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Abstract 

 

Molluscs are sensitive species to the toxic effects of organotin compounds, particularly to 

masculinization, and both, tributyltin (TBT) and triphenyltin (TPT) have been recently shown to 

bind to molluscs RXR. Being RXR is involved in lipid homeostasis, exposure to TPT would 

have an immediate effect on lipid homeostasis. To test this hypothesis, the ramshorn snail 

Marisa cornuarietis was exposed to environmentally relevant concentrations of TPT (30, 125, 

500 ng/L as Sn) in a semi-static water regime for 7-days. Percentage of lipids and total fatty acid 

content decreased significantly in TPT-exposed females while the activity of peroxisomal acyl-

CoA oxidase, involved in fatty acid catabolism, increased. In addition, fatty acid profiles (carbon 

chain length and unsaturation degree) were significantly altered in exposed females but not in 

males. This work highlights the ability of TPT to disrupt lipid metabolism in M. cornuarietis at 

environmentally realistic concentrations and the higher susceptibility of females in comparison 

to males.  
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1. Introduction 

 

Since the late 1960s, organotin compounds, such as tributyltin (TBT) and triphenyltin 

(TPT), have been extensively used across the world as biocides in antifouling paints, applied on 

ship hulls and fishing nets, and as fungicides in agricultural corps. Despite their gradual removal 

from the market and their prohibition from use, their release into the environment combined with 

their low solubility in water and high octanol-water partition coefficient has resulted in 

worldwide contamination of the aquatic environment (Fent, 1996). Both TBT and TPT are potent 

endocrine disruptors; abnormalities in the endocrine system related to TBT and TPT exposure 

have been observed in vertebrates (Iguchi et al., 2007; Kanayama et al., 2005; McAllister and 

Kime, 2003) and invertebrates (Alzieu, 2000; Oehlmann et al., 2007), with gastropods and 

oysters being among the most susceptible organisms. A concentration of 1 ng/L TBT is enough 

for the induction of imposex (superimposition of male secondary sexual characteristics, 

including a penis and vas deferens) in females of the gastropod Nucella lapillus (Bryan et al., 

1986; Spooner, 1991).  

Imposex has been reported in over 150 species of gastropods worldwide (Horiguchi et al., 

1997), and although the link between imposex in female gastropods and exposure to TBT or TPT 

has been established, the exact mechanism through which this phenomenon occurs remains 

unclear. Scientific data demonstrate that imposex induced females experience elevated levels of 

free testosterone and this has been attributed to non-genomic action of TBT and TPT such as 

inhibition of aromatase activity (Bettin et al., 1996), inhibition of the esterification of 

testosterone (LeBlanc et al., 2005) or alterations in the excretion of neurohormones that 

contribute to sexual differentiation in gastropods (Oberdörster and McClellan-Green, 2002). 
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However, recent scientific evidence suggests that TBT and TPT may act through interaction with 

nuclear receptors (Nakanishi, 2007). Different ligand binding assays show that both TBT and 

TPT bind to the human Retinoid X receptor (hRXR) with high affinity, similar to that of 9-cis 

retinoic acid (9-cis RA), the proposed natural ligand of RXR (Nishikawa et al., 2004). RXR 

homologues have been cloned from the gastropods Thais clavigera (Nishikawa et al., 2004) and 

Nucella lapillus (Castro et al., 2007), as well as from the freshwater snail Biomphalaria glabrata 

(Bouton et al., 2005); all of them showing high similarity with vertebrate RXR. In all three 

species, 9-cis RA was a high affinity ligand, suggesting that retinoid signalling pathways may 

exist in these species. Moreover, injections of T. clavigera and N. lapillus with 1 μg/g 9-cis RA 

resulted in induction of imposex, including an increase in penis length and vas deferens similar 

to the one produced by TBT and/or TPT in these species (Castro et al., 2007; Nishikawa et al., 

2004). Therefore, imposex induction may be mediated through modulation of RXR signalling 

pathways. However, a retinoid synthesis pathway has not been described yet in invertebrates and 

the role of invertebrate RXR remains unclear. Thus, the significance of the activation of RXR by 

TBT and TPT can only be speculated.  

In mammals, RXR forms heterodimers with orphan nuclear receptors (whose endogenous 

ligand is unknown: peroxisome proliferator-activated receptor, liver X receptor, farnesoid X 

receptor, and pregnane X receptor) as well as with retinoic acid receptor, thyroid hormone 

receptor and vitamin D receptor (Szanto et al., 2004). These orphan receptors are lipid sensors as 

they get activated by lipid molecules and therefore play an important role in lipid homeostasis, 

whereas the later regulate the endocrine system and resemble more closely the action of steroid 

hormone receptors (Chawla et al., 2001). The RXR heterodimer is activated by ligands of either 

receptors and subsequently binds to the corresponding response elements in the promoter region 
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of the target genes to modulate their transcription (Michalik et al., 2006). Knocking out RXR in 

mice disturbed lipid metabolism functions controlled by PPARα, PPARγ, LXRα, PXR and FXR 

(Szanto et al., 2004) showing the importance of this receptor in lipid homeostasis. Interestingly, 

TBT and TPT activate both RXR and PPARγ human receptors (Kanayama et al., 2005) and 

exposure of mice and the amphibian Xenopus laevis to TBT and RXR/PPARγ ligands stimulated 

lipid accumulation and ectopic adipocyte formation, respectively (Grün et al., 2006).  

