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ABSTRACT5

Predictive models constitute an important tool in ecology. Using presence/absence data of6

15 plant species of an alpine rangeland in northern Spain, and a set of 14 topographical and7

geomorphological descriptors of relatively easy acquisition, we examined and compared the8

performance of five state-of-the-art methods used in ecological modeling: Multiple Logistic9

Regression (MLR), Artificial Neural Networks (ANN), Support Vector Machines (SVM),10

Classification and Regression Trees (CART) and Multivariate Adaptive Regression Splines11

(MARS). Validation of the models was carried-out computing the Area Under the ROC12

Curve (AUC) using leave-one-out cross validation and the resolution and reliability diagrams13

of the resulting probabilistic predictions. We also analyzed the binary presence/absence de-14

terministic predictions obtained by setting two different probability thresholds: the species15

prevalence and a ROC-optimized value, and we computed the corresponding confusion ma-16

trices to calculate sensitivity, specificity, Cohen’s kappa and the True Skill Statistic (TSS).17

The overall result of this comparison shows that the performance of each technique varies18

depending on the target species; in general, CART exhibited a poor performance and MLR19

was competitive with the more sophisticated ANN, MARS and SVM methods. The best20

predictive resolution was obtained in most cases by ANN followed by SVM and CART21

models; on the other hand, MLR and MARS were generally the best calibrated. We also22

present an ecological interpretation of results, with emphasis in the possible ways of im-23

proving our models. Most of the target species were accurately predicted evidencing that24

geomorphological and topographical variables are suitable descriptors at the scale of analysis.25

26
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1. Introduction29

Species’ distribution models (Fielding and Bell 1997; Guisan and Zimmermann 2000;30

Guisan and Thuiller 2005; Elith and Leathwick 2009) constitute a very important tool in31

ecology and conservation biology for a number of theoretical and practical issues, such as32

ecological niche modeling (Drake et al. 2006), assessment of potential species’ distributions33

(Garzón et al. 2006; Drake and Bossenbroek 2009), prediction of future biotic responses to34

global change (Thuiller 2003), nature reserve selection (Araújo et al. 2004) or wildlife man-35

agement (Gude et al. 2009) among others. These models share a common general approach:36

they statistically relate the spatial distribution of certain species (either the presence/absence37

or the abundance) with a set of environmental descriptors acting as input variables of the38

model. It has been shown that the different techniques used may idiosyncratically differ in39

their performance across species (Thuiller 2003; Elith et al. 2006) and therefore, for each par-40

ticular application, it is desirable to assess the performance of the different state-of-the-art41

models rather than sticking to a single modeling technique.42

Traditional methods for predictive modeling, such as generalized linear or additive models43

(e.g. logistic regression), are parametric models based on a priori assumptions on the shape44

of the response of species to environmental factors. This approach may be too simplistic as45

species often exhibit varied and complex responses to environmental gradients (Oksanen and46

Minchin 2002). In this context, higher order interaction terms need to be included to deal47

with skewed or non unimodal response shapes, often leading to spurious and biologically48

unfeasible responses difficult to interpret ecologically (Guisan and Zimmermann 2000).49

To circumvent these shortcomings, in more recent times a number of particular non-50

2



parametric approaches have been introduced in the literature that do not make any pre-51

vious assumption on the shape of species’ responses to environmental predictors (see, e.g.,52

the non-parametric multiplicative regression; McCune 2006). Some general purpose non-53

parametric models, such as Artificial Neural Networks (ANNs), Support Vector Machines54

(SVMs) or Multivariate Adaptive Regression Splines (MARS) have been successfully applied55

to a broad class of prediction problems (Hastie et al. 2010), including ecological and biogeo-56

graphical questions such as species distributions. These advances provide a broad spectrum57

of algorithms available in different statistical packages to be applied for deterministic or58

probabilistic species distribution modeling.59

In this work, we focus on the prediction of the presence/absence of a set of 15 plant species60

and analyze five different prediction methods spanning the above categories, from the sim-61

plest Multiple Logistic Regression (MLR) to the recent and complex SVMs, including also62

ANNs, Classification and Regression Trees (CART; Breiman et al. (1984)) and Multivariate63

Adaptive Regression Splines (MARS; Friedman (1991)). MLR is a parametric technique64

belonging to the family of the generalized linear models (GLMs). It has been widely used in65

species distribution modeling (see Guisan et al. 2002, for a description and a review of their66

application in ecology), whereas the others are non parametric methods which have gained67

popularity among ecologists in more recent times. The predictive performance of MARS has68

been studied in comparison with GAM models for several freshwater fish species by Leath-69

wick et al. (2006), revealing its capability to effectively identify the most parsimonious set of70

environmental predictors and robustly describe the distribution of species. Similarly, MARS71

showed better performance than MLR in a comparative study by Muñoz and Felićısimo72

(2004). CART models have revealed better performance than MLR for predicting the dis-73
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tribution of three major oak species in California (Vayssieres et al. 2000) and offer valuable74

properties such as their flexibility, ease of implementation and interpretation of results, pro-75

ducing a feature space partition fully described by a single tree (Hastie et al. 2010). However,76

it has been shown their poorer performance against GAMs and high order MLR models in77

the case of simulated species data whose dominant predictor had a linear response (Santika78

and Hutchinson 2009). ANNs constitute highly flexible function approximators for any kind79

of data, able to cope with non-linear structures, making them a potential tool for ecological80

modeling (Lek et al. 1996; Lek and Guegan 1999). ANNs outperformed linear regression81

in predicting trout abundance in mountain streams (Lek et al. 1996), but obtained simi-82

lar results than MLR and discriminant analysis for predicting presence/absence of a river83

bird species in the Himalayas (Manel et al. 1999), although this was assessed computing84

confusion matrix-derived measures which may introduce problems associated with threshold85

effects (Fielding and Bell 1997). Finally, SVMs are a recently developed supervised learn-86

ing technique used for regression and classification, as well as density estimation. They are87

considered as universal and powerful as ANNs (Cortes and Vapnik 1995) and, conceptually,88

they can be assimilated to the classical definition by Hutchinson (1957) of ecological niche as89

a multidimensional environmental space (Drake et al. 2006). Although their application in90

modeling species distributions is still infrequent, it has proved a useful tool for habitat niche91

definition in forecasting biological invasion by Zebra Mussels in North American freshwater92

bodies (Drake and Bossenbroek 2009) as a relevant example.93

The aim of this paper is to compare the performance of these five predictive methods94

