that may induce “ringing”
phenomena. Benabed et al. (2009) suggest a window function that preserves the signal basically unchanged until a chosen threshold
and then smoothly kills all power quickly above that angular resolution. Their window is

W� =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, � ≤ �1

1
2 [1 + cos ((� − �1)π/(�2 − �1))] , �1 < � ≤ �2

0, � > �2

(25)

with the typical choice �1 = 5Nside/2 and �2 = 3Nside.
In contrast to the two noise-driven methods, harmonic smoothing can be considered optimal from the (large-scale) signal view-

point; however it may be suboptimal as far as the noise is concerned, in particular in the case of strongly inhomogeneous noise
distribution.

The noise covariance matrices described in Sect. 2.1 need to be amended to accurately characterize the smoothed maps and thus
we need to smooth the matrices as well. Smoothing of a map is a linear operation. For any linear operator, L, acting on a map, m,
we can compute its covariance as

〈(Lm)(Lm)T〉 = L〈mmT〉LT = LNLT =
∑

i

λi Lêi · (Lêi)
T, (26)

where λi and ei stand for eigenvalues and eigenvectors of the noise covariance, N, i.e., N =
∑

i λîeîe
T
i , and m is understood here to

contain only noise. We note that in general one should replicate the same processing steps for the covariance matrix as are to be
applied to maps and therefore the smoothing operation should be applied to the noise covariance of the high-resolution map and its
resolution downgraded later.

In order to make the evaluation of Eq. (26) feasible, we must commute the order of the smoothing and downgrading operations
contained in L. Though these two operations are clearly not exchangeable on the map level, due to the potential presence of the
subpixel power, such an approach can be more justifiable for the noise covariances. In this case we can explicitly compute the
low-resolution unsmoothed covariance matrices directly and subsequently smooth them with the signal smoothing kernel.

2 HEALPix resolution is reported as either Nside or r, related by Nside = 2r . A HEALPix map contains 12 × N2
side pixels.
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In the following we will apply the smoothing technique to both high and low resolution maps already downgraded using some
of the other approaches. We will demonstrate that such a combined approach results in controllable properties of the residual noise
on the one hand and well defined sky signal bandwidth on the other. Unlike both the direct and INW methods, the smoothed
low-resolution maps are actually solved from a signal that lacks sub pixel structure.

3. Numerical calculations of residual noise covariance

This section presents numerical methods to compute the residual noise covariance matrix and describes briefly their implementa-
tions corresponding to three different mapmaking methods, the optimal method (MADping and ROMA implementations) and the
generalized (Madam) and classical destriping (Springtide) methods.

3.1. Optimal map covariance

The noise covariance of optimal maps assuming exact noise model is given by Eq. (18). It is evaluated in two steps: first the inverse
covariance matrix, ATN−1 A, is assembled and subsequently inverted. Given that the matrix can be singular the latter step may
require computing the pseudo-inverse.

The pseudo-inverse is defined by the eigenvalue decomposition of the inverse noise matrix. Because the noise matrix is symmet-
ric and, by definition, non-negative definite, its eigenvalues are real and non-negative (λi ≥ 0), and its eigenvectors form a complete
orthogonal basis. This allows us to expand the matrix as

N−1 = UΛUT =
∑
λi êiêT

i . (27)

Here λi are the eigenvalues and êi are the corresponding eigenvectors of the matrix N−1. We can now invert N−1 by using its
eigenvalue decomposition,

N =
∑

i

λ−1
i êiêT

i , (28)

and controlling the ill-conditioned eigenmodes. Any ill-conditioned eigenmode will have an eigenvalue several orders of magnitude
smaller than the largest eigenvalue. By including in the sum only the well-conditioned eigenmodes we effectively project out the
correlation patterns that our methods cannot discern.

We describe in Sect. A.3, that the covariance is indeed commonly expected to be singular or nearly so.
MADping is one of the codes of the MADCAP3 suite of CMB analysis tools (Borrill 1999). In this implementation, each

processor scans through its sections of time-ordered data and accumulates its local piece of the inverse noise covariance. These
pieces are then gathered and written to disk. The scaling of this technique is

Nflops ∼ O
(
nsamples · ncorrelation

)
, (29)

where ncorrelation is the filter length set by the noise autocorrelation length.
For a Planck-sized, full-sky dataset and using a reasonable pixel resolution (half a degree), the construction of the inverse

noise covariance dominates over the computational cost of inverting this matrix. Nevertheless, inversion methods as well as the
eigendecomposition scale as O(N3

pix).
In order to correctly treat the signal component of the data map in Eq. (7), we must apply our low-resolution noise covariance to

a noise-weighted map which has been downgraded from higher resolution. This downgrading process is equivalent to the technique
discussed in Sect. 2.3.2, and ensures that signal variations inside a low-resolution pixel are accounted for. The high-resolution noise-
weighted map consistent with the above formalism is constructed as the first step of the mapmaking carried out by the MADmap
program (Cantalupo et al. 2010). The matrix eigenvalue decomposition is done using a ScaLAPACK4 interface that allows efficient
parallel eigenvalue decomposition of large matrices using a divide-and-conquer algorithm.

The ROMA code (Natoli et al. 2001; de Gasperis et al. 2005) is an implementation of the optimal generalized least squares (GLS)
iterative map making specifically designed for Planck, but also successfully used on suborbital experiments such as BOOMERanG
(Masi et al. 2006). To estimate noise covariance as in Eq. (15) we start by calculating row i of its inverse, N−1, by computing its
action on the unit vector along axis i:

(N−1)i: = (ATN−1 A) · ei. (30)

This calculation is implemented as follows: i) projecting the unit vector into a TOD by applying A on êi; ii) noise-filtering the TOD
in Fourier space; iii) projecting the TOD into a map by applying AT. By computing each column independently we reduce memory
usage because we allocate memory only for one map instead of allocating memory for the full matrix. The computational cost of
the full calculation is dominated by Fourier transforms that are repeated as many times as the number of columns, hence the scaling
can be expressed as:

Nflops ∼ O
(
nsamples · log2(nfilter) · npix

)
. (31)

3 http://crd.lbl.gov/~borrill/cmb/madcap/
4 http://www.netlib.org/scalapack/scalapack_home.html
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Alternately, we can compute the NCM column-by-column with help of multiple mapmaking-like operations, i.e.,

yi: = (ATN−1 A)−1 · ei, (32)

where êi is a unit vector as defined above and yi stands for a column of N. We rewrite the above equation as

(ATN−1 A) · yi = ei, (33)

and solve it using the standard PCG mapmaking solver. In such case there is no need to store a full inverse noise covariance matrix
in the memory of a computer at any single time as the operations on the lhs can be performed from right to left. As a result, this
approach can be applied also for high-resolution cases for which the direct method described above would not be feasible.

We note that unlike in the previous approaches based on the direct matrix inversion in the latter case there is no special care
taken of potential singularities. Though the presence of those does not hamper the PCG procedure (e.g., Cantalupo et al. 2010),
nonetheless care must be taken while interpreting its results.

3.2. Destriped map covariance

In the destriping approach to mapmaking, we model all noise correlations by baseline offsets. Thus we write Eq. (2) as

d = As + Bx + nu, (34)

where nu is a vector of uncorrelated white noise samples. Accordingly, we must replace the time-domain noise covariance matrix,
N , by a diagonal matrix,Nu. All noise correlation is then included in the prior baseline offset covariance matrix, P.

If we now apply the destriping approximation to Eqs. (9) we find for the pixel-pixel residual noise covariance matrix:

M−1 = ATN−1
u A − ATN−1

u B
(
P−1 + BTN−1

u B
)−1

BTN−1
u A. (35)

The first term on the rhs is the binned white noise contribution (a diagonal or block-diagonal matrix for temperature-only and
polarized cases respectively) and the second term describes the pixel-pixel correlations due to errors in solving for the baselines,
i.e., the difference between the solved and actual baselines (Kurki-Suonio et al. 2009).

When making a map using destriping, one can use high resolution to solve for baselines and still bin the map at low resolution.
Since this is equivalent to producing first a high-resolution map and then downgrading through inverse noise weighting, we will
always assume the same pixel size for both of these steps.