Additionally, activation of RXR and/or PPARs has been linked to alterations in the 

steroidogenic pathway: modulation of STAR protein expression (Seto-Young et al., 2007) and 

P450aromatase activity (Mu et al., 2000; Saitoh et al., 2001) in human granulosa cells. Thus, 

alterations in steroid hormone levels observed after exposure to TBT and TPT may also be a 

consequence of the interaction of the compounds with RXR rather than a direct interaction at the 

enzyme level (Nishikawa, 2006). Although receptors such as PPARs appear to have emerged 

later in the evolution of the nuclear receptor family (Thornton, 2003) and up to date they have 

not been identified in invertebrates, a lipid regulation mechanism possibly mediated by RXR in 

gastropods cannot be excluded. Indeed, females of the freshwater snail Marisa cornuarietis 

exposed to different concentrations of TBT for 100 days showed increased percentage of lipids 

and total fatty acid content as well as significant alterations in the fatty acid profile (Janer et al., 

2007).  

Following the above observations, this study hypothesizes that being RXR involved in 

lipid homeostasis in gastropods as it is in mammals and vertebrates, exposure to TPT -a RXR 

agonist- will have an immediate effect on lipid homeostasis. More specifically, this study aimed 

at investigating changes on lipid content and fatty acid profiles in the ramshorn snail Marisa 

cornuarietis after short term exposure to environmentally realistic concentrations of TPT. 
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Additionally, the effect of TPT on the activity of acyl-CoA oxidase (AOX), the first and rate 

limiting enzyme of β-oxidation was examined. Peroxisomal AOX catalyzes the β-oxidation of 

very long (C>20) and long chain (C14-C18) fatty acids and its gene transcription is regulated by 

PPARα in mammals and vertebrates (Reddy and Hashimoto, 2001).  

 

 

2. Materials and Methods 

 

2.1. Chemicals 

 

Triphenyltin chloride (TPT) was purchased from Merck (Darmstadt, Germany). Palmitoyl-

CoA and NADPH were obtained from Sigma (Steinheim, Germany); 2,7- 

dichlorodihydrofluorescein (H2

 

DCF) diacetate was from Molecular Probes (Paisley, UK). All 

solvents and reagents were of analytical grade.  

2.2. Animals  

 

Ramshorn snails, Marisa cornuarietis (Mollusca: Prosobranchia: Ampullariidae), came 

from a laboratory breeding stock which was derived from a stock at Aquazoo Düsseldorf 

(Germany) in 1991 with regular cross-breeding of wild-caught animals from Florida (USA) to 

avoid inbreeding. The breeding stock was kept in a flow-through system with fully reconstituted 

water under constant conditions regarding temperature and light dark cycle (12:12 h). Water 

parameters (pH, temperature, conductivity, nitrite, oxygen concentration and saturation) were 
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measured twice a week per tank. Parameters of the fully reconstituted influx water were pH 7.5, 

850 µS/cm, <1 mg NO2/L and >95% O2

 

 saturation. 

2.3. Exposure experiment 

 

For the exposure experiments, two replicate groups of 10 sexually mature snails each were 

exposed to three nominal concentrations of TPT (30, 125, and 500 ng as Sn/L) for 7-days (June 

2005) in fully reconstituted water at 24±1 ºC. TPT was added in absolute ethanol, the 

concentration of ethanol in water being 0.001% in all experimental groups, including solvent 

control (SC). Test concentrations were selected based on results from earlier studies in M. 

cornuarietis (Janer et al., 2006) and on reported values of TPT in the aquatic environment. The 

exposure experiment was performed in 60 L glass aquaria fitted with an Eheim filter system and 

additional aeration under 12-h light/12-h dark cycles. The exposure system was designed as 

semi-static renewal with addition of the test substance every 24 hours (weekend 48 hours) and 

50% exchange of the water twice a week. Water parameters (pH, conductivity, temperature, 

nitrite, O2 concentration and saturation) were measured twice a week before the water was 

changed. Animals were fed daily with TetraMin® (Tetra, Melle, Germany) ad libitum. Exposed 

organisms were cooled in ice and the digestive gland/gonad complex was dissected, deep-frozen 

in liquid nitrogen, and stored at −80 ºC for determination of steroid levels and enzymatic 

activities.  
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2.4. Peroxisomal fatty acyl-CoA oxidase activity 

 

  Acyl-CoA (palmitoyl-CoA) oxidase was assayed by the determination of H2O2 

production, coupled to the oxidation of leuco-DCF in a reaction catalysed by exogenous 

peroxidase. The method was modified after Small et al. (1985).  Digestive gland/gonad complex 