(MLR, ANN, SVM, CART and MARS) using the same presence/absence data set of 1595

characteristic plant species of acidic alpine rangelands in Northern Spain. Our assessment96
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of model performance is based on several validation scores (both probabilistic and binary97

derived from the confusion matrix) and qualitative diagrams (calibration and resolution),98

revealing the advantages and shortcomings of the different techniques. The paper is organized99

as follows: In Sec. 2 we present the methodology, introducing the study area and the data100

used, the models to be considered and the evaluation and validation procedures undertaken.101

In Sec. 3 we present the results, focusing on the model performance and the resulting species102

distribution models. Finally, in Sec. 4 we present a discussion of the work from the point103

of view of its ecological significance, methodological aspects to be considered and possible104

ways of improvement of the predictive performance.105

2. Method106

a. Study area and data collection107

The study site, Riofrio rangeland, is located in Cantabrian Range (Northern Spain) and108

covers an area of 570 hectares. The altitude ranges from ca. 1700 m.a.s.l to a maximum of109

2536 m. It comprises all major vegetation zones above the tree-line of the silicious Cantabrian110

Range. It holds the SPA status (Special Protection Area) linked to the Natura 2000 Network111

of the European Union. During summers of 2007 and 2008 (June-September) we conducted112

an exhaustive survey resulting in a detailed vegetation map of the whole study area. Each113

homogeneous patch of vegetation with an extension larger than 100 m2 was delimited by a114

polygon. At each polygon, we quantified the abundance of 15 predefined species in terms115

of % cover (see Table 2). These species were chosen because they play a major role in116
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the configuration of vegetation at the landscape scale, with an estimated summed cover117

representing more than 95% of total study area including bare soil and rocky outcrops. One118

of them, Festuca-Agrostis, is not a single species but a distinctive grassland type dominated119

by Festuca gr. rubra and Agrostis capillaris. For convenience, we will collectively refer to120

them simply as “species” hereafter. After discarding all polygons with very scarce or null121

plant cover (cliffs, lakes and screes), a final dataset of 415 polygons covering an area of 424.6122

hectares was retained. Finally, abundance data were transformed into presence/absence data,123

considering any cover value > 0 as presence of the species (see Fig. 1 for the distribution of124

four illustrative species).125

For each polygon, mean values of four topographical variables (altitude, slope, solar126

radiation and terrain convexity) were calculated from a 2 m resolution digital elevation127

model. Aspect was not used as environmental variable as it was highly correlated with solar128

radiation. We also used 10 geomorphological variables, extracted from a geomorphological129

map that we constructed based on field observations and interpretation of aerial photographs130

(Table 3).131

b. Models for data analysis132

In this section we briefly describe the mathematical formulation of the five modeling133

techniques used in the paper, and indicate the software used to fit the different models to134

the data described in the previous section.135

All analyses were conducted in the R language and environment for statistical computing136

(R Development Core Team 2009). For the stepwise selection of variables we used the137
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function ’step’. Additionally, we used the packages “ROCR” (Sing et al. 2009) for the138

computation of AUC values and confusion matrices and “maptools” (Lewin-Koh et al. 2009)139

for map representation.140

MLR (also called logit model) is a generalized linear model used for binomial regression141

which is commonly used as a benchmark to predict the probability of occurrence of an event142

y (in our example species occurrences) by fitting data to the following formula:143

y = f(

m
∑

k=1

αkxk), (1)

where X = {X1, . . . , Xm} is a set of predictor variables (the environmental descriptors in144

Table 3 in our example) and f(z) = 1/(1 + exp(−z)) is the logistic, or sigmoid, function145

with output constrained to (0, 1). The unknown parameters αk are usually estimated by146

maximum likelihood leading to a simple optimization problem that can also be seen as a147

simple version of an ANN without intermediate hidden layers between the input and the148

output. MLR models were fitted using the iteratively reweighted least squares procedure149

implemented in R (R Development Core Team 2009).150

ANNs are machine learning models inspired by the functioning of the brain (Hastie et al.151

2010). Thus, an ANN is formed by an input layer, {X1, · · · , Xm} an output layer with one,152

Y , or several variables {Y1, · · · , Yn} and an predefined number of hidden layers, connected153

to each other. In the most popular configuration (feedforward networks), each node in154

the hidden and output layers receives input from all the nodes in the preceding layer and155

computes an output as the sigmoid-filtered weighted sum of inputs. Thus, a feedforward156

network with a single hidden layer, as the one implemented in this study, computes :157

y = f(
∑

j

βjif(
∑

k

αikxk)) (2)
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where f is again the sigmoid function and αik and βji are the parameters to be fitted to data.158

In this case, the optimization of the error function leads to a complex nonlinear problem159

which needs to be solved with particular algorithms (in our case, we used the R package160

“AMORE” by Castejón et al. (2007)). Note that, as mentioned before, when considering no161

hidden layer, (2) reduces to (1).162

MARS is a nonparametric method for regression analysis developed in the early 90s163

by Friedman (1991) which allows approximating the underlying function through a set of164

adaptive piecewise linear regressions called “basis functions” in the following form:165

y = αo +

K
∑

k=1

αkbk(x), (3)

where the slope of each piecewise bk(x) can change in a set of points Zki = zki, i = 1, . . . , m166

with Zki ⊂ X, called knots. The popularity of this technique is due to the efficient optimiza-167

tion procedure used for the iterative search for basis functions and knots. In this work, we168

used the implementation of MARS in the R package “mda” (Leisch et al. 2009).169

Similarly, CART is based on classification trees formed by a collection of rules based on170

values of certain variables in the modeling data set. These rules define branches of the tree171

which are optimized following an efficient search process. The advantage of this method is172

the intuitive representation of the knowledge (i.e. the set of rules) but, on the other hand,173

it lacks a compact model representation. For CART implementation we used the R package174