3.2.1. Conventional destriping

Springtide (Ashdown et al. 2007b) is an implementation of the conventional destriping approach which solves for one baseline per
pointing period. Since the baselines are so long, it allows for a number of optimizations in the handling of the data. During one
pointing period, the same narrow strip of sky is observed many times, so the time-ordered data are compressed into rings before
doing the destriping. Another effect of the long baselines is that the prior covariance matrix of the baselines, P, is strongly diagonal-

dominant, so to a very good approximation can be assumed to be diagonal. As a consequence, the matrix
(
P−1 + BTN−1

u B
)−1

that
appears in the expression for the inverse map covariance matrix (35) is also diagonal. Thus the number of operations taken to
compute (35) is

Nflops ∼ O
(
nbase(npix/base)

2
)
. (36)

The number of baselines is small compared to the generalized destriping approach, so it is also possible to compute the inverse
posterior covariance matrix of the baseline offsets explicitly, invert it and use it to compute the map covariance matrix. This method
has the advantage that the resolution at which the destriping is performed is not constrained to be the same as the resolution of
the final map covariance matrix. The destriping can instead be done at the natural resolution of the data to avoid subpixel striping
effects. The inverse of the posterior baseline error covariance matrix can be calculated using Eq. (11) and the corresponding map
covariance matrix is given by Eq. (10). However, the pointing matrices, A, need not be for the same resolution in both steps.

The structure of the inverse posterior baseline covariance matrix, Eq. (11), depends on the scanning strategy, but it is in general
a dense matrix. Inverting the matrix and using it to compute Eq. (10) involves dense matrix operations, so this method is computa-
tionally more demanding than the other approach described above. However, the posterior baseline covariance matrix needs only to
be computed once and stored, and then can be used many times to compute the map covariance matrix for any desired resolution. It
is also possible to use Eq. (10) to compute the residual noise covariance matrix for a subset of the pixels in the map.

3.2.2. Generalized destriping

Madam (Keihänen et al. 2005, 2010) is an implementation of the generalized destriping principle. It is flexible in the choice of
baseline length and makes use of prior information of baseline covariance (P is not approximated to be diagonal).

Even for a generalized destriper, all the matrices in Eq. (35) are extremely sparse. Most of the multiplications only require

operations proportional to the number of pixels, baselines or samples. The matrices P−1 and
(
P−1 + BTN−1

u B
)−1

are approximately
circulant, band-diagonal matrices whose width is determined by the noise spectrum. For all cases studied in this paper, the latter
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Table 1. Pixel side to baseline length at 1 rpm spin rate.

Nside

√
pixel area Npix tbase

4 14.◦658 192 2.443 s
8 7.◦329 768 1.222 s

16 3.◦665 3072 0.611 s
32 1.◦832 12 288 0.305 s
64 0.◦916 49 152 0.153 s

128 0.◦458 196 608 0.076 s

matrix is limited to the order of 103 non-negligible elements per row. We call this width the baseline correlation length, ncorr. ncorr
corresponds to a few hours of samples and is inversely proportional to baseline length, nbl. In addition to the correlated noise part,
our formalism naturally includes pixel correlations due to white noise.

We evaluate the prior baseline offset matrix from the power spectral density (PSD) of the correlated noise, P( f ), by Fourier
transforming the baseline PSD, Px( f ), into the autocorrelation function. The baseline PSD is evaluated as (Keihänen et al. 2010):

Px( f )=
1

tbase

∞∑
m=−∞

P( f + m/tbase)g( f tbase + m),

where g(x) =
sin2 πx
(πx)2

· (37)

The sum converges after including only a few m around the origin. For stationary noise, any row of P−1 can then be evaluated as a
cyclic permutation of F −1[1/Px( f )].

We evaluate (35) after computing (37) by approximating the inner matrix,
(
P−1 + BTN−1

u B
)−1

, as circulant. This allows us to
invert the nbase × nbase band diagonal matrix by two short Fourier transforms. It turns out that the matrix multiplications are most
conveniently performed by first evaluating the sparse ATN−1

u B matrix and then operating with it on the inner matrix from both sides.
Actually the inverse covariance matrix gains a contribution from all quadruplets (xi, x j, p, q), where baselines xi and x j are

within baseline correlation length and hit pixels p and q. The number of operations required to complete the estimate is then
proportional to

Nflops ∼ O
(
nbase · ncorr · (npix/base)

2
)
, (38)

where nbase and ncorr, the number of baselines per survey and correlation length respectively, are inversely proportional to the length
of a baseline. In contrast, npix/base, pixels per baseline, is proportional to baseline length. For short baselines and low-resolution maps,
the magnitude of npix/base is close to unity. Table 1 lists low-resolution Nside parameters and the baseline lengths that correspond to
average pixel sizes. It can be used to estimate npix/base and shows that, for example, 1.25 s baseline offset at Nside = 32 resolution
covers approximately 4 pixels. The success of this approach is to replace the number of baselines squared, n2

bl, in the computation
complexity by n2

pix/base.

3.3. Smoothed covariance matrices

We define the linear smoothing operator, L, of Eq. (26) as

L = Y†WY, (39)

where each row of the matrix Y is a map of the relevant spin-0 and spin-2 spherical harmonic functions. Y acts on a map vector
and returns its spherical harmonic expansion: a = Ym. W is the smoothing kernel matrix that suppresses power at the chosen scales
according to Eq. (23).

The smoothing procedure on its own will often lead to singular eigenvectors of the smoothed covariance matrix, with the
eigenvalues corresponding to those close to zero. Though at a first glance such eigenvectors may look like being strongly constrained
by the data, their actual value in the analysis is negligible as the sky signal in those modes is also smoothed. The nearly vanishing
variance of those modes will often spuriously exaggerate the smoothing and mapmaking artifacts likely present whenever any
inverse noise weighting needs to be applied. To avoid such problems hereafter we apply the pseudo-inverse described in 3.1 The
criterion for selecting the nearly singular modes will in general depend on the case at hand and we will discuss the matter with
the χ2 test in Sect. 6.2.

In some cases the eigenvalue decomposition of the smoothed matrix may not be readily available or its computation not desirable.
We can then regularize the inversion of Ñ by adding some low level of the pixel-independent uncorrelated noise. For consistency,
a random realization of such noise should also be added to the corresponding maps. We note that both approaches are effectively
equivalent and that the choice of the singularity threshold needed to select the singular eigenmodes corresponds roughly to the
choice of the noise level to be added. We will commonly use the latter approach in some of the power spectrum tests discussed later.
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Table 2. Frequently used symbols in this paper.

Time domain Map domain
Symbol Definition Symbol Definition
N noise covariance, time domain C pixel-pixel covariance matrix
N′ correlated (1/ f ) noise covariance, time domain N noise covariance, map domain
Nu white noise covariance, time domain M−1 white noise covariance, map domain
P prior baseline offset covariance Mp 3 × 3 observation matrix
A detector pointing matrix m 3Npix Stokes I, Q, U map vector
B offset-to-TOD matrix ŝ map estimate
x baseline offset vector s sky map
n noise vector ei Cartesian unit vector along the i:th axis
n′ correlated noise vector
nu white noise vector
d TOD vector

4. Numerical tests and comparison metric

This paper has two main goals. On the one hand we propose and compare various methods devised to produce the low-resolution
maps, searching for the mapmaking method which leads to low-resolution maps virtually free of artifacts such as those due to
subpixel power aliasing. In parallel we develop the tools to estimate residual noise covariance for such maps, which properly
describe the error of the estimated maps due to residual noise. The numerical results presented in the subsequent sections of the
paper aim therefore at comparing and validating the algorithms which we have presented earlier. The discussed comparisons involve
standard statistical tests, such Kolmogorov-Smirnov, χ2, etc. and ones which are specifically devised in the light of the anticipated
future applications of the maps and their covariances. We describe such tests in this section.

4.1. Quadratic maximum likelihood power spectrum estimation

One of the main applications for the low-resolution noise covariance matrices we envisage is to the estimation of power spectra, C�.
This is often separated into the estimation of large and small angular scales, usually associated with high and low signal to noise
regimes. The methods discussed here are relevant for large angular scales. The successful estimation of the underlying true power
spectrum of the sky signal sets demanding requirements for the quality of the maps produced for such a purpose as well as the
consistency of the estimated noise covariance and the actual noise contained in the map. For this reason we will use hereafter power
spectrum estimation as one of the metrics with which to evaluate the quality of the proposed algorithms.