(0.3-0.7 g) were homogenised in TVBE buffer pH 7.6 (4 ml buffer/g of tissue), containing 1 mM 

sodium bicarbonate, 0.1 M EDTA, 0.1% ethanol and 0.01% Triton X-100. After 

homogenisation, samples were centrifuged at 500 x g for 15 min and the supernatant containing 

the peroxisomes was assayed for acyl-CoA oxidase activity. The reaction was carried out at 25oC 

in a final volume of 1 ml. The reaction mixture contained 0.05 mM leuco DCF (prepared weekly 

by hydrolysing 2.66 mM H2DCF diacetate in 1:9 v/v, dimethylformamide: NaOH (0.01 M) and 

stored at -20oC), 0.07 mg horseradish peroxidase, 40 mM sodium azide, 0.01% Triton X-100, 10 

mM potassium phosphate buffer pH 7.4 and sample. This mixture was pre-incubated in the dark 

for 3 min, as some impurities in the peroxidase cause a small amount of oxidation of the leuco-

DCF (Köchli and von Wartburg, 1978). After this time, the slow rate of auto-oxidation of the dye 

was determined by measuring spectrophotometrically the absorption at λ = 502 nm for 2 min. 

The reaction was then started by the addition of 30 μM of palmitoyl-CoA, and after 15 sec 

incubation in the dark, the enzymatic reaction rate was determined for 2 min. Rates were 

corrected by subtracting the blank and calculated by using a DCF molar extinction coefficient of 

91,000 M-1

  

 as obtained by Köchli and von Wartburg (1978) from the peroxidase-catalysed 

oxidation of leuco-DCF. Protein concentrations were determined by the method of Lowry et al. 

(1951) by using bovine serum albumin as a standard. 
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2.5. Fatty acid analysis 

 

The digestive gland/gonad complex of M. cornuarietis individuals (0.4-0.7 g) were 

lyophilised and processed for lipid and fatty acid analysis. Lipids were extracted from the 

lyophilised samples by homogenisation in 2 ml ice-cold chloroform/methanol (2:1 v/v) plus 

0.01% (w/v) butylated hydroxytoluene (BHT) as an antioxidant, following a modification of the 

method of Folch et al. (1957). After homogenisation, 0.25 ml of 0.88% KCl was added to the 

homogenates and the solution was mixed. After phase separation, the chloroform layer 

containing the lipids, was removed, filtered and the solvent evaporated by flushing with nitrogen. 

The solid residue was then weighted to determine the total lipid levels, and afterwards 

redissolved in chloroform/methanol (2:1, v/v) with 0.01 % BHT, flushed with nitrogen and 

stored at -20oC in a screw cap vial. Lipid aliquots were transmethylated overnight (Christie, 

1982) after addition of a known amount of nonadecanoic acid (19:0) as internal standard 

(Sigma). Fatty acid methyl esters (FAME) were extracted with hexane/diethyl ether (1:1, v/v), 

and purified by thin layer chromatography (silica gel G60, Merck) using hexane/diethyl 

ether/acetic acid (85:15:1.5, v/v/v) as solvent system. FAME were analysed with a Fissons 8000 

gas chromatograph equipped with a fused silica 30 x 0.25mm open tubular column (Tracer, TR-

WAX, film thickness: 0.25 μm), and a cold on-column injection system, using helium as carrier, 

and a 50-220o

 

C thermal gradient. Peaks were recorder and integrated in a personal computer 

using Azur software (Datalys, France), and identified by comparison with a well characterised 

sardine oil named Marinol (Fishing Industry Research Institute, Rosebank South Africa).    

2.6. Statistical analysis 
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Results are mean values ± SEM. Differences between control groups (absolute control and 

solvent control) was assessed with Student’s t-test and they were not statistically significant 

(p>0.05). Thereafter, exposure groups were compared with control groups by using one way 

ANOVA (Dunnett’s test).  

 

 

3. Results 

 

3.1. Peroxisomal acyl-CoA oxidase activity 

 

AOX activity was determined in peroxisomal enriched fractions obtained from the 

digestive gland/gonad complex of M. cornuarietis. After one week exposure to TPT, the activity 

AOX was significantly increased in females exposed 30 and 500 ng TPT/L, resulting in 1.3- and 

1.4-fold increase, respectively (Figure 1). AOX activity was also significantly increased (1.4-

fold) in males exposed to 30 ng TPT/L, but no further differences were observed at higher TPT 

concentrations (Figure 1).  

 

3.2. Fatty acid profile and lipid content 

 

A detailed description of the fatty acid composition of control and exposed males and 

females of M. cornuarietis is given in Table 1. At least 33 fatty acids with carbon atoms from 14 

to 24 were detected in the digestive gland/gonad complex of both males and females. 
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Unsaturated fatty acids were the major group, accounting for 54% and 61% of total fatty acids in 

control males and females, respectively. Within this group, monounsaturated fatty acids 

constituted 28-30% of the total fatty acids and polyunsaturated 26 to 31%. The most abundant 

unsaturated fatty acids were linoleic (18:2n-6) and oleic (18:1n-9) acids. Highly unsaturated fatty 

acids (3 or more saturations) of 20 or more atoms of carbon (HUFA) represented only about 10% 

of total fatty acids. The major forms were in decreasing order, arachidonic (20:4n-6), 

docosahexaenoic (DHA; 22:6n-3) and eicosapentaenoic acid (EPA; 20:5n-3). Saturated fatty 

acids represented 33% of the total fatty acids in males and 30% in females, and among them 

palmitic (16:0) and stearic (18:0) were the most abundant.  