“tree” (Ripley 2009).175

Finally, SVMs are recently developed machine learning methods used for classification176

and regression (Schlkopf and Smola 2001). This technique maps the input vectors to a higher177

dimensional space where a maximal separating hyperplane is constructed by considering a178
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epsilon-insensitive metric, where the (absolute) error values lower than epsilon are mapped179

to zero.180

The approximating function can be defined as:181

y =< w; x > +b (4)

where <;> denotes the dot product (for the linear case) or a kernel function such as the182

gaussian kernel in the general case of non-linear classifiers. The parameters are obtained183

from data by solving the following optimization problem:184

minimize
1

2
||w||2 + C

l
∑

i=1

(ξi + ξ∗i ) (5)

subject to































yi− < w; xi >≤ ε+ ξi

< w; xi > +b− yi ≤ ε+ ξ∗i

ξi, ξ
∗

i ≥ 0

(6)

For SVM construction we used the R implementation in package “e1071” (Dimitriadou185

et al. 2009).186

c. Evaluation of the models: Scores187

There is no single score to measure the quality of a predictive model, and different188

indices provide different aspects of the relationships between observed and predicted values;189

the situation is even more complex in the case of probabilistic forecasts (see, e.g. Jolliffe190

and Stephenson 2003). Quantitative probabilistic predictions have several advantages over191

deterministic presence/absence ones, since they provide an ecologically relevant information192

introducing a notion of habitat suitability that can be projected in the geographical space193
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(Guisan and Thuiller 2005). For management applications, probabilistic measures provide194

more flexibility to final model users, who can set different probability thresholds best suited195

to their particular aims (Freeman and Moisen 2008; Gude et al. 2009). From the point of196

view of critical model testing, they can be used to generate accuracy measures that are197

independent from the species prevalence allowing the general interpretation and comparison198

of different models (Vaughan and Ormerod 2005).199

In the case of binary deterministic predictions, there are two types of possible errors: false200

positives (FP, error type I), when the model predicts a positive case when it is actually a201

negative one and false negatives (FN, error type II) when, on the contrary, the model fails to202

predict a positive case. These values are usually arranged in a table that summarizes model203

performance, including also correctly predicted positives and negatives (true positives TP,204

and true negatives TN) known as confusion matrix (Fielding and Bell 1997). From them, a205

number of measures of classification accuracy can be derived: Sensitivity is the probability206

of a given case to be correctly classified, whereas specificity is the inverse of Sensitivity.207

Both measures are independent of each other when compared across models and are also208

independent of species prevalence (Allouche et al. 2006).209

In the case of probabilistic predictions, the ROC (Receiver operating characteristics)210

curve is commonly used as a generalization of the above validation procedure to describe211

the accuracy of the model (Fig. 2). This curve is defined by plotting the sensitivity(u) vs.212

1 − specificity(u) values for the deterministic prediction given by a probability threshold213

u. Probabilities above/below this threshold are set to positive/negative (presence/absence).214

By varying the probability threshold, the system becomes either more conservative or more215

“adventurous” in its predictions. ROC curves describe the predictive ability of the system216
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under the whole range of probability thresholds providing a global measure of model per-217

formance. From the ROC curve, a numeric index can be obtained as a measure of model218

performance: the area enclosed under the ROC curve (AUC), which ranges from 1 (perfect219

prediction) to 0 (random prediction). It has been shown in previous ecological studies that220

AUC is independent of the species prevalence (Manel et al. 2001; Allouche et al. 2006) and221

it is to be preferred as a measure of model accuracy when interest is focused in comparing222

and ranking the performance of different classifiers (Fielding and Bell 1997; Allouche et al.223

2006).224

A high AUC value, which indicates good model discrimination, is not necessarily coupled225

to a high numerical accuracy of the predictions. ‘Calibration’, also known as ‘conditional226

bias’ or ‘reliability’, can be described as the level of agreement between predicted and ob-227

served probabilities of occurrence within the whole range of probability values. Calibration228

plots are the basic tool for its assessment (Vaughan and Ormerod 2005). They can be con-229

structed as follows: prediction probability values are discretized into fixed intervals (e.g.:230

cases with predicted value between 0 and 0.1 fall in the first interval, between 0.1 and 0.2 in231

the second, and so on...). For each interval, the mean predicted value and the true fraction232

of positive cases (i.e. the species prevalence) are computed and plotted on the X and Y233

axes respectively (Fig. 3). The system is better calibrated the closer the curve is to the234

45 degree diagonal, which indicates a perfect agreement between predicted probability and235

true prevalence. If the curve passes under the diagonal, it is an indication that the system236

is over-estimating the event and on the contrary, when the curve passes above the diagonal237

the probability of the event is being under-estimated.238

Another important measure of the quality of a binary probabilistic prediction is the239
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resolution, which quantifies the deviation of the prediction from the true species prevalence.240

It can be represented by means of a resolution plot, in which a partition of the whole range of241

possible probabilities is represented by a histogram of the corresponding relative prevalences242

(Fig. 4). ’U’-shaped histograms are characteristic of good model resolutions (e.g. Fig. 4a),243

where most absence events are predicted with probability zero and most positive cases are244

predicted with probability 1. On the contrary, more ambiguous predictions are characterized245

by a relatively higher proportion of intermediate probabilities (e.g. Fig. 4b).246