We will use the quadratic maximum likelihood (QML) method for the power spectrum estimation as introduced in (Tegmark
1997) and later extended to polarization in (Tegmark & de Oliveira-Costa 2001). Given a temperature and polarization map, m, the
QML provides estimates of the power spectra, that read,

ĈX
� =

∑
�′ ,X′

(F−1)X X′
��′

[
mTE�

′
X′m− tr(NE�

′
X′)

]
. (40)

Here, ĈX
� is an estimated power spectrum, X = TT,EE,TE,BB,TB, or EB, and F��

′
XX′ is the Fisher matrix. F and E are defined as

F��
′

XX′ =
1
2

tr
[
C−1 ∂C
∂CX
�

C−1 ∂C
∂CX′
�′

]
and E�X =

1
2

C−1 ∂C
∂CX
�

C−1, (41)

where C = S(C�) + N is the (signal plus noise) covariance matrix of the map, m. C� is a fiducial power spectrum needed for the
calculation of the signal part of the covariance. In this paper we will take it to be given by the true power spectrum as used to produce
the simulated skies. Though this would be an unfair assumption, while testing the performance of this power spectrum estimation
technique, it is justified in our case, where the fact that it leads to the minimal estimation uncertainties increases the power of our
test.

Gruppuso et al. (2009) describe a specific implementation of the QML method, nicknamed Bolpol, used in this work and
discusses its performance in the application to the WMAP 5 year data. The QML estimator is known to be equivalent to a single
iteration of a quasi-Newton-Raphson procedure to search for the true likelihood maximum (Bond et al. 1998).

4.2. Noise bias

In the mapmaking methods considered in this paper residual noise in the maps is independent of the sky properties and completely
defined by the time-domain noise properties and the scanning strategy. The noise present in the maps contributes to the power
spectrum estimates of the map signal. We will therefore refer to this contribution as the noise bias and use it to quantify the noise
level expected in the maps of our different methods in a manner more succinct and manageable than the full noise covariance.

The noise bias is defined to be the expectation value for angular power spectrum in the noise-only case

NXY
� =

〈
CXY,noise
�

〉
, (42)
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where X and Y stand for T, E and B. In the general case of a quadratic estimator, such as QML, Eq. (40), the power spectrum
estimates are given as a quadratic form of the input map, m,

CXY
� = mTQXY

� m = tr QXY
� mmT. (43)

By taking m to be noise-only, the noise bias can be expressed as

NXY
� =

〈
CXY,noise
�

〉
= tr QXY

� N. (44)

Given the eigenvalue decomposition of the noise covariance matrix, N =
∑

i λiêiêT
i , we can evaluate the noise bias as

NXY
� =

∑
i

λiêT
i QXY
� êi. (45)

In the following we will validate the noise covariance matrices, estimated for the recovered sky maps, with the help of their respective
noise biases, which we will compare to results of Monte Carlo simulations. In this context it is particularly useful to consider a
pseudo-C� estimator that assumes uniform pixel weights and full sky. For this estimator, the operator QXY

� is

QXY
� =

1
2� + 1

(
YX
�

)†
YY
� , (46)

where YX
� has 2� + 1 rows that are maps of the appropriate spherical harmonics. It maps a map vector into a vector of spherical

harmonic expansion coefficients {aX
�m} where m = −� . . . �.

The procedure we implement here involves two steps. First for every estimated noise covariance we compute analytically the
noise bias using Eqs. (45) and (46). Second, we compute the bias using Monte Carlo realizations of the noise-only maps produced
using the corresponding mapmaking procedure. The multiplications YX

� ui are conveniently implemented using the HEALPix (Górski
et al. 2005) Fortran 90 subroutine map2alm. We note that as we consider hereafter only full-sky cases, the noise biases we compute
as described above would be equal to those expected in the Maximum Likelihood estimates of the sky power spectrum, were it not
for the imperfection of the sky quadrature due to pixelization effects (Górski et al. 2005).

5. Simulation

5.1. Scanning strategy

In this study the Planck satellite orbits around the second Lagrangian point (L2) of the Earth-Sun system (Dupac & Tauber 2005).
The spin axis lies near the ecliptic plane, precessing with a six month period around the anti-Sun direction at an angle of 7.◦5. The
focal plane line-of-sight forms an 85◦ angle with the spin axis. In addition to these modes, we include a nutation of the spin axis
and slight variations to the 1 rpm spin rate. Details of the scanning simulation can be found from Ashdown et al. (2009) where it
was used in a mapmaking study.

5.2. Planck detectors

In this paper we study residual noise in the Planck 70 GHz frequency maps. Planck has twelve detectors at 70 GHz. In the focal
plane they are located behind six horn antennas, a pair of detectors (“Side” and “Main” detectors5) sharing a horn. A pair of
detectors measures two orthogonal linear polarizations. The horns are split in two groups (three horns in a group). The Side and
Main polarization sensitive axes of a group are nearly aligned and the polarization directions of the second group differ from the
first group nominally by 45◦. Two horns from the different groups make a polarization pair that follows the same scan path in the
sky (three pairs in total with slightly different scan paths). As a minimum the observations of a polarization pair are required to
build a polarization map. Due to implementation restrictions the Side and Main polarization axes are not fully orthogonal and the
polarization direction differences between the groups are not exactly 45◦, but the deviations from these nominal values are small
(�0.◦2). The Side polarization axes of the two groups differ by +22.◦5 and −22.◦5 from the scan direction.

The beams of the detectors were assumed circularly symmetric with a 14′ FWHM beam width. The beams do not impact the
residual noise maps or covariance matrices. None of the mapmaking methods studied here make an attempt to correct for beam
effects in the maps.

5.3. Time-ordered data

We computed the NCM’s of our three mapmaking methods using our noise model spectrum and the one year pointing data of
twelve 70 GHz detectors. We produced NCM’s for both Nside = 8 and Nside = 32 pixel sizes. We wanted to compare these NCM’s
to the noise maps made by the same mapmaking methods. For that purpose we simulated 50 noise-only timelines and made maps
from them. Our correlated noise streams were simulated in six day chunks by inverse Fourier transforming realizations of the noise
spectrum (Natoli et al. 2002). We assumed an independence between the chunks and between the detectors. Figure 1 contains a
comparison between the power spectra of the generated noise streams and the model spectra.

5 Side and Main refer to two detector branches downstream from the orthomode transducer that separates the two orthogonal linear polarizations.

Page 11 of 29



A&A 522, A94 (2010)

Twenty-five of the surveys featured a relatively high 1/ f contribution having the knee frequency, fknee, set to 50 mHz. The
other half was simulated to have a more favorable fknee = 10 mHz. It should be noted that these frequencies have been chosen
above and below the satellite spin frequency, 1 rpm ≈ 17 mHz. The slope of the 1/ f noise power spectrum was α = −1.7. The
correlation timescale of the 1/ f noise was restricted to about one day. This made our noise spectrum flat at low frequencies (below
a minimum frequency fmin = 1.15 × 10−5 Hz ≈ 1/24 h). As we described earlier, it is the minimum frequency that determines the
correlation length of the noise filter in the optimal mapmaking. In the noise covariance matrix of the generalized destriping, the
baseline correlation length is, however, determined by the knee frequency.

We used a uniform white noise equivalent temperature (NET) of 204 μK
√

s for all detectors6. We chose this NET because we
wanted to produce noise maps and covariance matrices whose noise levels are compatible with another CTP study (Jaffe et al., in
prep.). In all mapmaking and NCM computations we assumed a perfect knowledge of the detector noise spectrum.

The noise timelines were processed directly into both low-resolution (Nside = 32) and high-resolution (Nside = 1024) HEALPix
maps using the discussed mapmaking codes. In the Nside = 1024 temperature and polarization maps the mean standard deviations
of white noise per map pixel were 44 and 63 μK (Rayleigh-Jeans μK). For Nside = 32 maps the corresponding values were 1.4 and
2.0 μK.