  One week exposure to TPT caused a shift in the fatty acid profile in the digestive 

gland/gonad complex of M. cornuarietis with alterations being more evident in females (Table 

1). Thus, a ~10% decrease of MUFA (% FAME) and a ~20% increase of HUFA was observed in 

females exposed to 125 and 500 ng/L TPT; the increase in HUFA was associated to a relative 

increase of the n-6 HUFA group. To further understand the effect of TPT exposure on individual 

fatty acids, those were expressed as mg/g dry tissue. Interestingly, one week exposure to TPT 

resulted in a decrease in fatty acids, both in terms of chain length and saturation degree, and this 

decrease was mainly detected in females (Tables 2 & 3). Almost all exposed females revealed a 

decrease in fatty acid content in terms of chain length (Table 2). C18 fatty acids, that accounted 

for 50% of total fatty acids (control groups), showed a 40% decrease in females exposed to 30 

and 500 ng/L TPT whereas no significant alteration was observed in exposed males. In terms of 

unsaturation degree, saturated (ΣC:0), mono-unsaturated (ΣC:1) and di-unsaturated (ΣC:2) fatty 

acids, which account for 32, 34 and 23% of total fatty acids in control groups, decreased in TPT-

exposed females (30-40%) (Table 3). Only the tetra-unsaturated fatty acids (ΣC:4) were not 
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significantly altered by TPT-exposure in females; within this group, arachidonic acid (20:4n-6) 

was the most abundant (97%).  

Overall, one week exposure to 30, 125 and 500 ng TPT/L resulted in a drop in the total 

fatty acid levels (FAME) in females equal to 33, 20 and 35% (Figure 2). TPT caused a 

significant decrease (20%) in total fatty acid levels in males as well but only at the highest TPT 

concentration (Figure 2). Furthermore, TPT exposure resulted in a significant decrease (20%) in 

the percentage of lipids in the digestive gland/gonad complex of females at the highest TPT 

concentration (500 ng/L) but had no significant effect in exposed males (Figure 2). 

 

4. Discussion 

 

One week exposure to TPT had a significant effect on the percentage of lipids, fatty acid 

content and fatty acid metabolism in the digestive gland/gonad complex of females of M. 

cornuarietis, whereas males demonstrated very few significant alterations. Percentage of lipids, 

total fatty acid content as well as carbon chain length and unsaturation degree, all decreased 

significantly in TPT-exposed females. In parallel, the activity of peroxisomal AOX, the enzyme 

responsible for the break down of C14-C18 and C>20 fatty acids was significantly induced, 

which supports the observed decrease in fatty acid content.  

In vertebrates, the peroxisomal AOX gene is transcriptionally activated by PPARα 

(Reddy and Hashimoto, 2001). Activation of the enzymes involved in the peroxisomal β-

oxidation pathway, including AOX, with a parallel increase in volume and density of 

peroxisomes is a phenomenon known as peroxisome proliferation that has been related to 

hepatocarcinogenesis in rats and mice (Yu et al., 2003). Although PPARs have not been 
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identified in invertebrates (Thornton, 2003), existing data demonstrate that peroxisome 

proliferation in response to organic contaminant exposure occurs. Thus, induction of AOX 

activity with a parallel increase in peroxisomal volume density have been observed in mussels 

Mytilus edulis exposed to specific peroxisome proliferators (fibrates and phthalates) and various 

organic pollutants (PAHs and PCBs) (Cajaraville and Ortiz-Zarragoitia, 2006; Ortiz-Zarragoitia 

and Cajaraville, 2006), in slugs Arion ater exposed to a Cd-kerosene mixture (Zaldibar et al., 

2007) and in the land snail Helix aspera exposed to air-born urban pollutants (Regoli et al., 

2006). Therefore, a mechanism of peroxisome-proliferation analogous to the one promoted by 

PPARα activation in vertebrates also exists in invertebrates.  

The fact that total lipids and almost all fatty acid groups decreased in such a short 

exposure period in exposed females is of special concern, taking into account the multi-

functional role of fatty acids in cell structure and function, energy metabolism and storage, 

bioactive signaling and synthesis of various compounds involved in physiological regulation 

(e.g. steroids, eicosanoids, etc.) (Benatti et al., 2004). Toxicity of organotin compounds has been 

related to their interference with cell’s membrane permeability, fluidity and signaling (Ortiz et 

al., 2005). Thus, exposure of ovaries of Ciona intestinalis to TBT for 5 hours caused a reduction 

in total lipids and triglycerides but an increase in phospholipids and PUFA, including HUFA and 

arachidonic acid (Puccia et al., 2005); phospholipids and PUFA are involved in maintaining 

membrane fluidity and the authors suggest that this increase is an adaptive mechanism to TBT 

toxicity. Enrichment of yeast Saccharomyces cerevisiae with linoleic acid (18:2n-6) caused 

resistance of the membranes to the toxic action of TBT (Masia et al., 1998), suggesting that 

although membrane fluidity was enhanced, toxicity of TBT was blocked probably by an increase 

of the lipophilicity of the membrane that would prevent the passive diffusion of TBT. In the 
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present work, a relative increase of arachidonic acid was observed in 7-days exposed females 