In applications in which a deterministic prediction is required, a particular probability247

threshold must be set. However, AUC does not provide a probability threshold for case248

classification, which must be selected based on the objectives of each particular case-study,249

depending if the aim is either minimizing FP or FN error rates or any other previous con-250

dition imposed by the user (Fielding and Bell 1997; Freeman and Moisen 2008). In order251

to illustrate model performance for deterministic predictions, we set two probability thresh-252

olds: the observed probability of occurrence of each species (i.e. their prevalence) and a253

ROC-optimized probability threshold (OPT) which is obtained by reading the point from254

the ROC curve at which the sum of sensitivity and specificity is maximized. The latter is255

equivalent to finding the point on the ROC curve whose tangent has a slope of one. It has256

been frequently applied in spite of its known tendency to overestimate the true occurrence257

of species with low prevalence (Manel et al. 2001; Freeman and Moisen 2008). From them,258

we derived the corresponding confusion matrices and the following summary statistics: sen-259

sitivity, specificity, Cohen’s kappa and true skill statistic (TSS). The last two statistics have260

the advantage of correcting the overall accuracy of models by the accuracy expected to take261

place by chance alone (Fielding and Bell 1997; Manel et al. 2001; Allouche et al. 2006).262
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TSS has the additional advantage of being fully independent of the species prevalence and263

the size of the validation dataset, whereas kappa may introduce statistical artifacts to esti-264

mates of predictive accuracy as it responds in an unimodal fashion to prevalence (Allouche265

et al. 2006). In spite of its shortcomings, Cohen’s kappa was also computed because of its266

widespread use in ecological literature.267

d. Evaluation of the models: procedure268

In order to avoid overfiting and to obtain robust estimates of model performance, we269

carried out a Leave-One-Out Cross Validation procedure (LOOCV), also known as “jackknife270

resampling” to compute the error (Verbyla and Litvaitis 1989; Fielding and Bell 1997).271

LOOCV is a resampling technique in which n−1 instances out of the total of n, are used as the272

training dataset and the remaining one is used for testing. The procedure is repeated n times,273

one per observed instance, producing a more precise estimation of classification accuracy274

(Verbyla and Litvaitis 1989). Manel et al. (1999) used training and test datasets from275

separate geographical regions, showing that LOOCV models provide a suitable alternative276

to independent data set testing in order to assess model performance.277

Moreover, in addition to the full models, obtained by considering the full 14 input envi-278

ronmental variables described in Table 3, we also conducted a variable selection procedure279

for each of the species in order to obtain reduced models with optimum predictors. To this280

aim, we applied a stepwise logistic regression using the Akaike Information Criterion (AIC),281

obtaining the set of input variables displayed in Table 1 (see Sakamoto et al. 1986, for details282

on this method). Solar radiation and proportion of scree surface were the variables that most283
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often entered in the models (80%) followed by altitude and proportion of partially vegetated284

screes (73%). Terrain convexity, permanently waterlogged areas and solifluction terraces on285

fine materials were also often included in the models (67%). These variables were statistically286

very significant in almost all occasions. On the contrary, the variable fixed slopes did not287

enter in any model and the proportion of lake area entered only twice, although it was never288

statistically significant. We want to remark that more sophisticated variable/feature selec-289

tion methods could be applied in this work (some examples are commented in Section 4b),290

but due to the limited number of variables available in our particular problems we preferred291

to use a benchmark method based on the most simple model for comparison purposes.292

The comparison of the performance of the full and reduced models provides useful infor-293

mation about the sensitivity of the different methods on the number of input variables and294

overfiting.295

3. Results296

a. Probabilistic predictions297

Table 1 shows the AUC values obtained after applying the LOOCV procedure to each298

model. In the case of MLR and ANN, the use of specific predictors always lead to better299

results, with the only significant exception of the ANN trained for Juniperus nana; in this300

case, there seem to be some nonlinear information hidden in the variables discarded by301

the stepwise logistic regression. Thus, some benefit could be obtained by using nonlinear302

feature selection algorithms, but the corresponding AUC is quite low and no much benefit303
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is expected. Therefore, from now on, only the stepwise models will be considered for MLR304

and ANN techniques. As opposite to the previous case, for SVM models the results of the305

general models are better for a number of species: Erica arborea, Festuca-Agrostis, Vaccinium306

uliginosum, Festuca eskia and Juniperus nana, although differences were small except for307

the latter species, which obtained a low AUC (< 0.7) in both cases. Therefore, a clear308

advantage of SVMs is their capability to efficiently work in problems with a high number of309

input variables, requiring no variable selection preprocessing.310

MLR models obtained the highest AUC values for half of the species, although differences311

in AUC with the rest of the models were usually small. On the contrary, CART models312

obtained almost always the lowest AUCs. ANNs obtained the best AUC for Carex nigra and313

equalled the best result achieved by MLR for Erica tetralix. SVMs obtained good results314

and differences in AUC with the best methods were usually small; this model in particular,315

jointly with MLR, provided the best performance for Euphorbia polygalifolia. In general,316

differences in AUC were marginal between MLR, ANN, SVM and MARS, and only CART317

models performed notably worse (see Fig. 2 for the four illustrative species shown in boldface318

in Table 1).319

Reliability and resolution diagrams of the four selected species for illustration of the320

general results are shown in Figures 3 and 4, respectively. In most cases, MLR and MARS321

models are the most reliable, showing less deviance from the diagonal (perfect calibration)322

than ANN and SVM models, although in some cases ANN models achieved fairly good323

calibration (e.g. Luzula caespitosa, Fig. 3c; Genista obtusiramea, Fig. 3d) and sometimes324

even notably better than MLR models (e.g. Luzula caespitosa, Fig. 3c). In most cases, SVM325

models produced a more irregular calibration, and CART models resulted very unreliable.326
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On the other hand, in the case of resolution, in most cases MLR models were considerably327

worse than the other methods, exhibiting more uniform, and even “n” shaped probability328

outputs, grouped around the uninformative 0.5 probability value. For almost all species, the329

best predictive resolution was achieved by ANN and CART models, with some exceptions330

such as Luzula caespitosa (Fig. 4c). As illustrative examples, Juniperus nana, a poorly331

predicted species, obtained a bad resolution for all models (Fig. 4b). Conversely, the ANN332

and MARS models of Festuca eskia (Fig. 4a) or the ANN and SVM models of Luzula333

caespitosa (Fig. 4c) achieved high predictive resolutions.334

b. Threshold-dependent deterministic predictions335

In some applications, probabilistic predictions need to be converted into deterministic336

ones by defining an appropriate probability threshold. As we have already mentioned in337