The high-resolution maps were in turn downgraded to the low target resolution using the schemes detailed in Sect. 2.3.
For the signal error studies described in Sect. 6.3, we scanned simulated foreground maps into signal-only timelines. These

we processed into low-resolution (Nside = 8) maps using the same methods as for the Nside = 32 (both directly and through high
resolution). We then extracted the signal error part by subtracting a binned map from the destriped map. The foreground signal
errors were summed with a CMB map to provide a worst case scenario of signal striping in otherwise perfectly separated CMB
map.

5.4. Input maps

To study bandwidth limitation with respect to downgrading we simulated 117 high-resolution Nside = 1024 CMB skies correspond-
ing to the same theoretical spectrum, C�. These maps were smoothed and downgraded to Nside = 8 using three different Gaussian
beams of widths 5◦, 10◦, 20◦ and three apodized step functions with the choices of (�1, �2) being (20, 24), (16, 24) and (16, 20). A
seventh set of downgraded maps was produced by noise weighting according to the scanning strategy. To comply with this last case,
the smoothing windows include also the Nside = 8 pixel window function from the HEALPix package.

For the signal error exercise we used the Planck sky model, PSM7 version 1.6.3, to simulate the full microwave sky at 70 GHz.
For diffuse galactic emissions we included thermal and spinning dust, free-free and synchrotron emissions. We then added a
Sunyaev-Zeldovich map and finally completed the sky with radio and infrared point sources. The combined Nside = 2048 map
was smoothed with a symmetric Gaussian beam and scanned into a timeline according to the scanning strategy.

For final validation the noise covariance matrices were tested in power spectrum estimation. Each noise map was added to a
random CMB map drawn from the theoretical distribution defined by a fixed theoretical CMB spectrum. The theoretical spectrum
is the WMAP first-year best fit spectrum and has zero BB mode.

All maps in this work are presented in the ecliptic coordinate system. This choice is useful for Planck analysis since the scanning
circles and many mapmaking artifacts form circles that connect the polar regions of the map. In this coordinate system the galaxy
is not positioned at the equator but rather forms a downward opening horse shoe shape around the center of the map.

6. Results

In this section we first focus on the noise covariance matrices computed using different mapmaking techniques. We discuss and
compare the overall noise patterns implied by such matrices and test the quality of the destriper approximation as applied to the
noise covariance predictions. In the second part of the section we discuss the low-resolution maps and evaluate their quality in
the light of their future potential applications, such as those to the large angular scale power spectrum estimation. Due to the
computational resource restrictions the low-resolution results presented here are obtained either with the HEALPix Nside = 8 – in
particular tests in Sect. 6.3 and power spectrum estimation tests in Sect. 6.2.3 – or Nside = 32 – in most of the other sections.

6.1. Noise covariance matrices

First we discuss the noise covariance matrices computed for the low-resolution maps of the direct method. As explained in Sect. 2.3
we compute from these matrices the noise covariances of the other downgrading techniques. In the following we consider noise
covariance calculated using 4 different ways. In the first way we compute the noise covariance using the optimal algorithm. For
this purpose we have developed two codes MADping or ROMA, which are described in Sect. 3.1. However, as they are just two
different implementations of the same algorithm, we derive most of the results presented in the following and involving the optimal
covariance using MADping. We note that whenever results from the both codes are available they have turned out to be virtually
identical within the numerical precision expected from this kind of calculations. The optimal noise covariance matrices are expected
to provide an accurate description of the noise level found in the actual optimal maps. We will test this expectation in the following
and use the optimal results as a reference with which to compare the destriping results.

6 σ = NET
√

fsample, where σ and fsample were defined in Eq. (19). The 70 GHz detectors had fsample = 76.8 Hz.
7 See http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/PSM/psky-en.php
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Fig. 2. Eigenspectra of the inverse covariance matrices N−1.
MADping, ROMA and Madam results for fknee = 50 mHz over-
lap completely. Springtide results are for 10 mHz.

The three remaining computations of the noise covariance are based on the destriping approach and correspond to different
assumptions about the offset prior as well as baseline length. We consider the following specific cases: a classical destriper calcula-
tion with a baseline of 3600 s (Springtide) and two generalized destriper computations with a baseline of 1.25 s and 60 s (Madam).
For each of these cases we will compare the covariance matrices with each other, with the optimal covariances and then test their
consistency with the noise found in the simulated maps. We note again that this last property is not any more ensured given the
approximate character of the destriper approach.

Figure 2 shows the eigenvalue spectra of some inverse NCMs. We note that all matrices possess a positive semi-definite eigen-
spectrum as is required for any covariance matrix, yet at the same time they all have one nearly ill-conditioned eigenmode8, which
renders the condition number, i.e., the ratio of the largest and smallest eigenvalue, very large. This is in agreement with our expec-
tations as described in Sect. A.3. Indeed the peculiar eigenmodes corresponding to the smallest eigenvalues of the inverse matrices
are also found to be non-zero and constant for the I part of the vector and nearly zero for its polarized components, and thus close to
the global offset vector discussed in Sect. A.3. The small deviations, on the order of 10−3, exist, as expected, as none of the peculiar
modes is in fact truly singular. We note that the MADping and ROMA results, both computed in this test, are seen in the figure to be
indistinguishable. They also coincide very closely with the Madam results computed for the same fknee = 50 mHz. The Springtide
results, computed with fknee = 10 mHz are close to, though not identical with, the Madam results for the very same value of fknee
when a longer (60 s) baseline is used for Madam.

Figure 3 depicts the estimated Stokes I, Q and U pixel variances as well as the covariance between them. These quantities are
dominated by the white noise contribution and all methods describe white noise in the same manner. The top right-most panel shows
the reciprocal condition number (1/condition number) of the 3 × 3 blocks of the matrix ATN−1

u A for each of the sky pixels. These
numbers define our ability to disentangle the three Stokes parameters for each of the pixels. Whenever they are equal to 1/2 not only
can the parameters be determined but their uncertainties will not be correlated. If the reciprocal condition number for a selected
pixel approaches 0, the Stokes parameters can not be constrained. In the cases considered here, the Stokes parameters can clearly
be determined for all the pixels.

Figure 3 shows a strong asymmetry between the IQ and IU blocks. The fact that the polarization axes of the two detectors of a
horn are not fully perpendicular makes the I noise of a pixel correlate with the Q and U noises of the same pixel. We can imagine an
instrument basis, where one group of three horns measures the Q of this basis and the other group measures the U of the same basis.
Because Side and Main polarization axis deviations from the orthogonality have similar magnitudes in the two groups, we expect
the diagonals of IQ and IU blocks to be similar (symmetric in IQ and IU) in the instrument basis. In the map we use a different
polarization basis9. Building the noise weighted map (in the mapmaking) rotates the Q and U from the instrument basis to the map
basis. The IQ and IU blocks become asymmetric in this rotation.

Figures 4, 5 show plots of a single column of the noise covariance matrix. The column corresponds to reference pixel number 0.
In the HEALPix nested pixelization scheme for Nside = 32 resolution, pixel 0 is located at the equator. In the plots each pixel

has the value 〈mpmq〉 normalized by
√
〈m2

p〉〈m2
q〉. Thus the pixel values of the plots represent correlation coefficients. Due to this

normalization, the reference pixel automatically gets unit value and is later set to zero in order to bring out smaller features of the
other elements of the columns.

Planck scans the sky in nearly great circles that connect the ecliptic polar regions and center around the ecliptic plane. The
displacement of the spin axis from the ecliptic plane depends on the phase of the satellite 7.◦5 precession. The NCM column maps
are characterized by bands of correlation along the scanning rings. Pixels near the equator, such as the reference pixel 0, are only

8 A double precision (64 bit) matrix is numerically ill-conditioned when the condition number exceeds approximately 1012 (Press 1992). For our
matrices the situation is not as dire but the first eigenmode still deserves special attention.
9 In a HEALPix map the Stokes parameters Q and U at a point in the sky are defined in a (x, y, z) reference coordinate, where the x-axis is along
the meridian and points to south, the y-axis is along the latitude and points to east, and the z-axis points to the sky (Górski et al. 2005).
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Fig. 3. Top: MADping pixel variances for temperature and polarization and the reciprocal condition number of the pixel observation matrices.
Bottom: correlation coefficient ×103 between I −Q, I−U and Q−U pixels. This part of the noise covariance is dominated by white noise which is
modeled equivalently in all three paradigms. Hence, MADmap, ROMA, Madam and Springtide results are nearly identical. Maps are rotated into
galactic coordinates to show the structure near the ecliptic poles.