(Table 1). Arachidonic acid is required in cell signaling and specifically as a substrate for 

eicosanoids synthesis (Nakamura and Nara, 2004). Eicosanoids, which include prostaglandinds, 

thromboxanes, leukotrienes, hydroxyl FA and lipoxines are also critical in a very wide range of 

physiological processes in invertebrates; these include regulating egg-production, egg-laying, 

spawning and hatching, mediating immunological responses to infections, and regulating 

neurophysiology among other processes  (Stanley-Samuelson 1994). Thus, the relative increase 

of arachidonic acid (30%) may be a short-term response in exposed females in order to maintain 

endogenous levels stable (2.0-2.4 mg/g) and minimize the effect of TPT on physiological 

functions.  

Additionally, the proportion of arachidonic acid was markedly increased in females 

exposed to 125 and 500 ng/L TPT (Table 1), but not in males. These changes paralleled the 

alterations observed in total lipid and fatty acid levels, suggesting a link between the relative 

increase of this potential regulator of lipogenesis (Yoshikawa et al., 2002) and the observed 

decrease in total lipid and fatty acid levels in exposed individuals.  

In vertebrates, fatty acids are endogenous ligands of various nuclear steroid receptors and 

control transcript signaling. All three isoforms of PPAR are activated by fatty acids, specifically 

PUFAs, regulating an extensive network of genes involved in glucose and lipid metabolism 

(Benatti et al., 2004). Palmitic (16:0), stearic (18:0), palmitoleic (16:1n-7), oleic (18:1n-9), 

linoleic (18:2n-6), arachidonic acid (20:4n-6)  and EPA (20:5n-3) are endogenous ligands of 

PPARα which is involved in fatty acid oxidation and catabolism, whereas linoleic, arachidonic 

acid and eicosanoids are endogenous ligands of PPARγ which plays a central role in adipocyte 

differentiation and storage of fatty acids (Willson and Wahli, 1997; Reddy and Hashimoto, 2001; 
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Kota et al., 2005; Mochizuki et al., 2006). Other transcriptional factors have been identified to be 

targets of fatty acid regulation such as the Liver X receptor and RXR, which are both involved in 

lipid regulation (Benatti et al., 2004). Since fatty acids appear to be PPAR ligands at a 

concentration range that is consistent with their physiological circulating levels (Braissant et al., 

1996), alterations in the abundance of endogenous fatty acids may trigger different mechanisms 

of lipid regulation further down the cascade of events. Indeed, Janer et al. (2007) exposed M. 

cornuarietis to TBT for 100 days and found a significant increase in the percentage of total lipids 

and total fatty acid content in females exposed to 500 ng TBT/L. Furthermore, the percentage of 

PUFAs, including HUFAs, decreased and MUFAs increased. The discrepancies with the present 

study are probably a reflection of long- and short-term effects of organotin compounds on lipid 

homeostasis rather than a different effect of TBT and TPT. Both studies indicated higher 

susceptibility of females than males of M. cornuarietis to lipid alterations.  

In vertebrates and some invertebrate species, steroids are conjugated with fatty acids to 

form apolar esters that are retained in the lipoidal matrices of the body from where they can be 

hydrolysed by esterases and liberate the active steroids upon demand (Borg et al., 1995). In 

Marisa cornuariets most of the estradiol and testosterone have been found to exist in the 

esterified form (Janer et al., 2006). Esterification of steroids occurs upon acyl-CoA moieties, 

which activation is depended on the concentration of the corresponding fatty acids (Hochberg, 

1998). In the oyster Crassostrea virginica, estradiol esters formation was achieved using the 

fatty acid moieties C16:0, C16:1, C18:0, C18:1, C18:2 and C20:4 (Janer et al., 2004). Exposure 

of mussels Mytilus edulis to estradiol resulted in the formation of estradiol esters with C16:0, 

C16:1 and C16:2 fatty acid moieties (Labadie et al., 2007). Additionally, acyl-CoAs are 

substrates of AOX enzyme. Interestingly, in the present experiment, one week exposure to TPT 
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resulted in a significant increase of AOX activity in exposed females together with a significant 

increase in esterified testosterone levels (60-85%) and a concomitant decrease in esterified 

estradiol (50-84%) (Lyssimachou et al., 2008). The observed alterations in esterified steroids 

were not directly related to changes in P450 aromatase activity or to changes in 17β-HSD, 5α-

reductase, involved in the metabolism of the androgen precursor androstenedione.  Thus, the 

hypothesis that changes in fatty acid availability might trigger alterations in endogenous steroid 

levels is a challenging one. In molluscs, the esterification of steroids with fatty acids appears to 

be an important regulation mechanism of endogenous steroid levels (Gooding and LeBlanc, 

2001; Janer et al., 2005).  