Section 2c, in this study we have considered two different thresholds: the prevalence of the338

species and a ROC-optimized probability threshold. In this case, a number of validation339

scores is commonly used in order to focus on different aspects of the prediction. Table 4340

shows the results for the four species used as illustrative examples in this paper, although341

these results are generalizable to the 15 species modeled. TSS and Cohen’s kappa scores342

obtained highly correlated results for both probability thresholds, an indication than in the343

present case study, the selection of any of the two statistics for model assessment is not344

determinant on final model choice in most of the situations. The highest Cohen’s Kappa345

generally corresponded to the highest TSS in the set of species tested. However, the same can346

not be said for the probability threshold, whose selection often affected the final model choice.347
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The selection of the probability threshold is therefore a critical step in final deterministic348

outcome and special attention should be paid at this point. For species with low predictive349

scores, the optimized thresholds highly varied among different methods (e.g. Juniperus350

nana, Fig. 2), becoming under this particular circumstance an unreliable criterion for case351

classification.352

c. Model output mapping353

In order to analyze graphically the performance of the different methods, in this section we354

present several comparative geographical representations of illustrative species and models.355

For instance, Fig. 5 shows the predicted probability maps corresponding to the models with356

best AUC for the four representative species; a visual comparison with Fig. 1 (the observed357

presence/absence maps) gives an idea of the model capabilities.358

The predicted probabilities can be ecologically translated into “habitat suitability” maps359

for each target species. Following the predicted probability intervals indicated by the grey360

scale tones in the maps, it is noticeable the high predictive resolution achieved for Festuca361

eskia and Luzula caespitosa, in contrast with the more intermediate probabilities predicted362

by model of Juniperus nana, which leads to a more ambiguous prediction of habitat suit-363

ability (note that this species had a low AUC score indicating a poor predictive skill from364

environmental descriptors).365

Fig. 6 displays the mapped probabilities for the five models corresponding to the species366

Genista obtusiramea. Independently of the relative performance of each model in terms of367

AUC or TSS, it becomes evident that even for species distribution models with fairly good368
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accuracy, different modeling techniques provide rather different habitat suitability maps.369

Note that, according to Tables 1 and 4 the best models in this case are the MLR and SVM,370

which show similar mapping distributions in this figure.371

4. Discussion and Conclusions372

a. Ecological interpretation of results373

Most validated models achieved AUC values characteristic of useful applications (0.7-0.9)374

and a high accuracy in some occasions (> 0.9, Euphorbia polygalifolia, Festuca eskia, Genista375

obtusiramea, Juncus trifidus, Luzula caespitosa and Vaccinium uliginosum), evidencing that376

topography and geomorphology are main controlling factors of vegetation distribution in the377

site at the scale of analysis. Only one species, Juniperus nana, obtained a low accuracy378

AUC value (< 0.7), an indication of the inadequacy of the models developed for its predic-379

tion. Juniperus nana is an ubiquitous species in the study area, although its presence is380

restricted to very low values of total cover in many places, favoured by micro-scale factors381

beyond the generic factors considered in this study. The estimated cover of Juniperus nana382

was lower than 5% in more than 80% of the polygons in which the species was present.383

The same can be said of Vaccinium myrtillus, another poorly predicted species which had384

an estimated cover lower than 5% in 77% of polygons in which it was present. In spite of385

this, we did not find any clear relationship between relative cover and prediction success,386

an indication that the predictive ability of input variables varies greatly depending on the387

target species. The inclusion of other factors not considered as predictors, such as grazing388

18



pressure or history of fire disturbances may be important in order to improve model pre-389

diction for some species. For instance, heathlands dominated by Erica arborea or Calluna390

vulgaris have a long history of traditional management in which plant succession has been391

arrested through regular burning (Webb 1998). In the same way, it must be reminded that392

the study site has constituted for centuries an estival forage resource of prime importance for393

local farmers. Herbivores are known to have a predominant role in community composition394

in those ecosystems where they operate (Milchunas et al. 1988). It is likely that part of395

this source of variation is explained by topographical variables (mainly slope) which partly396

determine the geographical extent of ungulate distribution, but still part of it is probably397

not accountable by physical descriptors, and other factors related to historical land uses,398

farming practices or ungulate grazing behaviour should be explicitly considered (e.g. assem-399

bly/shelter points, traditional pathways, location of preferred forage sources...). Similarly,400

encroachment by the endemic broom species Genista obtusiramea is known to have taken401

place very fast in recent decades, almost certainly favoured by the decay of traditional sheep402

grazing that today does not exist anymore (pers. comm. of local farmers confirmed by own403

data based on historical aerial photographs). These situations in which disturbance plays a404

significant role in landscape composition contrast with the more stable conditions governing405

the upper, less accessible parts of the study area where anthropogenic disturbance occurs at406

a much lesser extent. In fact, models of plant species restricted to this zone (Juncus trifidus,407

Festuca eskia, Luzula caespitosa, Vaccinium uliginosum) achieved very high predictive accu-408

racy. This is connected with the concept of equilibrium. The assumption that species are in409

pseudo-equilibrium with their environment has been recognised as a convenient theoretical410

framework in species modeling (Guisan and Theurillat 2000), and it is in accordance with411
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the characteristics of the study site. Therefore, anthropogenic factors pose new challenges412

in species distribution models in alpine rangelands, requiring the definition of predictors413

able to effectively describe these processes and interactions at different temporal and spatial414

scales based on previous knowledge of site characteristics, historical land uses and ecological415

theory.416

b. Considerations on variable selection procedure417

Variable selection is a crucial step as it affects the modeled spatial distribution of species418