Fig. 4. A single column of the MADping covariance matrix corresponding to a pixel at the ecliptic equator. For both ROMA and Madam 1.25 s
baseline counterparts all visible characteristics remain unchanged. We plot the value of the correlation coefficient, R, multiplied by 103. In order
to enhance the features, we have halved the range of the color scale.

observed during a few-hour window as the satellite scanning ring is rotated over the course of the survey. The two crossing bands
of higher correlation correspond to two pointing periods half a year a part that observe the reference pixel 0.

For both generalized destriping and optimal mapmaking, there is a visible gradient in the correlation along the scanning ring.
Pixels that are observed immediately before or after the reference pixel have the strongest correlation. The conventional destriping
with its hour long baselines assumes constant correlated noise over the scanning ring and does not, therefore, show this feature.

Figures 4 and 5 show that the strongest cross-correlations (∼1%) exist between Q and U noise maps. Side and Main polarization
sensitive directions differ slightly from 90◦ and, as a result, small (∼10−4%) IQ and IU correlations remain.

Figures 6, 7 show plots of the NCM columns of another reference pixel (number 2047). This pixel is located at the northern
ecliptic pole region and it exhibits a very different correlation pattern compared to the previous case. Since the pole is visited
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Fig. 5. A single column of the Springtide covariance matrix corresponding to a pixel near the ecliptic equator. For description of the normalization,
see text.

Fig. 6. A single column of the MADping covariance matrix corresponding to a pixel at the ecliptic pole. For both ROMA and Madam 1.25 s
baseline counterparts all visible characteristics remain unchanged. We plot the value of the correlation coefficient, R, multiplied by 103. In order
to enhance the features, we have halved the range of the color scale.

frequently through the course of the survey, it becomes correlated with the rest of the map as a whole. Correlation amplitude is
increased by a factor of 3 from the equator pixel case (the increase can be seen from the color bar ranges) and there is now a distinct
asymmetry between northern and southern hemispheres. As one expects, the asymmetry only appears in optimal and generalized
destriping estimates.
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Fig. 7. A single column of the Springtide covariance matrix corresponding to a pixel near the ecliptic north pole. For description of the normaliza-
tion, see text.

6.2. Noise covariance validation

In this section we report the results of three different validation tests. We performed a χ2 test, compared the noise biases computed
from the matrices and corresponding Monte Carlo maps and finally used the matrices and Monte Carlo maps as inputs to angular
power spectrum estimation.

6.2.1. By χ2

Residual noise expected in the recovered maps is Gaussian due to the linear character of all the mapmaking methods considered
here. Thus the noise can be completely described by its covariance matrix. More specifically, in the absence of any singular modes
of the estimated residual covariance, N, the residual maps, m = ŝ − s, are drawn from a multivariate Gaussian distribution defined
by N. Therefore, the χ2 statistic, defined as χ2 = mTN−1m, is drawn from a χ2 distribution with 3Npix degrees of freedom (d.o.f.).

If any singular mode is present we simply replace the matrix, N−1, in the definition of χ2, by a matrix, N′−1, which is like N−1

in all respects but has the eigenvalue corresponding to the singular vector set to 0 (see Sect. 3.1). We note that if the eigenvalue
decomposition of the matrix N−1 is not available or too costly to compute, we can achieve numerically the same effect by defining
N′ = N + η2 uuT, where u is a singular vector we want to project out and η2 is a large positive number for which however inversion
of N′ is still stable (e.g. Bond et al. 2000). As we subtract one degree of freedom corresponding to the excluded, ill-conditioned
eigenmode we expect that there are in total 3Npix − 1 degrees of freedom left in our maps

The χ2 test can be applied, with certain restrictions, to the smoothed maps and matrices. In general, a smoothed matrix will not
have any longer the original number of degrees of freedom: some of the small scale eigenmodes have become ill-conditioned (see
Sect. 3.3). In this section we regularize the smoothed matrices by omitting the singular eigenmodes.

Singular modes of the original matrix require special attention when smoothing and need to be treated explicitly if the smoothed
version of the ill-conditioned eigenmode, u, does not belong to the null space of the inverse smoothed NCM, i.e., Ñ−1 (Lu) � 0. To
do so, we employ the same approach as before, replacing the regularized inverse of the smoothed covariance matrix, Ñ−1, by,

Ñ
−1 →

[
Ñ + η2 Lu (Lu)T

]−1 η2→∞−→ Ñ−1

−
(
Ñ−1 Lu

) [
(Lu)t Ñ−1 (Lu)

]−1 (
Ñ−1 Lu

)T
(47)

where L is a smoothing operator, Eq. (26), and the last expression follows from the Sherman-Morrison-Woodbury for-
mula (Woodbury 1950). This last operation additionally reduces the number of degrees of freedom by 1 (or whatever number
of modes, u is to be projected out).
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Fig. 8. Empirical χ2 distribution functions from the 25 residual noise maps compared with the theoretical cumulative probability density. The black
stair line is the empirical distribution function, the blue solid line is the theoretical χ2 distribution for 3Npix − 1 = 36 863 degrees of freedom. The
red dashed line is the least squares fit of the χ2 distribution to the experimental distribution (d.o.f. being the fitting parameter). The horizontal axis
is translated to the expected center of the distribution, 〈χ2〉 = d.o.f. = 36, 863, and scaled by the expected deviation, σχ2 =

√
2d.o.f.

The Kolmogorov-Smirnov test can be used to test whether a set of samples conforms to some theoretical distribution. The test
estimates the probability of the maximal difference between the empirical distribution function,

Fn(x) =
1
n

n∑
i=1

Θ(xi), (48)

of the observations xi (in our case the individual χ2) and the theoretical cumulative distribution function. Θ(x) is the Heaviside step
function. We note that in this work we take an advantage of the fact that we can simulate the residual noise directly. Though this is
clearly not the case when real data are considered, the tests described here can be applied to a difference of two sky maps produced
by disjoint sets of detectors operating at the same frequency and can therefore be a useful test of the real life data processing integrity
(e.g. Stompor et al. 2002).

Figure 8 shows the theoretical and Monte Carlo cumulative distribution functions for 25 noise maps in the case of the direct
method. Reported p-values are the probabilities of observing this level of disagreement even if the noise description was exact.
Conventionally, the level p < 0.05 is considered to be enough to reject the null hypothesis that the distributions match.

In the case of the direct method maps our results show that only optimal (noise) maps and their respective noise covariance
are mutually consistent in the light of the χ2 statistics. The good statistical agreement in this case does not depend on the time
domain noise characteristics nor map resolution. This is expected given that the noise covariance estimator implemented in the
optimal codes, Eq. (18), is an exact expression describing the noise properties in the pixel domain, and that we have assumed
perfect knowledge of the time domain noise.

The level of consistency found in the destriping cases varies depending on the underlying time domain properties, i.e., fknee, and
on the assumed baseline length. In the case of fknee = 50 mHz, we have not found a satisfactory agreement in any of the considered
destriping cases. For the lower fknee = 10 mHz the results obtained with the generalized destriper, Madam, are satisfactory for the
short, 1.25 s, baseline choice, and marginal for the long, 60 s, choice.

Destriper performance is better using short baselines and at lower knee frequencies. Thus it is evident that failures of the
destriping approach to model the residual noise are due to correlated noise that cannot be modeled by baselines of the chosen
length. This unmodeled noise is a concern whenever the baseline frequency is lower or comparable to the knee frequency.