Overall, short-term exposure of Marisa cornuarietis to environmentally relevant doses of 

TPT lead to a decrease of total lipids and fatty acid content and an increase in AOX activity, 

which is involved in fatty acid catabolism. Since fatty acids have a pivotal role in organisms (cell 

membrane composition, bioactive signalling, steroid and eicosanoid synthesis), the observed 

effects are of special concern. Further research should focus on the higher sensitivity of females 

in comparison to males, the potential link of these alterations with the development of the 

imposex phenomena and the role of fatty acid composition on the control of adipogenesis in 

different species. Finally, being TPT a high affinity ligand of RXR, the obtained data further 

support the hypothesis that RXR may also be implicated in lipid homeostasis in gastropods 

(alone or in combination with putative PPARs) as it is in vertebrates. 
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Table 1. Fatty acid profile in the digestive gland/ gonad complex of Marisa cornuarietis exposed 

to different concentrations of TPT for 1 week.  

 

 Males Females 
Fatty acid Control Solvent 30 ng /L 125 ng /L 500 ng /L Control Solvent 30 ng /L 125 ng /L 500 ng /L 

14:0 2.72±0.25 2.84±0.19 2.97±0.28 2.63±0.22 2.37±0.49 1.10±0.07 1.13±0.08 1.55±0.66 1.17±0.06 1.06±0.05 
15:0 0.36±0.03 0.37±0.02 0.37±0.02 0.43±0.04 0.41±0.05 0.39±0.01 0.37±0.04 0.38±0.05 0.38±0.02 0.31±0.01* 
16:0 18.88±0.92 19.59±0.78 18.86±0.67 20.02±1.08 19.58±1.80 17.06±0.19 16.09±0.24 17.10±1.65 16.27±0.20 15.75±0.33 

16:1n-9 0.36±0.01 0.40±0.03 0.35±0.03 0.30±0.05 0.46±0.05 0.42±0.02 0.43±0.02 0.48±0.03 0.44±0.01 0.40±0.01 
16:1n-7 1.14±0.05 1.24±0.19 1.17±0.04 1.33±0.08 1.32±0.18 1.24±0.04 1.30±0.10 1.00±0.17 1.22±0.12 1.12±0.09 

16:2 0.21±0.01 0.19±0.03 0.20±0.01 0.21±0.01 0.21±0.01 0.23±0.02 0.19±0.01 0.20±0.01 0.19±0.01 0.20±0.01 
17:0 1.04±0.04 1.03±0.06 0.94±0.05 1.05±0.06 1.23±0.08 1.15±0.02 1.03±0.03 1.23±0.03** 1.08±0.02 1.11±0.03 
16:3 0.19±0.04 0.21±0.06 0.15±0.04 0.24±0.05 0.13±0.02 0.13±0.02 0.21±0.02 0.18±0.05 0.12±0.01* 0.11±0.00* 
18:0 8.35±0.37 8.72±0.32 8.25±0.39 8.40±0.45 8.76±0.55 7.96±0.15 6.97±0.33 8.12±0.57 7.32±0.41 7.43±0.24 

18:1n-11 0.18±0.01 0.14±0.01 0.16±0.02 0.20±0.05 0.19±0.04 0.21±0.03 0.11±0.01 0.15±0.03 0.17±0.04 0.13±0.01 
18:1n-9 13.68±0.51 13.98±1.61 13.87±0.36 16.43±0.92 15.89±2.06 16.87±0.69 15.98±0.47 13.51±1.34 14.53±0.55* 14.43±0.32** 
18:1n-7 1.98±0.10 1.93±0.11 2.01±0.15 1.81±0.09 1.90±0.20 1.53±0.09 1.47±0.09 1.36±0.23 1.37±0.06 1.34±0.05 
18:2n-6 13.12±1.62 13.44±1.60 14.43±1.18 13.38±2.42 11.83±3.10 17.30±1.13 19.25±0.57 14.82±2.26 18.06±0.48 17.68±0.64 
18:3n-6 0.13±0.01 0.12±0.003 0.16±0.01 0.10±0.01 0.11±0.02 0.09±0.00 0.10±0.00 0.10±0.00 0.09±0.00 0.09±0.00 
18:3n-3 0.44±0.17 0.59±0.14 0.66±0.08 0.61±0.17 0.49±0.17 0.80±0.09 0.96±0.04 0.60±0.14 0.88±0.06 0.78±0.08 
18:4n-3 0.08±0.01 0.08±0.01 0.06±0.01 0.09±0.02 0.08±0.02 0.11±0.02 0.12±0.01 0.11±0.00 0.12±0.01 0.11±0.01 

20:0 1.14±0.07 1.04±0.06 1.08±0.07 1.25±0.13 1.17±0.19 1.19±0.06 0.87±0.05 0.74±0.08 0.88±0.13 0.85±0.03 
20:1n-9 4.76±0.19 4.38±0.21 4.25±0.09 3.99±0.61 5.07±0.34 4.62±0.25 4.16±0.15 4.72±0.33 4.54±0.25 4.35±0.23 
20:1n-7 2.79±0.11 2.68±0.25 2.73±0.08 2.73±0.35 3.15±0.36 3.21±0.17 3.03±0.10 2.58±0.25 2.82±0.05* 2.86±0.11 
20:2n-6 1.04±0.12 0.96±0.04 0.97±0.05 0.95±0.16 0.93±0.18 1.18±0.09 1.29±0.09 1.29±0.20 1.19±0.10 1.30±0.02 
20:3n-6 0.63±0.04 0.53±0.07 0.67±0.05 0.50±0.05 0.49±0.11 0.39±0.01 0.45±0.03 0.46±0.01 0.49±0.04 0.31±0.07 
20:4n-6 3.61±0.2 3.59±0.55 3.35±0.16 2.96±0.35 3.65±0.82 3.52±0.24 4.00±0.31 5.66±1.33 4.97±0.34* 4.92±0.33* 
20:4n-3 0.05±0.01 0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.01 0.06±0.00 0.07±0.00 0.07±0.01 0.06±0.005 0.05±0.002 
20:5n-3 1.30±0.13 1.27±0.24 1.28±0.18 1.26±0.27 1.22±0.40 1.75±0.25 1.96±0.04 1.92±0.40 1.99±0.07 2.21±0.05 