(Araújo and Guisan 2006). Although the focus of this study was not on the different proce-419

dures of variable selection, our results show that a previous selection of variables improved420

predictive performance in almost all occasions, and only two ANN models of low performance421

(Calluna vulgaris and Juniperus nana) obtained higher AUCs when all variables were in-422

cluded. However, SVM models deserve special attention: of the 15 species modeled, the423

prediction of four of them (namely Calluna vulgaris, Carex nigra, Genista obtusiramea and424

Vaccinium myrtillus) was unaffected by variable simplification and other four of them had425

better performance when including all variables (Erica arborea, Festuca-Agrostis, Festuca426

eskia and Juniperus nana). This is in accordance with the findings of Drake et al. (2006)427

who observed that useful information can be obtained from SVM models by the addition of428

more environmental variables even if they are highly correlated, obtaining more consistent429

models without previous data reduction. On the other hand, Guisan et al. (2002) warned430

about the stepwise selection procedures based on AIC, as small variations in the response431

data may lead to vast changes in final model selection. This inconsistency among selected432
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variables was also detected by Manel et al. (1999) when they compared models for the whole433

study area and from partitioned regional data for the same river bird species. Furthermore,434

we are aware that the utilization of a linear procedure for variable selection in a non-linear435

context is not the most appropriate choice as important information might be lost in the436

process. Alternative variable selection procedures may prove useful in ecological applica-437

tions, such as techniques related to the analysis of variable contribution in ANNs (Gevrey438

et al. 2003; Romero and Sopena 2008) or a genetic algorithm-based approach (D’Heyere439

et al. 2006). Another interesting alternative to stepwise AIC procedure in the case of GLMs440

is to previously identify variable interactions fitting a CART model (Guisan et al. 2002).441

c. Considerations on the spatial component442

Many ecological studies recognise explicitly the spatial heterogeneity of ecosystems and443

the spatially structured environmental factors as important properties controlling species444

distribution among regions and landscapes (Legendre and Fortin 1989; Wagner and Fortin445

2005). One limitation shared by all our models lies in the correlative nature of vegetation data446

used for model construction, which implies the need to account for the spatial component.447

Our models are therefore spatially invariant as we did not include explicitly descriptors of the448

neighbouring spatial context (Guisan et al. 2006). A visual inspection of the geographical449

distribution of failed predictions (Fig. 7) suggests a spatial pattern of errors, at least in450

the three species with good to moderate predictive performance (7a,c and d), which are451

approximately distributed along the boundaries of the species’ distributions within the site452

(Fig. 1). This suggests that the use of explicit spatial descriptors as input variables into453
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the models might improve their predictive ability (Dormann 2007). Recently developed454

methodologies such as Principal Coordinates of Neighbour Matrices (Borcard and Legendre455

2002) allow the inclusion of the spatial component at all scales leaving an opened door to456

the improvement of our models eventually leading to more consistent predictions and more457

reliable spatial representations of the species’ realized niches.458

A detailed analysis of both variable selection and spatial factors are out of the scope of459

this paper and will be undertaken in a more general context including both point and spatial460

descriptors.461

d. Relative advantages of techniques tested462

Attending solely to AUC values, MLR seems to be the preferred predictive method in463

this case study, although SVMs, ANNs and specially MARS models obtained comparable or464

better AUCs in some occasions. Our results are in accordance with other previous compar-465

ative studies which show the relative competitiveness of predictions of MLR models when466

compared to other modeling techniques able to cope with skewed or multi-modal responses467

such as ANNs (Manel et al. 1999) or CART and MARS (Muñoz and Felićısimo 2004).468

Resolution is an important characteristic of the predictive model, specially when a deter-469

ministic outcome is required, since the classifier will be less sensitive to probability threshold470

selection when the predictions are grouped around the values 0 and 1. In this sense, MLR471

models exhibited almost in all occasions the worst resolution. On the contrary, ANN models472

most frequently achieved the best predictive resolution. Thus, ANN results are expected473

to be more stable for varying probability thresholds because of their ability to effectively474
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separate case occurrences. CART models, in spite of their lower accuracy, also showed very475

good resolution. SVM models showed more variability although in general also attained476

fairly good predictive resolution. MARS classifiers, in spite of their good properties of ac-477

curacy and calibration did not achieve competitive results in this sense. Thus, our results478

reveal that a high predictive accuracy is not necessarily related to a good reliability, and479

an acceptable compromise between both should be achieved. Reliability is related to model480

calibration and, hence, is an important issue in the light of the “habitat suitability” concept481

(Guisan and Thuiller 2005). If research interests are focused on this, calibration is a key482

aspect that should be specifically addressed. High deviances from the observed probabilities483

mean unreliable habitat suitability maps that may misguide management actions, for exam-484

ple for the identification of potential species’ distributions (e.g. Garzón et al. (2006)) or for485

supporting conservation planning and natural reserve selection (Araújo et al. 2004).486

In general, the predictive technique chosen should consider all these factors and the487

decision should be based on the nature of the data to analyze, a sound understanding of the488

limitations and assumptions behind the theoretical background of each technique and the489

final practical aim of each researcher. A framework in which several modeling techniques are490

tested and compared is the recommended option provided the variability of results obtained.491

Model validation, whether using independent data sets or, as it is the case of this study,492

using any of the available resampling techniques, proves a vital step in model assessment if493

reliable measures of performance are to be obtained.494
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Target species Variables selected MLR ANN SVM CART MARS

Full Step. Full Step. Full Step.