But where does the unmodeled noise show? Our three choices of the baseline length (3600 s, 60 s and 1.25 s) correspond to
baseline frequencies 0.28 mHz, 17 mHz and 800 mHz. These baseline frequencies provide lower limits to the frequencies where
unmodeled noise will manifest. If the lower limit is higher than the satellite spin frequency, 1/min = 17 mHz, it will begin to limit
the angular scales at which the unmodeled noise can manifest. Translated to angular units, the 800 mHz threshold is 7.◦5, multipole
� = 24 or size of a single Nside = 8 pixel. For short baselines or low knee frequencies the unmodeled noise manifests as a relatively
small angular scale correlation and does not bias the power spectrum estimates at low �.
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Fig. 9. Madam empirical χ2 distribution functions from 60 residual noise maps compared with the theoretical cumulative probability density. For
a smoothed map, we count the degrees of freedom as the number of included eigenmodes in the inverse NCM. Top: three sets of low-resolutions
maps using just one of the low-resolution methods at a time. The high-resolution maps for INW and smoothing methods had Nside = 1024. Bottom:
since it is suboptimal to compute a low-resolution spherical harmonic expansion from a noisy high-resolution map, we test how well the smoothing
approach works in conjunction with the two pixel-based downgrading methods.

We then proceed to study the agreement between downgraded noise maps and the noise covariance matrices. As a test case,
we use the Madam NCM for 10 mHz knee frequency, 1.25 s baselines. We smoothed the covariance matrix using an apodized
window function, setting the thresholds to 2Nside and 3Nside respectively. As expected, the smoothed matrix is extremely singular.
We compute its inverse by including only the eigenvalues that are greater than 10−2 times the largest eigenvalue, including 20 882
of the 36 864 available modes.

Figure 9 shows the empirical distribution functions of the χ2. Even though the matrix is computed for the direct method, the
inverse noise weighted (INW) maps conform well to it. However, when we apply the smoothing kernel to the high-resolution maps,
there is a clear disagreement. This stems from the fact that in this downgrading the high-resolution pixels are not correctly (inverse
noise variance) weighted when we compute the low-resolution map. If we first produce a low-resolution direct method or INW map
and then smooth it, the agreement is much better. This is shown in the bottom row of Fig. 9.

We conclude that the noise covariance of the low-resolution maps produced by the destriping algorithm needs to be used with
care. In the case of low knee frequency, the generalized destriper results are comparable with the optimal results, but we emphasize
that, if the accuracy of the noise description in pixel domain is a major concern, then only the optimal techniques are suitable. In the
next sections we will reconsider all these low-resolution mapmaking techniques in a context more specific to the large angular scale
power spectrum estimation work, which is envisaged as the main application of the low-resolution maps and their covariances.

6.2.2. By noise bias

In this section we describe the calculation of the average angular power spectrum of noise maps, i.e., the noise bias – see Sect. 4.2,
using a pseudo C� estimator for which both the NCM estimate and the Monte Carlo map averages are feasible to compute. Testing
the noise covariance matrix by comparing estimated and measured noise biases can be viewed as complementary to the χ2 tests
described in the previous section. It can certainly provide more information than the plain χ2 test, as instead of simple pass or fail
indicator, the noise bias comparison will tell at which angular resolution the noise model agrees with the data. At the same time,
the noise bias is less sensitive to the anisotropic features, in this case mainly ring-like structures, present in the residual noise. The
noise bias test is more directly relevant for power spectrum estimation.

Figure 10 compares noise bias averages from 25 noise realizations of the maps of the noise residuals to the analytical estimates,
Eq. (45), based on the estimated noise covariance matrix. Map spectra are computed using the HEALPix anafast utility and the
estimated noise biases using the corresponding map2alm subroutine. We only show the auto-spectra, TT, EE and BB, as the scanning
has decoupled the modes to large extent and only minimal coupling between the modes exist.
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Fig. 10. Analytical and mean Monte Carlo noise biases. Gray band is the 1-σ region for the average, computed by dividing the sample variance
by
√

25. Top row: Madam runs at fknee = 50 mHz using a short 1.25 s baseline. Middle row: Madam runs at fknee = 50 mHz using a relatively long
60 s baseline. Bottom row: springtide runs at fknee = 10 mHz.

The error band around the averages is the standard deviation of the individual C� values divided by
√

25. Each plot exhibits up
to five curves: direct, inverse noise weighted and harmonic smoothed noise biases, and two analytical estimates.

Top row of Fig. 10 displays the noise bias comparison for the high 50 mHz knee frequency with short 1.25 s Madam baselines.
The earlier χ2 plot, Fig. 8, showed a significant disagreement between the maps and the matrix used to derive these biases. In
harmonic space the correspondence is significantly better. Since the angular power spectrum does not contain information about the
orientation of structures, it may be concluded that the disagreement averages out in the compression.

In contrast with the excellent short baseline results, middle row of Fig. 10 displays an apparent failure of the long Madam 60 s
baselines to model the high fknee = 50 mHz noise. To no surprise, the unmodeled noise above the low 17 mHz baseline frequency
has passed through the mapmaking process and projected onto the noise maps. As our baseline approximation of the noise is now
worse than in Fig. 10, the measured noise bias is higher even though the estimated bias is lower.

Between these two extremes we find the low 10 mHz knee frequency cases. For these time lines the level of correlated noise is
so low that even extremely long hour baselines do an adequate job estimating the noise bias shown in bottom row of Fig. 10.

At 10 mHz the Madam results for long 60 s baselines are equivalent with Springtide results: both succeed to estimate noise bias
at low knee frequency but should not be used for high knee frequencies as such.

We note that our analytic predictions are well in line with WMAP findings (Hinshaw et al. 2007; Page et al. 2007) and studies
of the destriping framework (Efstathiou 2005, 2007).

Our noise bias estimates for EE and BB spectra are equal, but the averaged spectra for the Monte Carlo maps appear visually
different in this respect. To ensure that this is only due to Monte Carlo noise we ran Madam in Monte Carlo mode, simulating noise
on the fly and avoiding the costs associated with storing of the time-ordered data. After averaging over 117 Nside = 8 noise map
spectra we found that the differences between EE and BB noise map spectra were at most 10%.

In the Appendix A.1 we re-plot some of these figures after subtracting the analytical bias and dividing by the Monte Carlo
sample deviation to highlight the differences between the analytical and numerical results.
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Fig. 11. Averaged power spectrum estimates over 25 noise and CMB realizations. The noise has a 10 mHz knee frequency.

6.2.3. By power spectrum estimation

Our final validation procedure for the noise covariance matrices was to use them in C� estimation. Due to resource constraints this
exercise was conducted at a lower Nside = 8 resolution. All three mapmaking codes produced maps from the 25 noise realizations.
Each realization was paired with an independent realization of the CMB sky and the co-added maps were processed using the Bolpol
code, an implementation of the QML estimator described in Sect. 4.1. The 25 power spectrum estimates for each multipole were
then averaged over and the Bolpol-determined error bars were accordingly divided by

√
25.

An example of the results is shown in Fig. 11. These estimates were obtained for the case with the low knee frequency, fknee =
10 mHz, using the conventional destriper, Springtide. We note they do not hint unambiguously at any problem with the estimated
covariance, even if the χ2 (strongly) and the noise bias (mildly) tests may indicate otherwise. This is likely in part due to a lower
sensitivity of the power spectrum test on the one hand and on the other due to the fact that the lower resolution has been used in this
last case.

Similar statistically good agreements can also be seen in the case of the higher value of fknee, if the covariance is computed
using either the optimal or generalized destriping technique with the short baselines of 1.25 s. If longer baselines are used, i.e., 60 s,
the estimates of the polarized spectra, both E and B, are visibly discrepant with the assumed inputs. Similar disagreement can be
seen if the off-diagonal elements of the covariance matrices are neglected. In both of these cases, no particular effect on the total
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Fig. 12. Examples of signal striping. We show the difference between a binned and destriped signal-only maps. Rows correspond to direct Madam
results, 1.25 s and 60 s, and inverse noise weighted 1.25 s baseline case respectively.

Table 3. Comparison of TT power (rms) in the stripe maps at Nside = 8.

CMBa Foregroundsb

Mapmaker Direct Averaged Smoothed Direct Averaged Smoothed
Madam, 1.25 s 5.44 μK 7.29 nK 5.20 nK 9.46 μK 4.67 nK 2.14 nK
Madam, 60 s 2.07 μK 3.31 nK 1.98 nK 3.81 μK 3.21 nK 2.23 nK

Notes. (a) Binned CMB map rms is 37.34 μK. (b) Binned foreground map rms is 196.3 μK.

intensity spectrum can be noticed in the range of investigated angular scales. We illustrate all these statements in Appendix A.2.
These observations emphasize the importance of precise estimation of the noise covariance in particular for the polarized power
spectra.