22:0 0.75±0.05 0.73±0.04 0.69±0.06 0.83±0.08 0.74±0.12 0.81±0.03 0.65±0.03 0.54±0.04 0.64±0.07 0.64±0.03* 
22:1n-11 2.91±0.09 2.65±0.36 2.94±0.13 2.98±0.32 2.72±0.22 2.85±0.27 2.81±0.09 2.23±0.41 2.44±0.18 2.74±0.22 
22:1n-9 0.09±0.01 0.09±0.02 0.15±0.06 0.09±0.01 0.16±0.08 0.08±0.01 0.08±0.01 0.09±0.004 0.07±0.01 0.08±0.005 
22:1n-7 0.05±0.00 0.06±0.01 0.06±0.00 0.06±0.00 0.05±0.01 0.06±0.004 0.05±0.0 0.07±0.007 0.05±0.003 0.05±0.0 
22:2n-6 1.02±0.04 0.99±0.08 0.96±0.02 0.84±0.09 1.09±0.21 1.11±0.08 1.27±0.11 1.68±0.33 1.46±0.13 1.50±0.13 

22:5n-6/22:3n-3 1.33±0.09 1.28±0.19 1.48±0.24 0.97±0.19 0.85±0.32 0.09±0.02 0.12±0.01 0.46±0.3 0.10±0.01 0.10±0.01 
22:5n-3 0.34±0.06 0.32±0.06 0.35±0.06 0.33±0.08 0.64±0.28 0.43±0.04 0.48±0.01 0.41±0.08 0.46±0.01 0.49±0.01 
22:6n-3 2.93±0.39 2.64±0.50 3.23±0.39 2.48±0.44 1.96±0.44 2.18±0.32 2.43±0.08 1.82±0.25 2.26±0.09 2.23±0.13 
24:1n-9 0.24±0.02 0.25±0.03 0.22±0.02 0.28±0.01 0.25±0.02 0.24±0.02 0.23±0.01 0.18±0.03 0.22±0.01 0.23±0.01 

SFA 33.25±1.57 34.31±1.27 33.15±1.31 34.60±1.87 33.96±3.18 29.67±0.45 27.10±0.57 29.65±3.00 27.74±0.66 27.14±0.53 
MUFA 28.15±0.58 27.79±2.53 27.88±0.62 30.19±1.91 31.14±3.14 31.38±1.50 29.63±0.60 26.29±2.14 27.85±0.74* 27.73±0.49* 
PUFA 26.38±2.27 26.20±2.86 27.96±1.78 24.93±3.81 23.52±5.46 29.29±1.98 32.89±0.29 29.56±3.81 32.41±0.62 32.09±0.43 

n-3 5.11±0.69 4.90±0.96 5.60±0.69 4.81±0.96 4.25±1.19 5.29±0.71 6.02±0.10 4.84±0.81 5.76±0.20 5.87±0.26 
n-6 20.87±1.68 20.90±1.99 22.01±1.08 19.68±2.87 18.93±4.31 23.64±1.31 26.47±0.24 24.35±3.10 26.35±0.48 25.90±0.22 

HUFA 10.18±0.46 9.66±1.49 8.77±1.72 8.54±1.10 8.68±1.93 8.35±0.82 9.50±0.25 10.65±1.50 10.32±0.31* 10.31±0.28* 
HUFA n-3 4.61±0.56 4.26±0.82 4.88±0.61 4.12±0.78 3.70±1.01 4.39±0.60 4.94±0.06 4.19±0.66 4.77±0.14 4.98±0.17 
HUFA n-6 7.62±0.18 7.34±0.78 7.43±0.39 6.21±0.68 6.99±1.33 6.25±0.32 7.12±0.46 9.44±1.63 8.20±0.52* 8.13±0.55* 

Total FAME  
(mg/g d.w.) 59.44±8.96 52.07±3.34 62.16±6.50 64.22±4.17 41.71±3.20* 56.44±1.63 61.51±5.68 41.22±4.53* 49.09±0.83* 40.12±2.15** 
Total lpids 
(% of d.w.) 15.97±0.91 15.79±0.52 17.66±0.89 17.48±0.99 14.67±1.44 14.48±0.56 14.12±0.80 12.74±1.52 13.65±0.69 11.59±0.16** 

Data are expressed as % of total fatty acid methyl esters (mean±SEM; n=4). * and **significant differences respect to controls (p<0.05 and p<0.01 respectively). 
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Table 2. Levels of fatty acids grouped by chain length in the digestive gland/gonad complex of 

Marisa cornuarietis exposed to different concentrations of TPT for 7-days. 