Calluna vulgaris 1∗∗,3,5,6∗,7∗∗∗,8∗∗,11∗∗,13∗,14∗∗ 0.69 0.72 0.63 0.62 0.60 0.60 0.70 0.72(1)

Carex nigra 2∗∗∗,3∗,5,8∗∗,12∗∗∗,14∗∗∗ 0.83 0.85 0.82 0.87 0.86 0.86 0.80 0.85(3)

Cytisus oromediterraneus 1,2,3∗∗∗,5∗,6∗∗,8∗∗,11,12∗∗∗,13∗,14∗ 0.82 0.83 0.76 0.83 0.82 0.84 0.67 0.85(2)

Erica arborea 2,3∗,5,7∗,11∗∗∗,12∗∗∗,13∗∗∗ 0.85 0.88 0.82 0.82 0.88 0.87 0.67 0.89(1)

Erica tetralix 2∗∗∗,3,4,5,6∗,8∗,9,11∗,13∗∗∗,14∗∗∗ 0.81 0.82 0.78 0.82 0.77 0.80 0.75 0.81(3)

Euphorbia polygalipholia 2∗∗∗,6,8,11∗∗∗,12,13∗∗∗ 0.91 0.92 0.87 0.89 0.91 0.92 0.85 0.91(1)

Festuca-Agrostis 1∗,2∗∗∗,3∗∗∗,4,5,6∗∗∗,9,12∗∗∗,14∗ 0.87 0.87 0.81 0.84 0.86 0.85 0.82 0.87(1)

Festuca eskia 1,2∗,5,8∗∗∗,11∗∗∗,13∗∗∗,14∗ 0.95 0.96 0.94 0.94 0.96 0.95 0.89 0.95(1)

Genista obtusiramea 1,2∗∗∗,3∗,11∗∗∗,12∗,13∗∗∗,14∗∗ 0.90 0.91 0.85 0.88 0.90 0.90 0.83 0.89(2)

Juncus trifidus 1∗∗∗,4∗,5,6∗∗∗,11∗∗∗,13∗∗∗ 0.93 0.95 0.92 0.94 0.93 0.95 0.88 0.97(1)

Juniperus nana 5∗,6∗∗,7∗∗∗,8,12∗∗,14∗∗∗ 0.64 0.65 0.68 0.63 0.66 0.62 0.56 0.68(3)

Luzula caespitosa 2,3,5,6∗,8,11∗∗,13∗∗∗,14∗∗ 0.91 0.92 0.85 0.89 0.90 0.91 0.85 0.91(1)

Nardus stricta 3∗∗,6∗,7,11,12∗∗∗,13∗∗ 0.81 0.84 0.77 0.78 0.80 0.81 0.72 0.77(1)

Vaccinium myrtillus 1,2∗,4∗,5∗,6,7∗∗∗,11∗∗∗,13∗∗∗,14∗ 0.79 0.81 0.72 0.74 0.80 0.80 0.72 0.83(3)

Vaccinium uliginosum 3∗,4∗∗,5∗∗,6∗∗∗,8∗,11∗∗∗ 0.92 0.94 0.84 0.84 0.83 0.78 0.82 0.90(1)

Table 1. Area under the ROC curve (AUC) for the different models and species resulting from leave-one-out cross validation. For MLR, ANN

and SVM modeling techniques, columns indicate AUC values for both full models (all 14 input variables included) and stepwise models (only variables

selected by the stepwise AIC procedure included). See Table 3 for variable codes. Statistical significance of variables in the MLR stepwise models is

also indicated (Signif. codes: P < 0.001(∗∗∗), P < 0.01(∗∗), P < 0.05(∗)). The four target species used as examples in the figures and best AUC values

obtained for each species are highlighted in boldface. In the MARS column, values in parenthesis indicate the order interaction used.
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List of Tables628

1 Area under the ROC curve (AUC) for the different models and species resulting from leave-629

one-out cross validation. For MLR, ANN and SVM modeling techniques, columns indicate630

AUC values for both full models (all 14 input variables included) and stepwise models (only631

variables selected by the stepwise AIC procedure included). See Table 3 for variable codes.632

Statistical significance of variables in the MLR stepwise models is also indicated (Signif.633

codes: P < 0.001(∗∗∗), P < 0.01(∗∗), P < 0.05(∗)). The four target species used as examples634

in the figures and best AUC values obtained for each species are highlighted in boldface.635

In the MARS column, values in parenthesis indicate the order interaction used. 25636

2 Target species of this study and their prevalence, defined as the proportion in % of polygons637

in which the species is present (any cover value > 0 was considered a presence). The four638

species used in the paper for illustrative purposes are shown in boldface. 35639

3 Summary of environmental variables used in the models. The geomorphological variables640

were calculated as proportion of polygon area by overlay of vegetation and geomorphological641

maps (scale 1 : 2,000 m). Solar radiation was calculated as total radiation received by the642

modeled surface of the study area from 31 April to 31 October 2007. Slope, altitude and643

terrain convexity (curvature) were computed from the 2 m resolution digital elevation model644

of the study area. Frequency column (Freq.) indicates percentage of stepwise models in645

which the variable was included. 36646
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4 Accuracy of the models after computation of the deterministic binary response prediction.647

For simplicity, we illustrate only the four species used in the previous examples. Results648

presented correspond to the species prevalence and the ROC optimized (OPT) probability649

thresholds. OPT maximizes the sum of sensitivity (Sens) and specificity (Spec). True skill650

statistic (TSS) and Cohen’s kappa (K ) are also indicated. For each probability threshold,651

Best TSS results are presented in bold. Number in parenthesis next to MARS method652

indicate the order of interactions achieving the best result. 37653
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Target species Prev
Calluna vulgaris 84
Carex nigra 25
Cytisus oromediterraneus 12
Erica arborea 16
Erica tetralix 26
Euphorbia polygalipholia 37
Festuca-Agrostis 54
Festuca eskia 50
Genista obtusiramea 28
Juncus trifidus 15
Juniperus nana 55
Luzula caespitosa 39
Nardus stricta 86
Vaccinium myrtillus 34
Vaccinium uliginosum 10