6.3. Low-resolution maps

In the previous sections we have discussed our ability to estimate correctly the properties of the noise present in the low-resolution
maps. We have demonstrated that this is indeed the case for all considered resolution downgrading strategies and both optimal
and destriper maps. Though in the latter case a baseline length needs to be carefully chosen depending on the time domain noise
characteristic.

In this section we focus on the low-resolution maps themselves. We will look at them from three different perspectives, evaluating
the level of the mapmaking artifacts left in the maps, the properties of the sky signal and the level of the noise.

In Fig. 12 we show the differences of the noise-free low-resolution maps computed using different downgrading approaches
discussed earlier and the input map used for the simulations. The reference low-resolution version of the input map has been
obtained via simple binning of the sky signal directly into low-resolution pixels.

In the case of the direct method we see clearly the extra power spread all over the sky in all three Stokes parameters. Any other
proposed approach clearly fares much better leading to a substantial decrease of the level of the observed artifacts. This is quantified
with the help of the pseudo-spectra in Fig. 13 and in Table 3, where we have collected the root mean square estimates for the signal
residual maps.

The CMB part of the low-resolution maps also depends on the downgrading technique. These attempt to suppress the high-�
(sub pixel) power and therefore can potentially affect the CMB angular power spectrum even within the band of interest. Figure 15
shows the full-sky pseudo-C� spectra averaged over 117 CMB realizations, downgraded using inverse noise weighting and a number
of smoothing kernels. In the QML method the situation is slightly more complex, as the quadratic map function is multiplied with
the inverse Fisher matrix to produce the QML power spectrum estimate (see Sect. 4.1). The inverse Fisher matrix can correct some
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Fig. 13. Comparison of CMB and stripe power
spectra reveals that the striping can signifi-
cantly bias the EE and BB power spectrum es-
timates. Stripe map spectra are computed from
maps shown in Fig. 12.

of the aliasing effects that cause bias in the power spectra. To simulate the effect of the inverse Fisher in QML we deconvolved our
pseudo spectra with a mode coupling kernel that we computed from a map of ones.

Comparison of the spectra shows that it is hard to attain subpercent bias even at � = 2Nside. If these were estimates from an actual
power spectrum estimation code with correlated noise and a sky cut, the smoothed covariances would, however, be regularized by
adding white noise effectively leading to a considerable uncertainty already at that multipole due to white noise and a sky cut.
Methods that produce less than 5% bias for C� estimates at � = 2.5Nside are the Gaussian 10◦ symmetric beam and the apodized step
function for (�1, �2) = (2 or 2.5Nside, 3Nside). The noise weighting and direct low-resolution mapmaking produce similar aliasing
effects.

In Fig. 14 we show the actual sky signal spectra estimated for the low-resolution, noiseless maps. It can be seen that the
estimated band powers are not drastically affected with respect to the estimates coming from the binned maps. Nevertheless, the
case of estimates coming from the direct low-resolution maps show some deviation from the binned case. The bias is most prominent
in the BB low multipole estimates. We note that since the signal covariance matrix is ill-conditioned it was regularized by adding a
small white NCM (σ � 1 μK) and each signal map received a noise realization consistent with this white NCM.

None of the proposed downgrading approaches can yield a noise level better than the direct method. This is because noise-
weighted downgrading or smoothing both introduce departures from the optimal weighting of the noise present in the data. The
expected level of the noise is therefore an important metric with which to compare the different downgraded maps. Figure 16 shows
the analytical noise biases evaluated from an Nside = 8 Madam noise covariance matrix after smoothing using the 6 different beam
window functions defined in Sect. 5.4 and the unsmoothed case that is a close match to the noise weighted maps. The narrowest
Gaussian window function having an FWHM equal to 5◦, slightly less than average pixel width, appears pathological due to aliasing
effects. The rest of the test cases are more stable but feature a non-negligible amount of aliased power for multipole moments beyond
� = 3Nside (the C� are not normalized with the conventional �(� + 1)/2π).

6.4. Resource requirements

Table 4 lists some CPU time costs for various Nside, baseline length and knee frequency combinations. Being a considerably ex-
pensive operation, we have not tested the scaling of the optimal calculation for this particular exercise. See Borrill (1999) for more
discussion of scaling. The Madam resource cost scales roughly linearly with respect to the number of pixels and the so-called
baseline correlation length.

Resource requirements of the three approaches vary. As with mapmaking, the destriping problem size is related to the chosen
baseline offset length. The same consideration applies also for noise covariance estimation. Both the Madam generalized destriper
and the MADping covariance calculations scale by the length of the noise filter. ROMA does the calculation in Fourier space and
as a results scales as the logarithm of the noise filter length. The MADping algorithm has no dependency (ignoring communication
and final file writing) on the number of pixels being used. Although the computation prefactors are not specified, we can see that at
Nside = 32, MADping is already more resource efficient than ROMA (cf. rows two and three).

7. Conclusion

We have presented the formalism and tools to compute the residual noise covariance matrix for three mapmaking paradigms studied
for Planck (an optimal method and two destriping methods). The structure of these matrices follows from the scanning strategy
but is modulated by the underlying noise model that defines the mapmaking method. The matrices were tested against Monte Carlo
noise maps that were processed from correlated noise streams into maps using MADmap, Madam and Springtide mapmaking codes.

The most accurate correspondence between the covariance matrix and the noise maps is, as expected, between the optimal
mapmakers, MADmap and ROMA, and their covariance matrices and the two codes produce nearly identical matrices. Both the
generalized (Madam) and classical (Springtide) destripers are shown to disregard some medium frequency correlated noise that
cannot be modeled by the chosen baseline offset length. It is shown that for a low knee frequency, 10 mHz, the Springtide baseline
length of 1 h is sufficient to model the correlated noise and compute the residual noise covariance. For a high knee frequency,
50 mHz, even the Madam 60 s baselines are too long to suffice. However, using a short 1.25 s baselines (just 96 samples) the Madam
results are extremely close to optimal results even for the high knee frequency.

As a concluding test we used the matrices in actual power spectrum estimation and verified that all methods model residual
noise adequately when the noise approximation (baseline length) is short enough to model the correlated noise.
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Fig. 14. Band power estimates of CMB with CMB and foreground stripes.

Raw C� Deconvolved �(� + 1)C� Fractional difference

Fig. 15. Bandwidth limiting the signal using various window functions. The three panels show the same curves first as raw estimates, then after
deconvolving the smoothing and pixel windows and finally after subtracting and dividing by input model. The apodized step window functions
(“cosine”) correspond to choices of the thresholds (�1, �2) as (20, 24), (16, 24) and (16, 20) respectively. Here, solid lines are for Gaussian windows
and dashed lines for the apodized step functions.
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Fig. 16. TT noise bias computed from
smoothed covariance matrices. Solid lines
correspond to the Gaussian window functions
and the dashed ones to apodized step functions.
Left: linear vertical scale. Right: logarithmic
vertical scale.

Table 4. CPU time costs for 1270 GHz detector years = 3 × 1010 samples.

Case Nside wcorr
a PEs CPUh

MADping 32 131 073 14 000 80 000b

MADping 32 4097 14 000 7525
ROMA 32 4097 512 25 000
ROMA 4 16 385 256 480
ROMA 4 4097 256 410
Madam 1.25 s, 50cc 64 1759 1024 901
Madam 1.25 s, 50 32 1759 512 114
Madam 1.25 s, 10 32 8285 512 438
Madam 10 s, 50 32 289 128 42
Madam 60 s, 50 32 84 64 34
Madam 1.25 s, 50 16 1759 256 34
Springtide, 10 32 1 1024 256
Springtide, 10 16 1 1024 51

Notes. Calculations are done on 2.6 GHz Quad-core Opterons. (a) The filter or baseline correlation length. (b) Performed on an earlier, dual-core
version of the machine. (c) 10 and 50 refer to 1/ f knee frequencies in mHz.