 

 Control Solvent 30ng TPT/L 125ng TPT/L 500ng TPT/L 
Females      
Σ C14 0.62±0.04 0.70±0.10 0.70±0.36 0.58±0.03 0.42±0.03** 
Σ C15 0.22±0.01 0.65±0.08 0.28±0.07 0.19±0.01* 0.12±0.01* 
Σ C16 10.77±0.39 11.20±1.02 8.01±1.55 8.95±0.10* 7.06±0.43** 
Σ C17 0.65±0.03 0.63±0.05 0.50±0.05 0.53±0.02 0.45±0.03* 
Σ C18 25.32±0.80 27.72±2.80 16.11±2.20** 20.85±0.37* 16.81±0.76** 
Σ C20 8.96±0.24 9.73±0.94 6.94±0.24** 8.31±0.32 6.78±0.53** 
Σ C22 4.03±0.21 4.83±0.45 2.96±0.43* 3.67±0.07* 3.13±0.09** 
Σ C24 0.13±0.02 0.14±0.02 0.08±0.02* 0.11±0.01* 0.09±0.00** 

      
Males      
Σ C14 1.56±0.11 1.46±0.03 1.80±0.04* 1.67±0.07 1.00±0.21 
Σ C15 0.21±0.03 0.38±0.08 0.52±0.10 0.27±0.02 0.17±0.03 
Σ C16 12.15±1.38 11.22±0.73 12.79±1.02 14.16±1.05 9.15±1.43 
Σ C17 0.61±0.07 0.53±0.03 0.58±0.05 0.67±0.05 0.51±0.06 
Σ C18 22.95±4.48 20.45±2.06 24.81±3.25 26.46±2.50 16.32±1.20 
Σ C20 9.08±1.31 7.51±0.43 8.93±0.99 8.72±0.34 6.40±0.44 
Σ C22 5.70±1.18 4.56±0.37 6.12±0.70 5.53±0.61 3.36±0.48 
Σ C24 0.14±0.02 0.13±0.02 0.13±0.02 0.18±0.02 0.10±0.02 

Values are expressed as mg/g of dry weight (mean ± SEM; n=4). Significant differences 
respect to controls indicated by *p<0.05 and **p<0.01. 
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Table 3. Levels of fatty acids grouped by unsaturation degree in the digestive gland/gonad 

complex of Marisa cornuarietis exposed to different concentrations of TPT for 7-days. 

 

 Control Solvent 30ng TPT/L 125ng TPT/L 500ng TPT/L 
Females      
Σ C:0 16.76±0.68 16.60±1.32 12.53±2.51 13.69±0.19** 10.89±0.63** 
Σ C:1 17.72±1.34 18.31±1.97 11.12±1.96* 13.66±0.33* 11.10±0.40** 
Σ C:2 10.92±0.58 13.59±1.43 7.25±1.12** 10.26±0.28 8.29±0.41** 
Σ C:3 0.79±0.04 1.06±0.12 0.55±0.07** 0.77±0.04 0.52±0.04** 
Σ C:4 2.06±0.09 2.56±0.25 2.19±0.23 2.53±0.20 2.05±0.22 
Σ C:5 1.25±0.13 1.57±0.12 1.08±0.09* 1.25±0.04 1.12±0.07* 
Σ C:6 1.22±0.16 1.50±0.17 0.75±0.13** 1.11±0.03 0.89±0.05** 

      
Males      
Σ C:0 19.42±2.14 17.78±0.90 20.39±1.42 22.14±1.53 14.33±2.17 
Σ C:1 16.83±2.83 14.56±1.89 17.38±2.06 19.42±1.87 13.18±2.23 
Σ C:2 9.49±2.30 8.19±1.15 10.48±1.73 9.96±2.06 5.65±1.28 
Σ C:3 0.86±0.22 0.76±0.08 1.03±0.14 0.94±0.17 0.50±0.09 
Σ C:4 2.18±0.27 1.90±0.29 2.13±0.24 1.97±0.20 1.52±0.33 
Σ C:5 1.79±0.34 1.49±0.27 1.93±0.25 1.63±0.23 1.05±0.29 
Σ C:6 1.84±0.54 1.38±0.30 2.04±0.37 1.60±0.34 0.80±0.19* 

Values are expressed as mg/g of dry weight (mean ± SEM; n=4). Significant differences 
respect to controls indicated by *p<0.05 and **p<0.01. 
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Figure 1. AOX activity in the digestive gland/gonad complex of Marisa cornuarietis exposed to 

TPT for 7-days. Values are the mean ± SEM (n=4). *Significant differences respect to control 

(p<0.05). 

 

Figure 2. Fatty acid methyl esters (FAME, mg/g dry mass) and total lipids (% dry weight) in the 

digestive gland/gonad complex of Marisa cornuarietis exposed to TPT for 7-days. Values are 

mean ± SEM (n=4). *Significant differences respect to control (p<0.05). 
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Figure 1 
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Figure 2. 
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