Table 2. Target species of this study and their prevalence, defined as the proportion in % of polygons in
which the species is present (any cover value > 0 was considered a presence). The four species used in the
paper for illustrative purposes are shown in boldface.
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Type Code Variable Freq. Units
Geomorphological 1 Boulder fields 47

2 Permanently waterlogged 67
3 Large solifluction terraces 67
4 Small Solifluction terraces 33 %
5 Screes 80 polygon
6 Screes partially fixed by vegetation 73 area
7 Alluvial terrains 33
8 Rocky outcrops 60
9 Lakes 13
10 Fixed slopes 0

Topographical 11 Solar radiation 80 WH ∗m−2

12 Slope 53 Degrees
13 Altitude 73 m
14 Convexity 67 Non dimensional

Table 3. Summary of environmental variables used in the models. The geomorphological variables were
calculated as proportion of polygon area by overlay of vegetation and geomorphological maps (scale 1 : 2,000
m). Solar radiation was calculated as total radiation received by the modeled surface of the study area from
31 April to 31 October 2007. Slope, altitude and terrain convexity (curvature) were computed from the 2
m resolution digital elevation model of the study area. Frequency column (Freq.) indicates percentage of
stepwise models in which the variable was included.
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Species Method Prevalence OPT
Sens Spec TSS K Sens Spec TSS K

MLR 0.87 0.91 0.78 0.78 0.99 0.67 0.66 0.65
Festuca ANN 0.89 0.87 0.75 0.75 0.95 0.75 0.70 0.70
eskia SVM 0.90 0.89 0.79 0.79 1.00 0.67 0.67 0.67

CART 0.90 0.83 0.73 0.73 0.94 0.02 0.03 0.03
MARS(1) 0.92 0.88 0.80 0.80 1.00 0.68 0.68 0.68
MLR 0.89 0.80 0.69 0.61 0.96 0.73 0.69 0.58

Genista ANN 0.83 0.84 0.67 0.62 0.85 0.73 0.58 0.50
obtusiramea SVM 0.90 0.76 0.66 0.57 0.92 0.75 0.66 0.57

CART 0.81 0.86 0.67 0.64 0.86 0.72 0.58 0.50
MARS(2) 0.89 0.76 0.65 0.56 0.91 0.75 0.65 0.56
MLR 0.60 0.61 0.21 0.21 0.56 0.65 0.21 0.21

Juniperus ANN 0.49 0.72 0.21 0.21 0.99 0.04 0.02 0.03
nana SVM 0.64 0.56 0.20 0.20 0.69 0.51 0.19 0.20

CART 0.61 0.61 0.22 0.22 0.71 0.31 0.03 0.03
MARS(3) 0.63 0.70 0.34 0.33 0.88 0.24 0.13 0.14
MLR 0.84 0.84 0.68 0.67 0.93 0.73 0.66 0.62

Luzula ANN 0.84 0.84 0.68 0.67 0.93 0.73 0.66 0.62
caespitosa SVM 0.83 0.85 0.69 0.68 0.88 0.80 0.67 0.65

CART 0.77 0.86 0.64 0.64 0.83 0.81 0.65 0.63
MARS(1) 0.86 0.83 0.68 0.67 0.93 0.70 0.63 0.59

Table 4. Accuracy of the models after computation of the deterministic binary response prediction. For
simplicity, we illustrate only the four species used in the previous examples. Results presented correspond
to the species prevalence and the ROC optimized (OPT) probability thresholds. OPT maximizes the sum of
sensitivity (Sens) and specificity (Spec). True skill statistic (TSS) and Cohen’s kappa (K ) are also indicated.
For each probability threshold, Best TSS results are presented in bold. Number in parenthesis next to MARS
method indicate the order of interactions achieving the best result.
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Fig. 1. Distribution maps of Festuca eskia, Juniperus nana, Luzula caespitosa and Genista obtusiramea
in Riofrio rangeland. Units of axes are meters and correspond to the UTM ED-50 projected grid. Polygons
excluded from the models due to very scarce or null plant cover are delimited by thin borders.
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Fig. 2. Receiver-operating characteristics (ROC) curves corresponding to the species a) Festuca eskia, b)
Juniperus nana, c) Luzula caespitosa and d) Nardus stricta. MLR, ANN and CART curves correspond to
their stepwise versions. Optimised probability thresholds (OPTs) are indicated on their respective curves.
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Fig. 3. Calibration diagrams of the models constructed for a) Festuca eskia, b) Juniperus nana, c) Luzula
caespitosa and d) Genista obtusiramea. Results of the five modeling techniques are plotted in the same
diagram. Incomplete lines indicate that some probability intervals were not predicted by the model (e.g.
probability values between 0.4 and 0.5 were not predicted by CART model for Festuca eskia). Values below
the diagonal indicate over-estimated probabilities and values above it under-estimated predictions.
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Fig. 4. Resolution diagram of the models constructed for a) Festuca eskia, b) Juniperus nana, c)
Luzula caespitosa and d) Genista obtusiramea. The black bars for the 0 and 1 values indicate the observed
presence/absence relative frequency of the species.
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Fig. 5. Predicted probability maps of four species corresponding to models of varying accuracy: a.) ANN
model of Festuca eskia, b.) MARS model of Juniperus nana, c.) SVM model of Luzula caespitosa and d.)
MLR model of Genista obtusiramea. Probability intervals are represented by grayscale tones as indicated
by the legend in the right hand side of the figure.
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Fig. 6. Predicted probability maps of the species Genista obtusiramea according to the different modeling
techniques tested: a.) multiple logistic regression, b.) artificial neural network, c.) support vector machine,
d.) classification and regression tree and e.) multivariate adaptive regression splines.
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Fig. 7. Maps of wrong predictions (false positives and false negatives) of models displayed in Fig. 5.
Deterministic predictions have been obtained using the optimized probability threshold (OPT) as cut-off
value.
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