Resource costs of the methods vary greatly. Although both MADping and ROMA arrive at the same result, the implementations
differ and the ROMA result scales with the resolution of the map. Both optimal implementations are extremely resource intensive.
The Madam method can be used to produce good approximations of the optimal covariance matrices at a fraction of their cost. The
covariance matrices for these tests were evaluated for two low resolutions, Nside = 8 and Nside = 32. It is possible to compute the
matrices up to Nside = 64 (already 162 gigabytes) or even up to Nside = 128 (2.6 TB) but the computational scaling of the methods
using the matrices will likely set limits to the usefulness of such resolutions.

We studied two classes of downgrading strategies, those that make an attempt to limit the signal bandwidth and those that do
not. The choice of the best downgrading approach depends on both the accuracy of the resulting noise and signal models. First
measuring our ability to compute an accurate noise covariance matrix and the second describing our ability to control signal effects
such as striping and aliasing.

All methods to produce low-resolution maps have their drawbacks. Direct mapmaking at low resolution produces an unaccept-
able level of signal striping that is caused by subpixel structure. Downgrading by noise weighting biases the power spectrum through
aliasing effects. The frequently used Gaussian beam smoothing has a significant drawback of suppressing the signal at otherwise
useful angular resolutions. We find that an apodized step function is able to retain a great deal of signal power up to �max = 2Nside but
even then the power spectrum estimates will be biased beyond � = 2.5Nside. However, to accurately evaluate the noise covariance
matrix for a smoothed map, we would need to compute an unsmoothed covariance matrix at the high map resolution and then apply
the same smoothing kernel to both the matrix and the map. Disregarding this requirement leads to disagreement between the map
and the matrix that can be alleviated by combining two or more of the downgrading methods.

We note that, although not considered in this work, most of the complications associated with low resolution mapmaking can be
directly addressed by constructing the map in harmonic domain instead of pixel domain (Challinor et al. 2002; Armitage & Wandelt
2004; Armitage-Caplan & Wandelt 2009). A study of residual noise covariance with such methods would make an interesting
extension to that presented here.

Of the downgrading methods considered, we consider smoothing, with a suitable choice of the window function and possibly
a intermediate downgrading step by inverse noise weighting, to produce the best possible low-resolution maps for power spectrum
analysis.

We presented in this work a method to compute the residual noise covariance of a smoothed, bandwidth-limited map. The
method was shown to produce an accurate description of the noise in the smoothed maps when both the map and the matrix agree
prior to smoothing. Our method of smoothing the covariance matrix makes it possible to consider bandwidth limited low-resolution
maps and produce subpercent level unbiased power spectrum estimates up to � = 2.5Nside.

In this work we have assumed a single frequency channel, uncorrelated noise between detectors, noise that is white at high
frequencies and full sky coverage. In further work any of these constraints can be lifted. The only application that we used the
covariance matrix was in power spectrum estimation. The downgrading methods that suit power spectrum analyses best may not be
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Fig. A.1. Analytical and mean Monte Carlo noise biases. Gray band is the 1-σ region for the average, computed by dividing the sample variance
by
√

25. Like the TE, TB and EB biases are both consistent with zero and are not shown here. The analytical bias corresponds to the unsmoothed
case presented in Sect. 6.3. Top row: MADmap runs with fknee = 50 mHz. Bottom row: Madam runs with fknee = 10 mHz.

Fig. A.2. Averaged noise biases after subtracting the analytical estimate and normalizing with the standard deviation. This plot contains the same
curves as Fig. A.1.

optimal for different low-resolution analysis, e.g., study of large scale topology. A relevant future direction to explore is the use of
the covariance matrices as inputs in a likelihood code for cosmological parameters.
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Appendix A: Additional material

A.1. Noise biases

For completeness, we present in Fig. A.1 the noise bias computed from the MADmap NCM and the 25 corresponding noise maps
and the Madam bias for fknee = 10 mHz and 60 s baseline.

To highlight differences between the estimates and simulated noise maps we also show the fractional differences in
Figs. A.2–A.4. These plots complete the ones presented in Sect. 6.2.2.
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Fig. A.3. Averaged noise biases after subtracting the analytical estimate and normalizing with the standard deviation. This plot contains the same
curves as the top row of Fig. 10.

Fig. A.4. Averaged noise biases after subtracting the analytical estimate and normalizing with the standard deviation. This plot contains the same
curves as the bottom row of Fig. 10.

A.2. Power spectra

Here we present another successful test of the covariance matrix used in power spectrum estimation, Fig. A.5. We also show how
the power spectrum estimates can be used to pick out inaccurate residual noise covariances in Fig. A.6.

A.3. Singularities

As we have pointed out in Sect. 3.1, the inversion of the inverse noise covariance matrix, N−1, Eqs. (18) and (9), often needs to be
regularized due to the presence of singular or numerically singular modes. In this section we discuss the origin of such modes.

We first note that in all cases considered here the inverse covariance can be expressed as

N−1 = ATM−1 A, (A.1)

whereM−1 is defined to be,

M−1 ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N−1, for the optimal maps;
N−1

u − N−1
u B

×
(
P−1 + BTN−1

u B
)−1

BTN−1
u , for the destriped maps.

(A.2)

We assume that the pointing matrix, A, has full column rank, and thus Ax = 0⇒ x = 0. This is equivalent to an assumption that the
sky signal can indeed be estimated from a given data set. Though this may not be always the case, in particular for the polarization
sensitive experiments, it can usually be achieved if some of the ill-constrained pixels are removed from consideration. Given this
assumption, the problem of the singular modes of N−1 becomes that of the matrix,M−1, defined above.

Let us consider the optimal map case first. The matrixM−1 is equal to the inverse of the time-domain noise covariance, N−1.
The latter, Sect. 2.2, is a block Toeplitz matrix with each block defined by an inverse of the noise power spectrum, Eq. (19). Each
of those blocks describes the noise properties of one of the stationary data segments assumed in the simulations. For each block the
eigenmodes corresponding to the lowest frequencies as permitted by the length of the segment have eigenvalues vastly smaller than
the high frequency modes. These modes can therefore lead to near singularities. This is specifically true for zero-frequency modes
corresponding to an offset of each of the stationary data segments. The (near) null space of the full matrix will be therefore spanned
by all such vectors corresponding to each of the segments.

Due to projection effects, not all of those modes result in singular modes of the final pixel domain noise covariance. However, if
for a mode, t, from the null space of N−1, there exists a pixel domain vector, x, such as t = A x, the inverse noise covariance will
be singular with eigenvector equal to x.
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Fig. A.5. Averaged power spectrum estimates over 25 noise and CMB realizations. The noise has a 50 mHz knee frequency.

In the studied case, the scanning strategy is such that the sky areas observed in each of the stationary periods overlap, which
efficiently removes most of the potential degenerate vectors. In fact only a single pixel-domain IQU vector of which the I part is
one and all the others zero, called hereafter a global offset, can potentially be singular. We will indeed confirm these expectations
via numerical results later10.

In the case of the maps produced with the destriper codes in the absence of any priors, i.e., P−1 = 0 the M−1 matrix has as
many singular vectors as the baseline offsets defined by the columns of the offset “pointing” matrix, B. However, as long as all of
the offsets cross on the sky the only singular vector of the pixel-domain covariance will again correspond to the global offset vector
as in the optimal map case. We note however that unlike in that case, this time this vector is exactly singular. If a prior is employed,
as is the case in both the classical and generalized implementations of the destriper technique discussed here, the columns of the
matrix B are no longer singular vectors of the matrixM−1, nor is the global offset vector a singular vector of N. Nevertheless, at
least for some common choices of the prior the global offset vector remains nearly singular.

10 Actually, the global offset mode is only nearly singular. This is due to our assumed noise power spectrum, which is finite at zero frequency. In a
more realistic case the offsets of the stationary segments will be however unknown, corresponding to an infinite amplitude at zero frequency. The
noise covariance in such cases should be therefore considered to be strictly singular with the global offset being the singular eigenvector. In such
cases the noise weighting on the right term of the map making equation, Eq. (17), will force the offset of each of the stationary data segments to be
strictly zero. This may not be a sufficiently good approximation in particular for short stationary time segments. This could, however, be alleviated
by introducing the segment offsets as extra degrees of freedom contained in the vector, x, (e.g. Stompor et al. 2002).
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Fig. A.6. Averaged power spectrum estimates over 25 noise and CMB realizations. The noise has a 50 mHz knee frequency.
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